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Abstract

Background: Quantitative Trait Loci (QTL) affecting meat tenderness have been reported on
Bovine chromosome 10. Here we examine variation at the Calpain 3 (CAPN3) gene in cattle, a gene
located within the confidence interval of the QTL, and which is a positional candidate gene based
on the biochemical activity of the protein.

Results: We identified single nucleotide polymorphisms (SNP) in the genomic sequence of the
CAPN3 gene and tested three of these in a sample of 2189 cattle. Of the three SNP genotyped, the
CAPN3:c.1538+225G>T had the largest significant additive effect, with an allele substitution effect
in the Brahman of o = -0.144 kg, SE = 0.060, P = 0.016, and the polymorphism explained 1.7% of
the residual phenotypic variance in that sample of the breed. Significant haplotype substitution
effects were found for all three breeds, the Brahman, the Belmont Red, and the Santa Gertrudis.
For the common haplotype, the haplotype substitution effect in the Brahman was « = 0.169 kg, SE
= 0.056, P = 0.003. The effect of this gene was compared to Calpastatin in the same sample. The
SNP show negligible frequencies in taurine breeds and low to moderate minor allele frequencies in
zebu or composite animals.

Conclusion: These associations confirm the location of a QTL for meat tenderness in this region
of bovine chromosome 10. SNP in or near this gene may be responsible for part of the overall
difference between taurine and zebu breeds in meat tenderness, and the greater variability in meat
tenderness found in zebu and composite breeds. The evidence provided so far suggests that none
of these tested SNP are causative mutations.

Background

The status of DNA tests for meat tenderness has been
recently discussed [1] and so far there are only two genes
identified that have consistent effects on meat tenderness
reported in the literature, that for Calpastatin and Calpain
1 [2-5]. There are two polymorphisms in Calpain 1
(CAPN1), one appearing to be more useful in taurine

breeds and one more useful in zebu breeds. On the other
hand, although several possible causative mutations have
been identified in Calpastatin (CAST), variation at this
gene appears to affect all breed types.

Quantitative trait loci (QTL) for meat tenderness were
located to bovine chromosome 10 in a Charolais x Brah-
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man experimental population [1]. The authors suggested
that the Calpain 3 (CAPN3) gene could be implicated
because it occurred within the confidence interval of the
location of the QTL and that calpain 3 protein activity had
been implicated in meat tenderness in sheep [6,7],
although DNA variants for CAPN3 have not been tested to
determine whether they are associated with meat tender-
ness in any species.

Here we report the identification of single nucleotide pol-
ymorphisms (SNP) in CAPN3 and the testing of these SNP
for associations to meat tenderness in a large sample of
cattle of several breeds. We found that polymorphisms in
the gene were not common in taurine cattle, so associa-
tions were only tested in zebu and composite animals, the
term crossbred being reserved for animals with parents
from different breeds. Zebu breeds and their tropically
adapted composites are reported to have a 2 to 3 times
greater heritability for meat tenderness than taurine
breeds as well as a slightly higher mean value for shear
force, a measure of meat tenderness [8]. These SNP appear
to contribute primarily to the variation in tenderness in
zebu or tropically adapted composite cattle.

Methods

Cattle Samples

The Beef CRC cattle, the methods of measurement of phe-
notypes, and the methods of DNA extraction have been
reported previously [3,9,10]. After initial testing (cf.
Results) the study was performed on the Brahman (BRM),
Belmont Red (BEL) and Santa Gertrudis (SGT) animals in
the sample. For the sample that was used, the number of
sires and average number of offspring per sire for Brah-
man was 59 sires and a mean of 10.7 offspring per sire, for
Belmont Red was 69 sires and a mean of 12.8 offspring
per sire, and for Santa Gertrudis was 72 sires and a mean
of 9.2 offspring per sire.

Meat tenderness was measured in kilograms using peak
force measurements for the Musculus longissimus lumborum
(LLPF) as described previously [9]. The least square
means, standard deviations and heritabilities of this trait
have been previously published for these animals [11].
The LLPF measurements of all of these animals were ana-
lysed by a general linear mixed model using restricted
maximum likelihood in ASReml [12] where LLPF ~N(p +
kill group + herd of origin + age of slaughter + carcass
weight + sire, 62,) and where sire was fitted as a random
effect as previously described [3,13], and variance compo-
nents were estimated. The model accounted for the fixed
effects of herd of origin and kill group, for the covariates
of age at slaughter and carcass weight and the random
effect of sire. There are several herds of origin associated
with each breed so the average genetic effects due to breed
and sire were included in the model as well as fixed envi-
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ronmental treatment effects; this avoids false associations
due to inappropriate lumping of groups. To prevent the
model being affected by the particular choice of animals
or the estimates of the allelic effects being influenced by
missing genotypic data, phenotypes for all animals were
included in the model rather than only those that were
genotyped.

SNP discovery

Genomic DNA for SNP discovery was obtained by direct
sequencing of PCR products. Primers were obtained from
the cDNA sequence for CAPN3 deposited by Ilian and
coworkers (Genbank AF115744.1). The location of the
exons was placed onto the sequence using a comparative
analysis of sequences from other species. Then primers to
amplify three segments of the gene were synthesized, one
set flanking exon 6, one incorporating introns 10 and 11
and one that incorporated from intron 24 towards the 3'
UTR (untranslated region) of the gene. DNA sequences
were obtained using the Big-Dye 3.1 terminator kit from
Applied Biosystems Inc. (ABI, Foster City, CA), using the
manufacturer's instructions. Each fragment was
sequenced in both directions in 10 animals including the
Angus, Shorthorn and Brahman breeds. The DNA
sequences were compared to sequences in Genbank using
BLAST [14] to confirm the identity of the exons. These
sequences were assessed, then they were assembled into
contigs using phred and Phrap [15] and viewed using
Consed [16]. PolyPhred [17] was used to identify variable
bases with a threshold phred quality score (PQS) of 20.
SNP were described using standard nomenclature [18].

SNP genotyping

SNP were genotyped using the Tagman™ MGB allele dis-
crimination method (ABI, Foster City, CA) as before [3]
by two individuals. An example of one of the SNP is
shown in Figure 1 following the recommendation of the
NCI-NHGRI working group on initial reports of associa-
tions of genotypes and phenotypes [19]. Scoring was
always performed without knowing the phenotypes. For
ease of analysis and compact reporting of the data in the
tables, genotypes were coded as 0, 1, 2 and 5 where 5 is
unknown, 1 is always the heterozygote, 0 is the homozy-
gote higher up the alphabet and 2 is the homozygote
lower down the alphabet — so CC is 2 when AA is the alter-
native homozygote but 0 when GG is the alternative
homozygote.

Genotypes were tested for Hardy-Weinberg Equilibrium
(HWE), inferred haplotypes were used to calculate linkage
disequilibrium (LD) as measured by 12 and differences in
frequency between breeds were tested as previously
described [3,20,21]. The significance of an 12 value was
determined as y?, = Nr2where N is the sample size [20].
The genotypes and residual meat tenderness values were
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The Tagman™ assay for CAPN3:c.1538+225G>T on cattle DNA.
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used to estimate the additive and allele substitution effects
and their standard errors by regressing the number of cop-
ies of an allele against the trait value using the equation o
=a + d(q-p) where a is the allele substitution effect, a is the
additive effect, d is the dominance effect, and p + ¢ = 1 and
are the allele frequencies [3,22-25]. Equivalent results for
this regression can be obtained from a linear model in a
statistical program, treating the genotypes as a variate of 0,
1 and 2 copies of a particular allele. To obtain breed spe-
cific estimates the genotypes are nested within breed. The
probability of the association was obtained directly from
the t-test of the effect divided by its standard error. The
proportion of the residual variance explained by a SNP or
combination of SNP was calculated as the square of the
correlation between the genotypes and the residual trait
values. Epistasis between CAPN3 and CAST SNP was
tested using the software EPEE [3], which uses the G2A
model [22] to assess epistasis between two loci.

To estimate the effect of CAPN3 haplotypes on meat ten-
derness, the number of copies of the common haplotype
was regressed against the residual meat tenderness values
in the same way as the allele substitution effect. Two-locus
haplotypes were used in the analysis for the following rea-
sons. Firstly, two-locus SNP haplotypes can be obtained
unambiguously from genotypes, except for the double
heterozygote and it was ignored in this analysis. Secondly,
the analysis was to regress the trait against the number of
copies of the common haplotype. Using two-locus haplo-
types reduces the genotypic heterogeneity of the one-copy
and the no-copy groups, compared to analyses that use
haplotypes based on more SNP. The expected number of
genotypes equals 3" for n loci. Thirdly, the larger the
number of loci making up the haplotype the smaller the
number of individuals in the two-copies group, which
will affect the accuracy of the estimates. The additive effect
and the haplotype substitution effect of the common hap-
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lotype were calculated in the same way as the additive and
allele substitution effects (cf. above). The use of two-locus
haplotypes has the advantage that the analysis is essen-
tially of the interval between the two SNP. With a large
number of SNP one might restrict the analysis to adjacent
intervals, but as there are only three SNP and therefore
only three possible comparisons, all three intervals were
analysed.

Results

We examined the DNA sequence traces to find polymor-
phisms that were present in all breeds. All of the SNP that
were discovered were either polymorphic in the Brahman
animals in the panel or were differences between Brah-
man on the one hand and the Angus and Shorthorn on
the other hand. We chose three SNP that were polymor-
phic in the Brahman breed for further study, one for each
of the fragments that we had sequenced (Table 1). These
were 1) the amino acid replacing CAPN3:c.53T>G
(Met18Arg), dbSNP id ss102661473, 2) the intronic
CAPN3:c.1538+225G>T, ss102661474, and 3) the
intronic CAPN3:c.2443-103G>C, ss102661475.

To determine whether it was worth genotyping animals of
all breeds, because these SNP were discovered in Brahman
animals, we tested a group of taurine animals of three
breeds. Testing the first SNP, ¢.2443-103G>C, there was 1
heterozygote in 124 taurine animals from the Angus, Her-
eford and Shorthorn breeds, so we did not use taurine
samples for further genotyping because the chance of
finding sufficient homozygotes of each genotype in those
breeds would be low.

We examined the genotypes for deviations from HWE and
for differences between breeds because significant differ-
ences in these measures could affect the subsequent anal-
ysis of association between DNA markers and the trait.

Table I: Primer sequences for the CAPN3 single nucleotide polymorphisms

SNP Name 5'-3' sequence
CAPN3:c.53T>G
MGB-probes CAPN3E6100T 6FAM-TGAGCCCATGTCC

CAPN3E6100G
CAPN3E6GI00TUI
CAPN3E6GI00TDI

Primers

CAPN3:c.1538+225G>T

MGB-probes CAPN3JK-V2-642G
CAPN3JK-V2-642T
Primers CAPN3JKG642TU2
CAPN3JKG642TD2

CAPN3:c.2443-103G>C

MGB-probes CAPN3X3-266G
CAPN3X3-266C

Primers CAPN3X3G266CU2
CAPN3X3G266CDI

VIC-TGAGCCCAGGTCC
ATGCCGACCGTCATTAGC
GAGTAGATGCCACTTGGGTTTC

VIC-TACACGCTCACATGC
6FAM-ACACTCTCACATGCT
ATTGCATGGCCTCCTGAC
CTCCAGAACACCTCTGGACTG

6FAM-CTTCCGTGTCTGGC
VIC-TCTTCCCTGTCTGGC
AGCCTCAGTTATGGCTTTATGC
AGATCAGAATGCACAATGAGACA
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Table 2: The means and standard errors for CAPN3 and CAST SNP and peak force in the longissimus muscle

Locus Breed Homozygote 0 Heterozygote | Homozygote 2
N! x2 SE3 N X SE N X SE

CAPN3

GG GT TT
c¢537>G BRM# 62 -0.02 0.10 238 -0.11 0.05 314 0.08 0.05
c53T>G BEL> 26 0.06 0.12 203 0.10 0.05 609 -0.02 0.03
c¢.53T7>G SGTé 22 0.05 0.14 203 -0.06 0.05 405 0.04 0.04

GG GT TT
c.1538+225G>T BRM 153 -0.10 0.06 279 -0.02 0.05 134 0.19 0.08
c.1538+225G>T BEL 673 0.02 0.03 113 -0.05 0.07 3 0.79 0.82
c.1538+225G>T SGT 371 0.04 0.04 213 -0.00 0.05 32 -0.18 0.08

CcC CG GG
c.2443-103G>C BRM 58 -0.06 0.10 209 -0.10 0.05 295 0.08 0.05
€.2443-103G>C BEL 19 0.15 0.15 154 0.11 0.06 487 -0.02 0.03
€.2443-103G>C SGT 19 0.03 0.13 134 -0.05 0.06 393 0.04 0.04
CAST

AA AG GG
c.2832A>G BRM 172 -0.12 0.06 279 -0.00 0.05 105 0.11 0.08
c.2832A>G BEL 379 -0.06 0.04 239 0.16 0.05 28 0.18 0.16
c.2832A>G SGT 256 -0.07 0.05 208 0.10 0.06 47 0.17 0.11

IJoint genotypes and phenotypes for genotype 0, 2 mean residual phenotype for genotype 0, 3 Standard error for the mean phenotype of genotype

0, 4 BRM Brahman, 5 BEL Belmont Red, ¢ SGT Santa Gertrudis

The genotypes for all three SNP were in HWE and there
were highly significant differences in genotype frequen-
cies between breeds. The allele frequencies of the minor
allele in the composite breeds were approximately half
that found in the Brahman breed (Table 2), and given the
very large sample sizes, these differences were extremely
significant.

To determine whether there may be high levels of LD
between alleles, which may affect the interpretation of the
allelic association to the trait, 72 was calculated from hap-
lotypes inferred using the EM algorithm. The alleles were
in significant LD in all breeds (Table 3). Some of the r2val-
ues were small (r2~v0.01) and were significant only
because the sample size was large.
CAPN3:c.1538+225G>T showed moderate LD to ¢.53T>G
and ¢.2443-103G>C in Brahman but very low LD in Bel-
mont Red and Santa Gertrudis. CAPN3:c.53T>C and
€.2443-103G>C showed very high LD in all breeds. All the
CAPN3 SNP showed very low LD to CAST:c.2832G>A in
all breeds with an average 2= 0.003, SE = 0.001, N =9, as
expected for unlinked loci. None of the CAPN3-CAST 12
values were significant.

Significant associations were found between a CAPN3
SNP and LLPF in the Brahman and Belmont Red breeds
but not in the Santa Gertrudis (Table 4). The strongest
effect, in terms of residual variance explained, was found
in the Brahman breed for the ¢.1538+225G>T SNP, where
the GG genotype had increased meat tenderness. Both
additive and allele substitution effects (o = 0.19 &), were

significant and the dominance effect was not significant.
Although the Belmont Red breed also showed a large sig-
nificant additive effect, this is based on a few animals and
so should be treated with caution. In particular, the allele
substitution effect was not significant and was essentially
zero. The Belmont Red breed showed significant allele
substitution effects for both ¢.53T>G and ¢.2443-103G>C.
The Brahman breed showed large but non-significant
effects for these latter two SNP, but the favourable geno-
type was reversed and so the allele substitution effect was
of opposite polarity.

Significant associations were found for haplotypes of
CAPN3 and LLPF (Tables 5 and 6). Interval 2 (Int2),
between ¢.1538+225G>T and ¢.2443-103G>C, showed sig-
nificant additive or allele substitution effects in all breeds,

Table 3: Estimated LD between CAPN3 alleles in different
breeds

SNP pair Breed r? P
¢.53T>G c.1538+225G>T BRM 0.366 <<0.00001
¢.53T>G c.1538+225G>T BEL 0.008 0.01513
¢.53T>G c.1538+225G>T SGT 0.062 <<0.00001
¢.53T>G c.2443-103G>C BRM 0915 <<0.00001
¢.53T>G ¢.2443-103G>C BEL 0.853 <<0.00001
¢.53T>G ¢.2443-103G>C SGT 0.801 <<0.00001
¢.1538+225G>T ¢.2443-103G>C BRM 0.374 <<0.00001
¢.1538+225G>T ¢.2443-103G>C BEL 0.014 0.00317
¢.1538+225G>T ¢.2443-103G>C SGT 0.040 <<0.00001

BRM, Brahman, BEL, Belmont Red, SGT, Santa Gertrudis
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Table 4: Association between the CAPN3 and CAST SNP and peak force in the longissimus muscle

Locus Breed Po’ V.2 a’kg SE,* P2 abkg SE,, P,
CAPN3

c¢.53T>G BRM? 0.29 0.0111 -0.046 0.082 0.578 -0.103 0.060 0.088
c.53T>G BEL® 0.15 0.0043 0.037 0.057 0.520 0.089 0.044 0.046
c.53T>G SGT? 0.20 0.0038 0.005 0.074 0.942 -0.058 0.058 0.315
c.1538+225G>T BRM 0.52 0.0172 -0.147 0.066 0.026 -0.144 0.060 0.016
c.1538+225G>T BEL 0.92 0.0052 -0.380 0.046 0.000t 0.003 0.037 0.944
c.1538+225G>T SGT 0.78 0.0040 0.108 0.066 0.102 0.068 0.060 0.260
c.2443-103G>C BRM 0.29 0.0108 -0.067 0.080 0.402 -0.115 0.063 0.068
c.2443-103G>C BEL 0.15 0.0061 0.083 0.065 0.203 0.114 0.053 0.031
c.2443-103G>C SGT 0.16 0.0021 -0.005 0.087 0.959 -0.058 0.065 0.371
CAST

c.2832A>G BRM 0.56 0.0088 -0.113 0.065 0.082 -0.113 0.061 0.064
c.2832A>G BEL 0.77 0.0195 -0.120 0.047 0.011 -0.171 0.040 0.000t
c.2832A>G SGT 0.70 0.0142 -0.120 0.061 0.051 -0.140 0.055 0.011

IAllele frequency for allele 0, 2 proportion of the residual variance explained by the SNP, 3 additive effect, 4 standard error of the additive effect, 5P
value of the additive effect, ¢allele substitution effect, 7 BRM Brahman, 8 BEL Belmont Red, ? SGT Santa Gertrudis, T P < 0.0001

where the haplotype substitution effect in Brahman
equalled 0.22 Op The effect of Int1, between ¢.53T>G and
¢.1538+225G>T, was not significant in all breeds, and the
effect of Int3, between ¢.53T>G and ¢.2443-103G>C, was
not significant in any breed. Notably, the effects of Int1l
and Int2 were significant in the Santa Gertrudis even
though the individual locus effects were not significant in
that breed. The haplotype substitution effects had more
similar sizes than the individual SNP allele substitution
effects in the different breeds. The haplotype substitution
effect had the opposite polarity in the Santa Gertrudis to
the other breeds.

The significant associations for CAST:c2832G>A were
included because breed specific values have not previ-
ously been reported for this data set, only values for com-
bined data (Table 4). The allele substitution effects had

the same polarity in all breeds. This CAST SNP had similar
sized effects in all three breeds. That differs from the
CAPN3 SNP in this study, which showed different sizes in
different breeds. In the Brahman, the
CAPN3:¢.1538+225G>T SNP showed a similar size to the
CAST:c.2832G>A SNP.

We found no strong evidence of epistatic interactions
between CAPN3 SNP and CAST. One comparison out of
12 had a P value < 0.05, for the additive x additive com-
ponent in the Santa Gertrudis breed for the comparison
between CAPN3:c.1538+225G>T and CAST:c.2832A>G,
with aa = 0.19 kg, SE = 0.100, P value = 0.038, which was
close to expected for the number of tests performed.

Table 5: Means and standard errors of CAPN3 two-locus haplotypes and meat tenderness in different breeds

Locus Breed No copies! One copy? Two copies?
N+ x°kg SE® N x kg SE N x kg SE
No GT haplotypes One GT haplotype Two GT haplotypes
Intl? BRM!0 185 0.13 0.06 192 -0.04 0.06 28 -0.10 0.15
Intl BEL!! 28 0.14 0.14 261 0.05 0.05 458 -0.02 0.03
Intl SGT!2 51 -0.06 0.08 282 -0.07 0.04 206 0.12 0.06
No TG haplotypes One TG haplotype Two TG haplotypes
Int28 BRM 176 0.13 0.07 184 -0.01 0.06 27 -0.23 0.15
Int2 BEL 22 0.23 0.17 212 0.03 0.05 379 -0.01 0.04
Int2 SGT 49 -0.10 0.07 227 -0.07 0.05 211 0.10 0.05
No GG haplotypes One GG haplotype Two GG haplotypes
Int3° BRM 6l -0.02 0.10 13 -0.29 0.24 276 0.09 0.05
Int3 BEL 24 0.10 0.13 16 0.09 0.15 467 -0.03 0.04
Int3 SGT 22 0.05 0.14 26 -0.08 0.12 354 0.05 0.04

'No copies of the haplotype for the common allele, 2 one copy of the haplotype for the common allele, 3 two copies of the haplotype of the
common allele, 4 N sample size, 5 x average meat tenderness, ¢ SE standard error, 7 Int| haplotype between CAPN3:c.53T>G and
CAPN3:c.1538+225G>T, 8Int2 haplotype between CAPN3:c.|538+225G>T and CAPN3:c.2443-103G>C, ? Int3 haplotype between CAPN3:c.53T>G and
CAPN3:c.2443-103G>C, ' BRM Brahman, ' BEL Belmont Red, '2SGT Santa Gertrudis

Page 6 of 8

(page number not for citation purposes)



BMC Genetics 2008, 9:41

http://www.biomedcentral.com/1471-2156/9/41

Table 6: Association between CAPN3 two-locus haplotypes and meat tenderness

Locus Breed P! V.2 a’kg SE4 PS5 osgg SE P,

Intl? BRM 0.31 0.0118 0.117 0.060 0.054 0.137 0.058 0.018
Intl BEL 0.79 0.0031 0.077 0.046 0.094 0.073 0.042 0.082
Intl SGT 0.64 0.0150 -0.090 0.055 0.104 -0.119 0.053 0.026
Int28 BRM 0.31 0.0149 0.183 0.060 0.003 0.169 0.056 0.003
Int2 BEL 0.79 0.0040 0.122 0.044 0.005 0.076 0.042 0.069
Int2 SGT 0.67 0.0136 -0.103 0.052 0.050 -0.125 0.050 0.012
Int3° BRM 0.81 0.0092 -0.057 0.092 0.540 -0.260 0.168 0.122
Int3 BEL 0.94 0.0020 0.064 0.060 0.288 0.110 0.125 0.381
Int3 SGT 0.91 0.0016 -0.001 0.081 0.992 -0.107 0.175 0.542

IFrequency of common haplotype, 2 proportion of the residual variance explained by the common haplotype, 3 additive effect, 4 standard error of
the additive effect, 5 P value of the additive effect, é haplotype substitution effect, 7 Intl haplotype between CAPN3:¢.53T>G and
CAPN3:c.1538+225G>T, 8Int2 haplotype between CAPN3:c.1538+225G>T and CAPN3:c.2443-103G>C, ? Int3 haplotype between CAPN3:c.53T>G and
CAPN3:c.2443-103G>C, ' BRM Brahman, '! BEL Belmont Red, '2SGT Santa Gertrudis

Discussion

SNP at the CAPN3 gene confirm that there is a QTL affect-
ing meat tenderness on bovine chromosome 10. The asso-
ciations are consistent with CAPN3 being a positional
candidate gene for the effect, with the strongest evidence
found in Brahman animals. Further genotyping should be
performed on neighbouring genes and the surrounding
genetic region to exclude other genes. The intronic
CAPN3:c.1538+225G>T SNP shows the largest effect,
while the other SNP have weaker and inconsistent effects
in different breeds. As ¢.1538+225G>T is located between
the other two SNP, this might suggest that the causal
mutations lie near to it. However, given the pattern of LD
between the three SNP, that the two flanking SNP are in
high LD in all breeds but in low LD to the central SNP in
the composite breeds, it is possible that the causative
mutations do not lie centrally in the gene; only the Brah-
man breed had some LD between ¢.1538+225G>T and the
other SNP, and only in the Brahman breed was there sim-
ilarity in the association to meat tenderness for all SNP.
This suggests that haplotypes in the Brahman are more
closely aligned to the causative mutation than in the com-
posite breeds. Nevertheless, the differences in association
between these SNP in different breeds could point to there
being more than one causative mutation. These results
suggest that it may be useful to discover other SNP in and
around the CAPN3 gene and to examine these for func-
tional, mechanistic explanations for the differences in
meat tenderness as well as other traits.

The haplotype substitution effect is significant in all
breeds for a haplotype that spans the 3' half of the gene.
The common allele at each of the three SNP is not associ-
ated consistently with increased meat tenderness in any
breed, so testing a haplotype of the common alleles is not
biased towards a particular result. The analysis of the hap-
lotypes shows stronger effects than the individual SNP
associations. The significant haplotype effects suggest that
a QTL exists for this trait in all breeds, despite the lack of

association in the Santa Gertrudis in the single SNP anal-
ysis. The failure of the single SNP analysis in the Santa
Gertrudis, as well as the haplotype substitution effect
being of opposite polarity to the other breeds, suggests
that the Santa Gertrudis breed has a more complex LD
structure of SNP around the causative mutation. This may
be a consequence of its composite origins. The failure to
find evidence in any particular single SNP association test
is likely to be due to differences in the amount and polar-
ity of allelic association between the SNP and the causa-
tive mutation in that particular breed, as well as the power
of the experiment to detect the association at a particular
significance threshold. This echos the critique of using
TAG SNP [26] as a tool for association mapping because
the LD relationships between genotyped SNP cannot be
used to predict the LD relationships for unknown SNP
and hence for SNP-trait associations [27]. Nevertheless,
the high LD between ¢.53T>G and ¢.2443-103G>C in all
breeds but the failure to detect a haplotype substitution
effect for these two SNP may suggest that the QTL is not in
strong LD with these two SNP.

These SNP appear to be detecting a nearby QTL but they
are not merely markers of difference between taurine and
zebu cattle. Due to the many differences between zebu
and taurine cattle, the analysis of fixed zebu-taurine differ-
ences in composite cattle is a way of tracking the influence
of particular DNA segments, but such differences only
explain increased genetic variability of recently crossbred
cattle. However, in this case, because these DNA variants
are SNP discovered in the Brahman, and are studied
within that breed, the association indicated that the QTL
contributes to the greater genetic variance for meat tender-
ness in the Brahman and other tropically adapted cattle.
Identifying more SNP within the Brahman in this genetic
region, particularly those in high LD to ¢.1538+225G>T,
would be the start of a better understanding of how this
gene or the surrounding genetic region affects meat ten-
derness.
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Conclusion

SNP in the positional candidate gene CAPN3 in a popula-
tion association study confirm the location of a QTL for
meat tenderness to bovine chromosome 10 originally
identified in a QTL linkage experiment. The SNP variants
were largely found in the zebu and composite breeds and
this study implicates the QTL they detect in the greater
heritability and mean trait values for meat tenderness
found in zebu cattle compared to taurine cattle.
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