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Bioinformatics analysis to screen DNA methylation-driven genes 
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Background: Bladder cancer (BLCA) is the most prevalent tumor affecting the urinary system, and 
has contributed to a rise in morbidity and mortality rates. Herein, we sought to identify the methylation-
driven genes (MDGs)of BLCA in an effort to develop prognostic biomarkers suitable for the individualized 
assessment of patients with this particular cancer.
Methods: The Cancer Genome Atlas (TCGA) dataset was distributed into training set (n=272) and testing 
set(n=117). The ConsensusClusterPluspackage was used to identify BLCA subtypes. The ChAMP package 
was used to analyze differential methylation probe (DMP) and differential methylation region (DMR). The 
differentially expressed genes (DEGs) were detected using DESeq2. Gene Ontology (GO) term enrichment 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were utilized to identify the 
pathways enriched of DEGs. Correlation analysis between 5’-C-phosphate-G-3’s (CpGs) and DEGs was 
employed to identify the MDGs. The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
was used to build the protein-protein interaction (PPI) network of MDGs. Screening for BLCA prognosis-
related MDGs and clinical features was conducted via the Cox regression model. A prognosis-related 
nomogram was developed and validated for prediction of the BLCA patients’ survival.
Results: We identified 2 BLCA clusters. Differential methylations at CpGs sites (dm-CpGs) were 
observed between cluster2 and cluster1, with 14,189 of them hypermethylated and 878 hypomethylated, 
predominantly in the CpG islands. In addition, a total 4,234 DEGs were identified between cluster2 and 
cluster1. The KEGG pathway and GO term enrichment analyses found that some DEGs were significantly 
enriched in multiple cancer-related pathways. A total of 33 MDGs were detected from correlation analysis 
between CpGs and DEGs. We selected BLCA-specific prognostic DMGs signatures for risk model 
development. The nomogram comprised a risk model to predict survival for BLCA patients. The efficiency 
of the prognostic prediction model was validated in the training and testing set.
Conclusions: This study discovered differential methylation patterns and MDGs in BLCA patients, which 
provided a bioinformatics basis for guiding BLCA early diagnosis and prognosis analyses.
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Introduction

Bladder cancer (BLCA) is the ninth leading cancer 
type global ly,  with 430,000 new cases  diagnosed  
annually (1). In China, BLCA is 5 times more common 
among males relative to females (2), and rates of this cancer 
are rising. Owing to its high morbidity and mortality, 
BLCA is of key scientific interest. In 2015 alone in the 
USA, there were 74,000 urothelial carcinoma of the bladder 
(UCB) diagnoses and 16,000 BLCA-related deaths (3). 
The TNM system can grade tumors based upon cellular 
characteristics and degree of invasion (Tis-T4) and is 
graded according to its cellular characteristics. While 
recurrence is a common finding in those with non-muscle 
invasive bladder cancers (NMIBCs) (50–70%), the disease 
only becomes invasive in 0-15% of cases and the 5-year 
survival rate is currently 90% (4). Transurethral resection 
of bladder tumor (TURBT) is considered the standard of 
treatment for NIMBC. However, approximately 70% of 
patients will relapse, and it is estimated that 30% of patients 
will eventually need radical cystectomy due to the disease 
developing into muscle invasive bladder cancer (MIBC). 
There is no approved second-line treatment for patients 
who progress after first-line treatment (5). Even though 
surgery, radiotherapy, chemotherapy, and immunotherapy 
approaches to treating this cancer type have been designed, 
BLCA has remained a major therapeutic challenge owing to 
its complex pathogenesis.

Apart from environmental factors, genetic material 
mutation is one of the main BLCA-related risk factors. 
However, the molecular regulation mechanism of BLCA 
is still not entirely understood (6,7). The methylation 
of DNA is a key epigenetic process that is also linked to  
oncogenesis (8). Such methylation can regulate genomic 
stability, cellular differentiation, and many other processes, 
thereby potentially impacting cancer development and 
prognosis. Recently, increasing evidence has suggested 
that the onset of BLCA is a multigenic, multifactorial 
process, and there is thus a clear need for further study 
of the epigenetic basis for BLCA. Gene methylation can 
profoundly influence gene expression, an understanding 
of which is beneficial to BLCA diagnostic and prognostic 
evaluation. A total of 120 genes relating to the interaction 
between micro RNA (miRNA) and methylation have 
been discovered, and 11 important epigenetic interactions 
between 2 epigenome components have been found to be 
related to survival rate (9). A urine methylation biomarker 
classifier for BC monitoring has been developed. If 

cystoscopy were to be performed only on patients whose 
combined classifier results are positive, 36% of all potential 
cystoscopy could be prevented (10). Compared with 
paracancerous tissues, the expression of Dlg5 is reduced 
in most BLCA tissues, and the expression of Dlg5 is 
further down-regulated in patients with muscle invasive 
tumors. The hypermethylation of Dlg5 in bladder tumors 
is closely related to the silence of Dlg5 expression (11). It 
has been revealed that some special methylation-driven 
genes (MDGs) may be useful biomarkers for the diagnosis, 
therapy, and prognosis assessment of BLCA.

The Cancer Genome Atlas (TCGA) database is an open 
access research tool containing epigenetic and genetic 
information pertaining to a wide range of tumors that can 
be utilized for research purposes. At the present, differential 
methylation patterns and MDGs in several cancer subtypes 
have been identified through mining data from TCGA. 
However, the methylation patterns and the prognosis value 
of MDGs in BLCA are still unclear.

Herein, BLCA patient-related messenger RNA (mRNA) 
expression and methylation data were obtained from 
TCGA, and the methylation patterns and MDGs were 
identified using R language (http://www.R-project.org/). 
Then, MDGs and some clinical features were utilized for 
survival model construction, to assess the MDGs associated 
with BLCA prognosis, and explore correlations between 
DNA methylation and BLCA gene expression. This 
study has provided a rational foundation for personalized 
medicine of BLCA.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/tau-21-326).

Methods

Data collection and preprocessing

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). For this study, 
399 samples of DNA methylation array data of TCGA-
BLCA cohort were downloaded from TCGA (http://
cancergenome.nih.gov/). Samples were randomized into 
a training set (n=272) and testing set (n=117). The DNA 
methylation array data was generated from the Illumina 
Infinium Human-Methylation450 Bead-Chip array 
(Illumina. San Diego, CA, USA). We used β values (between 
0 and 1) to assess probe methylation levels. These β values 
were excluded when they mapped to mitochondrial, X, 

https://dx.doi.org/10.21037/tau-21-326
https://dx.doi.org/10.21037/tau-21-326
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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or Y chromosomes to prevent possible bias. In addition, 
the ~20% of samples with absentβ values were excluded. 
Furthermore, probes overlapping with repeat masker and 
single nucleotide polymorphisms (SNPs) from dbSNP v151 
(National Center for Biotechnology Information (NCBI), 
Bethesda, MD, USA) with a minor allele frequency (MAF) 
>1% were also removed (12). The DNA methylation was 
analyzed in 399 samples at the regional and site levels, with 
probes independently mapped to 6 genomic sub-regions: 
transcription start site (TSS) 200 (TSS to 200 bp upstream 
of the TSS), TSS1500 (200–1,500 bp upstream of the TSS), 
5’ UTR, 1st exon, gene body, and 3’UTR and intergenic 
regions (IGR). In addition,5’-C-phosphate-G-3’ (CpG) 
island, shore (0–2 kb from CpG islands), and shelf (2–4 kb 
from CpG islands) methylation patterns were also assessed.

Transcription-level data from the BLCA patients and 
complete clinical datasets were obtained from TCGA-
BLCA (http://cancergenome.nih.gov/). A total of 395 
samples of RNA-sequencing data were enrolled in this 
study. The DESeq2 (13) was employed for the expression 
of differentially expressed genes (DEGs) based on raw 
read counts. Those genes that had a false discovery rate 
(FDR) ≤0.05 and the absolute value of log2 fold change 
(FC) difference ≥1 (|log2 (FC)|≥1) were considered to be 
differentially expressed.

Consensus cluster analysis

Relevant variable CpG sites were extracted based upon 
a standard deviation (SD) threshold >0.1 in BLCA 
samples. Clustering analyses were then conducted with the 
RConcensusClusterPlus package based upon these variable 
sites and K-means clustering (14). The prespecified dataset 
was classified into k clusters via the algorithm. Stable 
clusters were obtained via 100 iterations with a mxk=20 
parameter, with 80% of samples being used per analysis. 
The maximum number of clusters with a minimum of 
90% clustering consensus was chosen, with a cumulative 
distribution function (CFD) and the delta area map being 
utilized to select optimal cluster numbers.

Survival analysis

We assessed BLCA subtype overall survival curves via the 
Kaplan-Meier (KM) approach as a function of methylation 
profiles. Differences between clusters were compared via 
log-rank tests. Associations between cluster biological and 

clinical findings were assessed via chi-squared tests. Survival 
analyses were performed with the survminer R package. 
The significance threshold was set at P<0.05.

DNA methylation analysis

Following preprocessing and imputations analyses, CpGβ 
values underwent further normalization with an Rβ mixed 
integer-quantile normalization (BMIQ) tool to control 
for type I and II probes (15). The R limma package was 
utilized for supervised differential methylation analysis. 
The CpG residues were deemed to be differentially 
methylated when the |log2 (FC)| of cluster1 and cluster2β 
value were ≥0.2, and the Benjamini-Hochberg (BH) 
adjusted P value ≤0.05. The gtrellis R package was 
utilized to generate circular 10 Mb sliding window plots 
for individual chromosomes assessing differentially 
methylated CpGs (dm-CpGs) with varying frequencies of  
methylation (16). Methylation frequencies per Mb pair for 
individual chromosomes were then determined by dividing 
the number of dm-CpGs per chromosome by chromosomal 
length in Mb based on the GRCh38 genome. The relative 
frequencies of hypomethylation and hypermethylation 
were additionally determined via a similar approach. When 
the hypermethylation to hypomethylation frequency ratio 
was ≥1.5 for a given chromosome, it was considered to be 
primarily hypomethylated.

Analysis of differential methylation regions

The  DMRcate  B ioconduc tor  too l  ( ht tp : / /www.
bioconductor.org/packages/release/bioc/html/DMRcate.
html) was utilized to analyze differential methylation 
regions (DMRs) (17). This tool first calculated the 
differential methylation of particular CpG residues with a 
limma-derived moderated t-statistic (18). After correcting 
for FDR, significant dm-CpGs regions were pooled when 
consecutive probes were in a 1 kb distance, with DMRs 
that had a minimum of 2dm-CpGs with an adjusted P value 
<0.01 within 1kb being incorporated into DMR analyses, 
with the Gviz Bioconductor package being used to plot the 
resultant DMRs (19).

Functional enrichment analyses

The GO and KEGG analyses were performed with the 
RclusterProfiler software (20). The significance threshold 

http://www.bioconductor.org/packages/release/bioc/html/DMRcate.html
http://www.bioconductor.org/packages/release/bioc/html/DMRcate.html
http://www.bioconductor.org/packages/release/bioc/html/DMRcate.html
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was set at P<0.05.

Protein-protein interaction (PPI) network

The PPI network of the aggregated DEGs was prepared 
and visualized with STRING (https://string-db.org/
cgi/network.pl). A combined interaction score >0.4 was 
considered statistically significant.

Correlation analyses

The correlation between DNA methylation level and gene 
expression value was detected with Spearman’s correlation 
coefficient analysis. Correlation coefficient ≥0.3 and FDR 
≤0.05 were considered statistically significant.

Establishment and verification of the prognostic prediction 
model

The hub DMRs and several clinical features were applied 
to a univariate Cox regression. Statistical significance was 
considered when P<0.1. Then, least absolute shrinkage 
and selection operator (LASSO) regression analysis was 
utilized to detect survival-related DMGs in the training 
set. Moreover, a multivariate Cox regression model was 
built to further identify the selected variates using ‘step’ 
function in R. Risk signatures were then generated through 
the linear combination of regression coefficient values from 
multivariate Cox regression model coefficient values and 
gene expression levels as follows:

n
Risk score = coefficient of  variate (i) 

i = 1
* expression of  variate (i)

∑
 [1]

Median risk score values were utilized to separate 
patients into low- and high-risk groups, and risk signature 
efficiency was evaluated via the KM approach and using 
time-dependent receiver operating characteristic (ROC)
curves. The R rms package was used to construct a risk 
score-based overall survival (OS)-related nomogram. 
Calibration curves were generated, and C-index values were 
determined to assess nomogram efficiency. Furthermore, 
the prognostic predicated models also were validated in the 
testing set by constructing univariate Cox regression and a 
time-dependent ROC curve.

Statistical analysis

All statistical analyses were conducted using R software 
(version3.6.1). Univariate and LASSO Cox regression 
analyses were performed to construct and evaluate the 
prognostic predicated models using “glmnet” and “survival” 
packages of the R software. ROC curve analysis was 
performed to predict the OS of BLCA patients using the 
“survival ROC” package in the R. The OS between the 
two clusters was analyzed by Kaplan-Meier analysis with 
the log-rank test. A P value less than 0.05 was considered 
statistically significant.

Results

BLCA prognostic subtype methylation-based consensus 
clustering

Methylation site consensus clustering was conducted to 
identify differential DNA methylation molecular subtypes 
for further prognostic analyses. The clustering result was 
relatively stable when k=2 as displayed by the cumulative 
distribution function (CDF) curve, despite that the delta 
area was significantly changed when k=2 (Figure 1A,1B). 
The results of consistent clustering indicated that the 
blue blocks were adjacent to each other on the white 
background when the clustering number was 2 (Figure 1C 
and Figure S1A-S1C). On the whole, all BLCA samples 
were divided into 2 clusters. Then, the effects of these 2 
methylation subtypes on BLCA survival was investigated. 
The KM analyses suggested that the methylation consensus 
clustering-based prognosis of BLCA had insignificant 
differences between cluster1 and cluster2 (Figure 1D).

Differentialmethylation probes (DMPs) analysis

For the further analysis of DNA methylation in BLCA, 
we combined β values formal CpGs in relevant regions 
for cluster1 and cluster2. This analysis revealed a total 
15,067 differentially methylated CpGs (dm-CpGs) 
between cluster1 and cluster2; of these, 14,189 exhibited 
hypermethylation and 878 exhibited hypomethylation 
(cluster2 vs. cluster1). As shown in Figure 2A, all dm-
CpGs results from each autosomal chromosome shown on 
the out circle of the circus plot. In detail, chromosome 8 
contained the highest, 290, methylation frequency (https://
cdn.amegroups.cn/static/public/tau-21-326-1.xlsx). The 

https://string-db.org/cgi/network.pl
https://string-db.org/cgi/network.pl
https://cdn.amegroups.cn/static/public/TAU-21-326-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TAU-21-326-Supplementary.pdf
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Figure 1 BLCA DNA methylation prognostic subgroup consensus clustering. CDF curve (A). CDF delta area curve (see Methods) (B). 
Consensus clustering of BLCA with k=2 (C). Kaplan-Meier survival curves for the 2 BLCA methylation subtypes (D). BLCA, bladder 
cancer; CDF, cumulative distribution function.

most common DMP-related genes were: ERICH1-AS1, 
DLGAP2, CSMD1, MYOM2 and CTD-2281E23.2  
(https://cdn.amegroups.cn/static/public/tau-21-326-1.
xlsx). Normalization across chromosomes was achieved by 
dividing methylation by chromosomal size in Mb as a means 
of assessing differential methylation profiles. The results of 
this analysis revealed chromosome 17 as having the greatest 
mean frequency of hypomethylated sites while chromosome 
6 had the highest mean frequency of hypermethylated sites 
(Figure 2B).

Then, the distribution of these dm-CpG sites were 

investigated. When assessing CpG residues in different 
locations, we found that the most apparent hyper- or 
hypo-methylated CpG sites were spread throughout the 
genome, while CpG islands were the most hypermethylated 
and the shelf regions exhibited the lowest degree of 
hypermethylation (Figure S2A). Based on the position 
relative to genes (1st Exon, 3’ UTR, 5’ UTR, body, TSS200, 
TSS1500and IGR), the distribution of methylated CpG 
sites indicated that the most hyper- and hypo- methylated 
CpG sites were located in the body (Figure S2B). The 
dm-CpG site distributions were then assessed based upon 
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genetic and epigenetic annotations (Figure S2C). All of 
these results indicated that the differential CpG sites were 
mostly located in the CpG islands.

Differential methylated regions analysis

The DMRs comprise multiple consecutive methylated 
CpG sites with at least 2 dm-CpGs. Therefore, the effects 
of DMRs on gene expression and biological process are 
more significant than DMPs (21). In this study, cluster2 
vs. cluster1, 146 DMRs across the genome in BLCA were 
identified. Chromosome 1 showed the highest number of 
DMRs (n=779) and chromosome 21 showed the lowest 
number of DMRs (n=37) (https://cdn.amegroups.cn/
static/public/tau-21-326-1.xlsx). The distribution lengths 
of DMRs ranged from 149 bp to 26,103 bp. There were 
2,172 long (>2,000 bp) DMRs. The number of dm-CpGs 
within DMRs ranged from 7 to 243, and there were 6 
DMRs containing more than 100 dm-CpGs (https://cdn.
amegroups.cn/static/public/tau-21-326-1.xlsx). As shown 
in Figure 3A, the DMR with the highest and second 
highest number of dm-CpGs (DMR1 and DMR2) revealed 
differential methylation patterns between cluster1 and 
cluster2 on chromosome 6. Several oncogenes, such as 

RXRB, RING1, and SLC39A7, were located in this region. 
The top 10 DMRs with CpG sites, DMR distribution, and 
related genes between cluster1 and cluster2 are presented 
in Figure S3. Moreover, the distribution of CpG on CpG 
island and gene regions in DMRs also displayed discernible 
methylation patterns between cluster1 and cluster2  
(Figure 3B,3C and Figure S4).

Identification of DEGs

The DEGs were identified between cluster1 and cluster2. 
Volcano plots and heat mapping show the significantly 
changed genes with |log2 (FC)| ≥1 and FDR <0.05 in 
cluster2 compared with cluster1 (Figure 4A,4B). In total, 
4,234 genes showed significantly differential expression, 
including 1,583 upregulated genes and 2,651 downregulated 
genes (https://cdn.amegroups.cn/static/public/tau-21-326-
1.xlsx). In addition, https://cdn.amegroups.cn/static/public/
tau-21-326-1.xlsx and Figure 4C display the details of the 
top 10 DEGs. Compared with cluster1, MTND1P23, 
SSTR5-AS1, GRM3, TMEN178A and SLC39A5 were 
significantly upregulated in cluster2, while RHOH, 
CD52, CD209, CD48 and IL10RA were significantly 
downregulated.

Figure 2 BLCA-related differential DNA methylation distributions. CpG circus plots. The differential hypermethylation and 
hypomethylation CpGs in chromosomes are shown on the outermost circle, with chromosomes 1–22 being shown in order in a clockwise 
fashion with sex chromosomes being excluded from this chart. Frequencies of hypermethylation and hypomethylation along sliding 10 Mb 
windows are shown on the inner circles (A). Stacked pyramid plots for differential hyper- and hypo- methylation frequencies on individual 
chromosomes, with chromosomes being sorted based upon the level of differential methylation per Mb of length (B). BLCA, bladder cancer; 
CpG, 5’–C–phosphate_G_3’.
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Figure 3 DMR analysis in BLCA. DMR1 and DMR2 plot (A). Distribution of CpG sites according to CpG islands and gene position in 
DMR1 and MDR2. DMR1, differential methylated regions with the highest CpGs. DMR2, differential methylated regions with the second 
highest CpGs (B and C). BLCA, bladder cancer; CpG, 5’–C–phosphate_G_3’; DMR, differential methylation region.

Next, the biological classification of DEGs was 
investigated. The KEGG pathway enrichment analyses 
revealed that upregulated genes predominantly participated 
in cancer-related pathways including the drug metabolism, 
retinol metabolism, chemical carcinogenesis,  and 
cytochrome P450xenobiotic metabolism (Figure 5A). The 
downregulated genes of the KEGG pathways were mainly 
enriched in cytokine-cytokine receptor interactions, viral 
protein interactions with cytokines/cytokine receptors, and 
the chemokine signaling pathway (Figure 5B). The GO 
enrichment analysis showed that the upregulated genes 
were mainly involved in endocrine system development, 
steroid metabolic process, and glucuronosyltransferase 
activity (Figure 5C). The GO enrichment analysis of 
biological processes was enriched in adaptive immune 

response, positive regulation of cell activation, and 
leukocyte migration. Furthermore, cell component analysis 
indicated that these genes were enriched in the external side 
of plasma membrane and collagen-containing extracellular 
matrix. Cytokine activity and extracellular matrix structural 
constituent were the mainly enriched terms for molecular 
function (Figure 5D).

Selection and analysis of MDGs

To detect the regulatory effect of DNA methylation on gene 
expression, the relationship between dm-CpGs and DEGs 
was explored. The results demonstrated that 33 genes 
were negatively correlated with the corresponding CpGs  
(https://cdn.amegroups.cn/static/public/tau-21-326-1.xlsx), 
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Figure 4 Identification of DEGs in BLCA subtypes. Heat map for the DEGs in cluster2 vs. cluster1 (A). Volcano plot for DEGs in cluster2 
vs. cluster1 (B). The expression of top 10 DEGs in cluster2 vs. cluster1 (C). DEGs, differentially expressed genes; BLCA, bladder cancer.

thus they were identified as MDGs for BLCA. The MDGs 
with the top 10 correlation coefficients are displayed in 
Figure 6A, including TBX3, IFFO1, SLITRK6, PSMB9, 
SRGN, TAP1, FAM78A, GPR68, EPHB6 and DHRS2.

The PPI network was constructed to analyze the 
interaction of 33 MDGs. A PPI diagram with 12 node genes 
and 9 interaction is shown in Figure 6B.

Construction of the prognosis prediction model in training 
set

To investigate the contribution of 33 MDGs to BLCA 
survival, a total 389 BLCA samples were distributed into 
a training set (n=272) and testing set (n=117), which were 

involved in identification and verification the prognostic 
prediction model (https://cdn.amegroups.cn/static/public/
tau-21-326-1.xlsx). Thus, univariate Cox proportional 
hazard regression analyses were performed, revealing 16 
MDGs including S1PR4, HOXB3, AMACR, PSMB9, 
LGALS4, TAP1, TBX3, CTSE, EPHB6, HSD17B2, 
PLIN5, ARL14, SGK2, PDZD3, DHRS2and MOGAT2 
that were significantly associated with poor BLCA 
patient survival (Figure 7A and https://cdn.amegroups.
cn/static/public/tau-21-326-1.xlsx). When the LASSO 
regression and multivariate Cox proportional hazard 
regression analyses were conducted in the training set, 
8 BLCA-specific prognostic MDGs (S1PR4, HOXB3, 
PSMB9, TAP1, CTSE, EPHB6, HSD17B2and PLIN5) 
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were identified (Figure 7B-7D, https://cdn.amegroups.
cn/static/public/tau-21-326-1.xlsx). Then, the risk 
score was calculated according to the multivariate Cox 
proportional hazard regression model, and the BLCA 
samples were divided into high-risk score and low-risk 
score groups based on the optimistic threshold value 
(1.156) and area under the curve (AUC) value (0.7075)  
(Figure 7E,7F). The principal component analysis (PCA) 
result also demonstrated the obvious bias between high- 
and low-risk groups (Figure 7G). The KM plot exhibited 
significant differences between high- and low-risk groups 
(Figure 7H), where the high-risk core group showed a 
poor survival rate in BLCA patients (Figure 7H,7I). The 
heatmap showed a correlation between8 BLCA-specific 
prognostic MDGs and clinical characteristics, and the 
results showed the risk score significantly correlated to 

age, pathologic stage, and stage N/M (Figure 7J and  
https://cdn.amegroups.cn/static/public/tau-21-326-1.xlsx). 
Moreover, the nomograms of median survival time and 
3/5-year survival time were constructed based on 8 BLCA-
specific prognostic MDGs for BLCA (Figure 7K,7L). 
The calibration plots showed the predictive accuracy 
of predicated models, it reveled predicated survival rate 
approximately equivalent to actual survival (Figure 7M,7N). 
We further investigated whether clinical characteristics 
affected the accuracy of predicated models via univariate and 
multivariate Cox proportional hazard regression analysis, 
which showed that treatment or therapy and risk score 
acted as the risk factors in BLCA, and these risk factors 
were suitable for predicated models (Figure 7O, https://cdn.
amegroups.cn/static/public/tau-21-326-1.xlsx). This result 
illustrated that this nomogram may offer potential clinical 

Figure 5 Functional enrichment analysis. GO upregulated gene enrichment (A). Fold enrichment is on the X-axis, with coloration 
being based upon-log10(P-value), with numbers of genes being used to scale point size. KEGG pathways of upregulated genes (B). GO 
downregulated gene enrichment (C). KEGG pathways of downregulated genes (D). GO, gene ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; BP, biological process; CC, cellular component; MF, molecular function.
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Figure 6 MDGs selection and analysis. Spearman’s correlation analysis between relative expression of CpGs (X axis) and relative expression 
of correlation genes (Y axis) (A). PPI network of MDGs (B). MDGs, methylation-driven genes PPI, protein-protein interaction; TBX3, 
T-box transcription factor 3; IFFO1, Intermediate filament family orphan 1; SLITRK6, SLIT and NTRK like family member 6; PSMB9, 
proteasome 20S subunit beta 9; SRGN, Serglycin; TAP1, Transporter 1, ATP binding cassette subfamily B member; FAM78A, Family with 
sequence similarity 78, member A; GPR68, G protein-coupled receptor 68; EPHB6, EPH receptor B6; DHRS2, dehydrogenase/reductase 2.
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Figure 7 Prognostic predictive model construction based on training set. Univariate Cox regression analyses were used to assess 
relationships between variables and BLCA survival (A). LASSO regression identified eight BLCA-specific prognostic MDGs (B and C). 
Multivariate Cox regression analyses were used to assess contributions of eight BLCA-specific prognostic MDGs to BLCA survival (D). 
3-/5-/7-year survival analysis between risk-score groups (E). ROC curve of prognosis signature used for predicting the BLCA patients. 
(F). PCA between risk-score groups (G). Time-dependent ROC curve of the BLCA-specific prognostic signature (H). Top: The heat map 
of expression profiles of the BLCA-specific prognostic signature. Bottom: Distribution of groups based on the BLCA-specific prognostic 
signature (I). The heat map of risk score groups analyzed the clinical characteristics (J). Nomogram for predicting median survival time, 3- 
and 5- year survival of BLCA (K and L). Calibration curves revealed probabilities of median survival time, 3- and 5- year survival between 
the prediction and the observation (M and N). Univariate and multivariate Cox regression analyses were used to assess the contributions of 
individual variables including BLCA-specific prognostic signature and clinical characteristics to BLCA survival (O). BLCA, bladder cancer; 
MDGs, methylation-driven genes; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; PCA, 
principle component analysis.
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value with and without treatment or therapy.
Predictive model validation

We further validated the prognostic predicated models 
via the testing set (Figure 8). Univariate Cox proportional 
hazard regression analyses in the testing set resultshowed3 
BLCA-specific prognostic MDGs (HOXB3, CTSE, 
PLIN5) were identified as independent variates in BLCA 
(Figure 8A), and the ROC curve showed 3-year survival 
rate were predicated based on the univariate Cox model 
(AUC=0.6573) (Figure 8C). Based on the optimistic 
threshold of risk score in the training set, the testing set 

samples were divided into high- and low-risk score groups, 
which revealed that the high-risk score group showed poor 
survival rate in BLCA patients (Figure 8B,8E, https://cdn.
amegroups.cn/static/public/tau-21-326-1.xlsx). The PCA 
plot also showed obvious bias between high- and low-risk 
score groups (Figure 8F). Furthermore, for the clinical 
characteristics involved in univariate Cox model analysis, 
it was revealed that risk score, pathologic stage, T/N/M 
stages, and smoking time acted as risk factors in BLCA 
(Figure 8G and https://cdn.amegroups.cn/static/public/tau-
21-326-1.xlsx).

Figure 8 Validation of the prognostic prediction model based on the testing set. Univariate Cox regression analyses assessed how individual 
variables were related to BLCA survival (A). Time-dependent ROC curves for the BLCA-specific prognostic factors (B). Top: The heat 
map of expression profiles of the BLCA-specific prognostic factors. Bottom: Distribution of groups based on the BLCA-specific prognostic 
factors (C). 3-/5-/7-year survival analysis between risk-score groups (D). ROC curve of prognosis factors in predicting the BLCA patients 
(E). PCA between risk-score groups (F). The heat map of risk score groups analyzed the clinical characteristics (G). BLCA, bladder cancer; 
ROC, receiver operating characteristic; PCA, principle component analysis.
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Discussion

The disease BLCA is the most common urological 
malignant tumor, and it has a poor prognosis (22). Although 
BLCA has attracted increasing attention, the mechanistic 
basis for BLCA remains to be clarified, and modern 
genome-wide DNA methylation analysis techniques 
represent a powerful means of analyzing patterns of 
BLCA-related methylation. The methylation of DNA 
plays critical roles in cancer biology by modulating gene 
expression, and DNA methylation pattern alterations can 
serve as available biomarkers for distinguishing tumors 
from normal samples. DNA methylation is a known 
factor leading to the development of BLCA. The earliest 
discovery that BLCA-related DNA methylation status 
may be related to the BLCA stage and level of potential  
genes (23). Catto et al. found that low-grade tumors have 
fewer changes in methylation sites compared with high-
grade and invasive tumors (24). In low-grade non-invasive 
tumors, the frequency of DNA hypomethylation was higher 
than that of invasive tumors (25). At present, the diagnosis 
and prognostic analysis of BLCA can be performed based 
on DNA methylation status. Previous research has explored 
DNA methylation patterns in BLCA, and has revealed 
important genes and pathways that are dysregulated 
in BLCA (26). An article showed that detecting the 
methylation of genes such as POU4F2, PCDH17 and 
ONECUT2 through urine samples can efficiently detect 
BLCA (27). Ahlen et al. found that observing specific CpGs 
methylation status to assess CD4+ cell lineage can predict 
the prognosis of BLCA patients (28). In addition, Tian  
et al. identified that various prognostic subtypes of BLCA 
use dm-CpG sites (29). Several hub epigenetic MDGs had 
previously been investigated by Zhang et al. (30). Compared 
with previous studies, the current study was more in-depth, 
involving the assessment of differential methylation and 
DEGs. This study also examined correlations between these 
findings and BLCA patient survival and prognosis.

First, this study divided BLCA samples into 2 subtypes 
according to DNA methylation using consensus clustering. 
Despite that there were no significant differences in the OS 
between the 2 subgroups, 15,067 specific hyper- and hypo- 
methylation CpG sites were found. Specifically, dm-CpGs 
were found on all chromosomes in BLCA. The CpG islands 
and promoters had more differential CpG sites compared 
with other regions. Several hypomethylation CpG-related 
genes had a high frequency in BLCA, including PTPRN2, 
PRDM16, and NTM; these genes have been reported as 

oncogenes, involved in malignant biological behaviors  
(31-33). The gene PTPRN2 is upregulated in highly 
metastatic breast cancer cells, and its increased expression 
is linked to metastatic recurrence in humans (32). In patient 
tissues and in vitro models after treatment with estrogen and 
progesterone, NTM in leiomyomas was increased compared 
with in myometrium. Expression down-regulation occurred 
after ulipristal acetate (UPA) treatment, but not after 
fulvestrant exposure (31). This study was the first to suggest 
that these hypomethylated genes may regulate BLCA 
development.

In addition, this study screened out 4,234 DEGs between 
cluster2 and cluster1. Although all samples had been 
obtained from BLCA patients, the genes were differentially 
expressed, indicating that the gene expression was regulated 
by methylation pattern in BLCA (34). We then investigated 
the potential biological functions, and revealed that the 
most conspicuous pathways were cancer- and inflammation-
related. Cancer onset and progression is closely linked to 
inflammation, although many tumors can evade the immune 
system. Such inflammation is related to chemokines, 
prostaglandins, and cytokines, which have been shown 
to down-regulate the activity of cytochrome P450 (CYP) 
enzymes (35). In total, 46 immune-related genes that were 
differentially expressed were linked to papillary carcinoma 
(PTC) patient clinical outcomes. Functional enrichment 
analyses revealed these genes to be involved in the cytokine-
cytokine receptor interaction KEGG pathway (36).

Furthermore, 33 MDGs were identified by using 
Spearman’s correlation coefficient analysis. Following 
univariate Cox and LASSO regression analyses and stepwise 
regression model establishment with MDGs and common 
clinical features,8 epigenetic hub MDGs were identified, of 
which S1PR4, HOXB3, PSMB9, TAP1, CTSE, EPHB6, 
HSD17B2, and PLIN5were independent prognostic factors 
of BLCA. Using the risk model, BLCA patients could be 
stratified into high- and low-risk subgroups. In this study, 
the high-risk subgroup had higher risks of OS. Therefore, 
this predictive signature may facilitate the assessment of 
risk score of BLCA and construction of appropriate clinical 
follow-up plans accordingly. The AUC was 0.7075 by 
ROC analysis in the training set, suggesting the predictive 
accuracy was relatively ideal in this study. Finally, a 
nomogram including age, pathologic stage, treatment, and 8 
hub MDGs was constructed to predict individual prognosis. 
Besides, 3 hub MDGs were identified as independent 
variates in the testing set. TheHOXB3, CTSE, and PLIN5 
genes were identified as the specific prognostic MDGs. 
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The calibration curves for 3-/5-/7-year survival rates were 
effectively predicted in both training and testing set BLCA 
patients. Thus, this nomogram may provide an accurate 
prognosis prediction for BLCA.

Conclusions

In summary, this study discovered differential methylation 
patterns and MDGs in BLCA patients, and found them 
to be promising biomarkers for the early diagnostic and 
prognostic assessment of BLCA patients.
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