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Abstract

5-Aminoimidazole-4-carboxamide-1-b-4-ribofuranoside (AICAR), an analog of AMP is widely used as an activator of AMP-
kinase (AMPK), a protein that regulates the responses of the cell to energy change. Recently, we showed that AICAR-induced
AMPK activation inhibits the growth of retinoblastoma cells in vitro by decreasing cyclins and by inducing apoptosis and S-
phase arrest. In this study, we investigated the effects of AMPK activator AICAR on the growth of retinoblastoma in vivo.
Intraperitoneal injection of AICAR resulted in 48% growth inhibition of Y79 retinoblastoma cell tumors in mice. Tumors
isolated from mice treated with AICAR had decreased expression of Ki67 and increased apoptotic cells (TUNEL positive)
compared with the control. In addition, AICAR treatment suppressed significantly tumor vessel density and macrophage
infiltration. We also showed that AICAR administration resulted in AMPK activation and mTOR pathway inhibition.
Paradoxically observed down-regulation of p21, which indicates that p21 may have a novel function of an oncogene in
retinoblastoma tumor. Our results indicate that AICAR treatment inhibited the growth of retinoblastoma tumor in vivo via
AMPK/mTORC1 pathway and by apoptogenic, anti-proliferative, anti-angiogenesis mechanism. AICAR is a promising novel
non-chemotherapeutic drug that may be effective as an adjuvant in treating Retinoblastoma.
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Introduction

Retinoblastoma is the most common primary malignant

intraocular tumor in infants and children. In USA it affects 12

per million children aged 0–4 years, representing 6.1% of all

childhood cancers under the age of 5 years [1]. Slightly more than

half of the patients have the sporadic or non-inherited form of the

disease, which results from the spontaneous inactivation of the

retinoblastoma gene (RB1). In the heritable form, the patient

inherits usually one defective gene from the parents and a

subsequent ‘‘hit’’ of the uninvolved gene results in tumor

formation. The heritable form is more often bilateral than the

non-heritable form of the disease. Despite progress in the

treatment of retinoblastoma [2], significant problems remain

unsolved. Metastatic disease is often fatal [3]. Although several

treatments are available for retinoblastoma, including enucleation

and/or combination of chemotherapy, laser and cryotherapy,

each of them has major drawbacks in pediatric patients.

Conventional external beam radiation, which is used today to

control large tumors, has many complications, including an

increased appearance of secondary malignancies, such as osteo-

sarcoma. This complication occurs more frequently in patients

with hereditary retinoblastoma. The 30-year cumulative incidence

of second malignancies is .35% for patients who received

external beam therapy vs 6% for those patients without radiation

[4]. Systemic chemotherapy used as a first line treatment for

intraocular retinoblastoma with subsequent consolidation with

photocoagulation, cryotherapy, or radiotherapy has a recurrence

rate of 24% by 5 years [5]. This increases to 50% for patients with

vitreous seeds [6]. Most recently analysis by the Shields and

Murray groups [6,7] show success for local control approaching

99% for RE stage I–IV, but ,80% for RE stage V, and 90–100%

for group A–C, but in less than 50% for group D (new

international classification). In addition, significant morbidity with

the chemotherapy has been described previously [8]. One of the

drugs used for chemotherapy (etoposide) is thought to be

associated with increased incidence of acute myeloblastic leukemia

although the actual cases implicated so far have been low with

,20 cases reported [9]. For these reasons, there is a need for

alternative new treatment modalities for retinoblastoma with

better safety and efficacy profile.

5-Aminoimidazole- 4- carboxamide riboside (AICAR) is widely

used as a pharmacologic activator of AMP-activated protein

kinase (AMPK). AMPK is a heterotrimeric serine/threonine

protein kinase [10], which acts as a sensor of cellular energy

levels and stress. Several metabolic stresses, including hypoxia,

exercise, ischemia, heat shock and long-term starvation, regulate

its activity [11–14]. Its upstream protein kinase LKB1 [15,16] is
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known to be a tumor suppressor involved in Peutz-Jegher

syndrome [17]. Downstream effectors of AMPK also involve the

tumor suppressor Tuberous Sclerosis Complex (TSC2) and the

mammalian target of Rapamycin (mTOR). Both are important

known factors in cell cycle progression and tumor formation

[18,19]. AICAR is taken into cells and converted to the

monophosphorylated form ZMP, mimicking an increase of AMP

intracellular levels [20]. AICAR has low or no apparent toxicity

and has been shown to be a great in vivo exercise mimetic [21].

Many studies have shown that AICAR can inhibit proliferation,

and induce apoptosis in multiple myeloma cells [22], neuroblas-

toma cells [23], glioblastoma cells [24], childhood acute lympho-

blastic leukemia (ALL) cells [25] colon cancer cells [26] and breast

and prostate cancer cell lines [27].

We have recently demonstrated that AICAR was an efficient

inhibitor of retinoblastoma cell proliferation in vitro through S-

phase arrest, decrease of cyclins A and E, and partial inhibition of

the mTOR pathway [28]. In the present study, we examined the

in vivo effects of AICAR on Y79 Rb cell growth and demonstrated

that AICAR significantly inhibited the growth of tumors in nude

mice xenotransplants, by inducing apoptosis and suppressing

tumor angiogenesis and macrophage infiltration.

Materials and Methods

Chemicals and Cell Culture
AICAR was purchased from Sigma Aldrich, St.Louis, MO,

USA. AICAR was dissolved in Phosphate Buffered Saline (PBS) at

concentration 67 mg/ml (260 mM) (stock solution) and stored at

220uC until utilization. The human retinoblastoma cells Y79

(ATCC, Manassas, VA, USA) were grown in RPMI medium

(RPMI 1640 medium), supplemented with 20% fetal bovine serum

(FBS) (Invitrogen), penicillin (100 mg/ml) –streptomycin (100 mg/

ml) (Invitrogen), 2 mM l-glutamine (Invitrogen) and 10 mM

HEPES (Invitrogen). Cells were incubated at 37uC in a humidified

atmosphere of 95% air and 5% CO2 and split when the cells

reached approximately 90% confluence.

Animals
All animal experiments complied with the Association for

Research in Vision and Ophthalmology for the use of animals in

ophthalmic and vision research and were approved by the Animal

Care and Use Committee of the Massachusetts Eye and Ear

Infirmary (Ref #196524) (Boston, MA, USA). Four to six-week-

old BALB/c (nu/nu) female mice were purchased from Charles

River Laboratories (MA) and maintained in a facility under

specific pathogen-free conditions. The animals were fed with

pathogen free laboratory chow and allowed free access to

autoclaved water in an air-conditioned room with a 12 h light/

dark cycle.

Xenograft tumor growth assay
The xenografted tumors were established by a single subcuta-

neous injection in each of the two flanks of 46106 Y79

retinoblastoma cells in 0.3 ml of a 1:1 mixture of ice-cold matrigel

basement membrane matrix (BD Bioscience, MA, USA) and

RPMI 1640 medium supplemented with 20% FBS. Once a tumor

mass became visible, three days after the injection of the cells, the

mice were randomized into two groups with five mice in each

group: one group receiving peritoneal injections of 500 mg/kg

AICAR, the other group receiving equal volume normal saline.

Mice received an injection every twenty-four hours for 28 days in

total. The tumor volume was monitored by external measurement

in two dimensions with calipers every other day. Tumor volume

was determined according to the equation: volume (mm3) = 4/

36p6(length/2)6(width/2)2, described by Miyano-Kurosaki et al

[29]. Four weeks after the first injection of AICAR, the mice were

anesthetized and tumors were dissected, weighed, and stored at

280uC for further analysis.. The tumor inhibition ratio was

calculated as follows: inhibition ratio (%) = [(C2T)/C]6100%,

where C is the average tumor weight (or volume) of the control

group and T is the average tumor weight (or volume) of the

AICAR treated group. The experiment was performed on 3

independent times each time with 5 mice in each group.

Immunohistochemistry assay and pathological
evaluation

Five representative frozen tumors from each group were

analyzed for retinoblastoma cell proliferation, vessel area, and

macrophage infiltration. Frozen tissues were cut into 10-mm

sections, fixed in 4% paraformaldehyde at room temperature for

10 min, blocked for one hour, and treated with goat serum.

Tumor sections were incubated all night in a humid chamber at

4uC with primary monoclonal antibodies, including anti-Ki67

(dilution 1:100, Dako), anti-CD31 (dilution 1:100, BD Bioscience)

and anti-CD11b (dilution 1:100, BD Bioscience). An appropriate

fluorophore-conjugated secondary antibody (Molecular Probes,

Carlsbad, CA) was used to detect fluorescence using a confocal

microscope (Leica Microsystems, Wetzler, Germany). Nuclei were

stained with propidium iodide (PI), in the staining assay for Ki67,

and with 49, 6-diamidino-2-phenylindole (DAPI), in the staining

assay for CD11b and CD31. Cryostat sections of each tumor

xenograft were stained, four different fields at 620 magnification

were examined on each section and the percentage of fluorescent-

positive cells/PI-positive cells or DAPI-positive cells in each field

was measured. Tumor vessel area was calculated as the number of

image pixels stained positive with CD31 per high-power field. In

negative-control staining, the primary antibodies were omitted.

TUNEL Analysis
To determine the degree of apoptosis, cryostat sections were

prepared from tumor xenografts 31 days after implantation.

Terminal dUTP nick-end labeling (TUNEL) assay was performed

using the ApopTag Fluorescein In Situ Apoptosis Detection Kit

(S7110, Chemicon International, Temecula, CA). Nuclei were

stained with propidium iodide. The number of TUNEL (+) cells

was counted in four randomly selected fields of each section from

all tumor xenografts at 620 magnification using confocal

microscope.

Protein extraction
Twelve control tumors and twelve AICAR treated tumors were

chosen for analysis. The tumors were mechanically disrupted in

liquid nitrogen and pieces were weighted and transferred into the

pre-cooled T-PER Mammalian Protein Extraction Reagent

(Thermo-Scientific, Pierce Protein Research Products) with freshly

added protease (according to manufacturer suggestions; Roche

Applied Science) and phosphatase inhibitor cocktails (dilution

1:50; Thermo-Scientific, Pierce Protein Research Products). The

pieces were homogenized for 15 s using rotor - stator and

incubated on ice for 30 min with intermittent vortexing every

5 min. Then the samples were centrifuged for 15 min with speed

13 000 rpm in +4uC degrees. Supernatant was collected. The

extraction was performed twice each time from multiple random

areas of each tumor (from 12 tumors n = 24 samples analyzed).

AICAR Inhibits Retinoblastoma In Vivo
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Western Blott Analysis
The LDS sample buffer (1:4; Invitrogen), containing 2

microliters of 2-mercaptoethanol (Cambrex), was added to each

sample. The samples were incubated at 95uC for 5 min and

centrifuged briefly. Ten micrograms of total amount of proteins

and thirty microliters of each sample per lane was loaded onto a 4–

12% Bis-Tris Gel (NuPAGE; Invitrogen). The electrophoresis was

done using NuPAGE MOPS or NuPAGE MES Running Buffer

for proteins .25 kDa or ,25 kDa respectively (Invitrogen) and

then samples were transferred onto a PVDF membrane (0.2

micrometer; Millipore, Billerica, MA, USA). The membranes

were cut and blocked for 1 h at room temperature in 5% wt/vol

BSA, 1xTBS 0.05% Tween 20 at gentle shaking. The following

primary anti-human monoclonal antibodies were used: p21 Waf1/

Cip1 (12D1) and phospho-4E-BP1 (Ser-65) from Cell-Signaling

Technology (Danvers, MA, USA), phospho-ACC (Ser-79) and

phospho-S6 ribosomal protein (Ser-235/236) from Epitomics

(Burlingame, CA, USA). Antihuman monoclonal GAPDH anti-

body from Epitomics was used as a loading control (Burlingame,

CA, USA). The antibodies were diluted in 5% wt/vol BSA

1xTBS, 0.1% Tween20 as follows: p21 Waf1/Cip1 (1:1000),

phospho-4E-BP1 (1:1000), phospho-S6 ribosomal protein

(1:20,000), p-ACC (1:10,000) and GAPDH (1:10,000). The blotted

membranes were incubated at 4uC with gentle shaking. The

following day the membranes were washed 3 times (5 min) with

TBS 0.1% Tween 20 and incubated for 1 hour at room

temperature with the horseradish peroxidase-labeled secondary

antibodies in dilution 1:1000 (goat antirabbit, Cell Signaling

Technology, Danvers, MA, USA). The membranes were washed 3

times (5 min) in TBS 0.1% Tween 20. The immunoreactive bands

were visualized with ECL or ECLprime and exposured onto Fuji

RX film (Fujifilm,Tokyo, Japan). The results were quantified using

ImageJ software. GAPDH was used as internal control.

Quantitative real-time RT-PCR
Eight control tumors and eight AICAR treated tumors were

chosen for qRT-PCR analysis. The tumors were mechanically

disrupted in liquid nitrogen and pieces were weighted. RNA was

extracted and purified with the RNeasy Midi kit (Qiagen,

Valencia, CA, USA). RNA was further cleaned with an additional

DNase I digestion step, according to the manufacturer’s instruc-

tions. The concentration and quality of RNA was assessed using

Nanodrop software and only RNA with both A260/A280 and

A260/A230 .2 were selected for further analysis. Reverse

transcription was performed for equal RNA amounts (4 micro-

grams) with OligodT primer (Invitrogen) and Superscript II

(Invitrogen). cDNA 50 ng for all (except CCNE2 2100 ng,

CCNA1 2200 ng) was used for each of the 4 replicates for

quantitative RT-PCR. The human cyclins: A1, A2, E1, E2, D1,

D2 were amplified with commercially designed exon spanning

Taqman gene expression assays (Applied Biosystems, Foster City,

CA, USA) and the Taqman universal PCR master mix (Applied

Biosystems). GADPH, ACTB and TBP were used as independent

endogenous controls. The results were acquired with a Step One

Plus real-time PCR system (Applied Biosystems) and the data was

calculated using comparative method described by Livek at al

[30]. The extraction was performed twice each time from multiple

random areas of each tumor (from 8 tumors, n = 16 samples

analyzed).

Statistical Analysis
The data are expressed as mean 6 SEM (standard error of the

mean). Statistical significance was evaluated using the unpaired

Student’s t-test and defined as P#0.05 (*), P#0.01 (**) or P#0.001

(***). Two-tailed tests were used for all comparisons. The data

were expressed as mean 6 SEM.

Results

AICAR suppresses growth of human retinoblastoma
xenografts

To evaluate the in vivo effect of AICAR on retinoblastoma

growth, heterotopic tumor xenografts of human Y79 retinoblas-

toma cells were established and treated with AICAR (500 mg/kg/

day, I.P.) or PBS. The appearance of the mice 28 days after

treatment with or without AICAR is shown in Figure 1. In the

mice treated with vehicle, large tumors were present where the

Y79 cells were implanted whereas much less sizable tumors were

seen in AICAR treated animals (Figure 1A,B). Compared to the

PBS-treated group, AICAR suppressed tumor volume growth by

47% (p,0.03, n = 10, Figure 1C). The mean tumor weight,

determined at necropsy, in the control mice was 1.5360.32 g, as

compared to 0.9260.14 g in the AICAR-treated mice (Figure 1D)

(n = 10, p,0.05). Similar results were seen if treatment was started

12 or 19 days later. The body weight of the mice was recorded bi-

weekly and was not found to differ significantly among the groups

(p = 0.67, Figure 1E).

AICAR reduces human retinoblastoma Y79 cell
proliferation and induces apoptosis

To evaluate the in vivo proliferation ability of retinoblastoma

cells, we examined the expression of Ki67 in four different areas

from a section of five control tumors and five AICAR-treated

Figure 1. AICAR inhibited growth of xenografted tumors of
Y79 human retinoblastoma cells in Nu/Nu immune-deficient
mice. Human retinoblastoma Y79 cell heterotopic transplanted tumors
were developed as described in Materials and Methods. Mice were
treated with AICAR for 28 days. Tumor growth was monitored, and
tumor tissues were collected and weighed on the 28th day after the
first injection of AICAR. (A and B) Macroscopic appearance of the mice
31 days after transplantation of Y79 cells, without AICAR (A) and with
500 mg/kg/day AICAR (B). (C) Tumor growth curves: mean volumes of
PBS- vs AICAR-treated group on days indicated. (D) Mean weights of
tumors at autopsy of mice treated with PBS (empty column) or AICAR
(filled column). (E) Effect of AICAR on body weight of mice transplanted
with Y79 cells. Body weight of mice transplanted with Y79 cells with or
without 500 mg/kg/day AICAR treatment was pursued for 31 days. Data
are presented as mean 6 SEM (n = 10).*p,0.05.
doi:10.1371/journal.pone.0052852.g001
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tumors, using immunofluorescence staining. Figure 2A,B shows

double staining of the cells with Ki67 and PI in the frozen sections

from each tumor. The average Ki67(+)/PI(+) cells ratio was

12.44% in control mice, while it was 2.31% in AICAR-treated

mice (p,0.001), showing that the proliferation ability of the cells

in AICAR-treated mice was much reduced compared with the

control-treated mice (Figure 2C). Apoptotic cells, with the

morphology of a condensed cytoplasm and pyknotic hyperchro-

matic nuclei, were numerous in the sections of the tumor

xenografts. To quantify the apoptotic cells in AICAR-treated

and control tumors, frozen sections from each tumor were

analyzed using the TUNEL assay. Figure 2E shows a typical

image of the apoptotic cells with TUNEL staining in the AICAR-

treated tumor. In contrast, an image of a control tumor shows

significantly fewer apoptotic cells (Figure 2D). Figure 2F shows

that the average number of apoptotic cells/PI(+) cells in the

AICAR-treated tumors was 49.97%, as compared with 8.17% in

the control tumors, representing an ,6-fold increase (p,0.001).

AICAR inhibits tumor angiogenesis
The effect of AICAR on tumor angiogenesis was evaluated by

CD31 immunofluorescence staining for capillaries in tumor

tissues. The amount of CD31-stained tumor capillaries in the

AICAR-treated group was less than in the PBS-treated group

(Figure 3A,B). Morphometric analysis revealed that the microves-

sel density (MVD) of the AICAR-treated group was significantly

reduced compared to the PBS-treated group (p = 0.003,

Figure 3C). These data demonstrate that AICAR inhibits the

neovascularization of retinoblastoma.

AICAR down-regulates infiltration by CD11b(+)
inflammatory cells

Inflammatory cells such as neutrophils and macrophages are

thought to play an important role in tumor progression.

Therefore, we analyzed the content of inflammatory cells

populating tumors in the AICAR-treated group and the PBS-

treated group. Interestingly, large differences were observed in the

number of the CD11b(+) tumor-infiltrating neutrophils between

the two groups (Figure 3D,E). Tumors isolated from AICAR-

treated mice exhibited significantly lower contents of CD11b(+)

cells than tumors from control mice (p = 0.002, Figure 3,D–F).

Antiproliferative effects of AICAR are associated with
activation of the AMPK pathway and inhibition of the
mTORC1 pathway

To determine whether AICAR treatment in vivo was associated

with AMPK activation as was observed in our in vitro study [28],

we evaluated by Western blotting the phosphorylation of the

immediate downstream target of AMPK, acetyl-CoA carboxylase

(ACC) [31]. AICAR treated group had a 36% increase in the

phosphorylation levels of ACC compared to controls (p,0.007,

n = 19, Figure 4A) suggesting activation of the AMPK pathway. It

has been well established that AMPK activation leads to inhibition

of the mTOR pathway, resulting in dephosphorylation of

ribosomal protein S6 that causes decreased initiation of translation

and protein synthesis [32–34]. Thus we next examined the effects

of AICAR on the activity of the mTOR pathway by Western blot

analysis of retinoblastoma xenografts extracts. We assessed the

phosphorylation status of two direct downstream targets of mTOR

pathway, ribosomal S6 protein (Ser235/236) and the 4E-BP1

(Ser65) as a measure of mTOR activity. As expected, AICAR

Figure 2. AICAR suppressed proliferation and induced apoptosis of retinoblastoma in vivo. (A, B) Immunofluorescent analysis for Ki67 of
tumors of Y79 cells isolated from control mice (A) and AICAR-treated mice (B). Nuclei were stained with propidium iodide (red). (C) Quantitative
analysis of Ki67 (+) cells/PI (+) cells ratio in tumors. Values are significantly lower in the AICAR-treated mice group than in the control mice group
(**p,0.01). (D,E) Apoptotic cells in retinoblastoma xenografts. Typical photomicrographs of apoptotic cells using TUNEL assay (green) in Y79
xenografts. Nuclei were stained with propidium iodide (red). Y79 cells isolated from control mice (D) and AICAR-treated mice (E). (F) Quantitative
analysis of the apoptotic cell percentage in tumors. Note that the number of TUNEL (+) cells was significantly higher in the AICAR-treated mice group
than in the control mice group (**p,0.01). Each column represents the mean 6 SEM. Scale bars (A, B, D, E), 200 mm.
doi:10.1371/journal.pone.0052852.g002
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treatment was associated with reduced phosphorylation of the

ribosomal S6 protein (49% vs 100%, p,0.001, n = 17, Figure 4B)

and its downstream effector, 4E-BP1 when comparing to control

(43% vs 100%, p,0.001, n = 23, Figure 4C). These results suggest

that AICAR inhibits mTORC1 signaling in retinoblastoma in vivo

mouse model.

In vivo AICAR treatment does not affect the levels of the
cyclins A, E, D in retinoblastoma, while it is associated
with down-regulation of p21

Progression of the cell cycle in eukaryotic cells is regulated by a

series of serine/threonine protein kinases which consist of a

catalytic subunits, cyclin dependent kinases (CDKs), and a

regulatory subunits, cyclins [35]. Given the effect of AICAR on

the cell cycle [28], we wanted to see whether that was mediated by

changes in the levels of the appropriate cyclins. In contrast to our

previous study [28], treatment with AICAR showed no change in

the levels of mRNA levels of cyclins A, E, D when compared to

control (n = 14; Figure 5). Interestingly, similar to our previous in

vitro study [28] and in contrast to studies in other cell lines

[20,36,37], AICAR down-regulated the protein levels of the

cyclin-dependent kinase inhibitor p21 (also known as p21WAF1/

Cip1) (67% vs 100%, p,0.02, n = 23; Figure 4D). Thus our in

vivo and in vitro data suggest that p21 may have a unique role in

regulating retinoblastoma tumor and could possibly function as an

oncogene.

Discussion

AICAR has been shown to be an exercise mimetic [21] and to

have anti-cancer properties [20,22–28]. The mechanisms respon-

sible for these effects are not fully understood but they likely

involve activation of AMPK. Our previous study showed that

AICAR inhibits the growth of human retinoblastoma cells in vitro

through inhibition of the mTOR pathway, down-regulation of

cyclins A and E, and through inhibition of p21, which in

retinoblastoma cells may act as an oncogene [28]. In the present

study, we examined the inhibitory effects of AICAR on the growth

of retinoblastoma xenografts in vivo. The growth of the

retinoblastoma Y79 cells transplanted in nude mice was exten-

sively suppressed and the size of tumor decreased to almost half of

the control, after four weeks of AICAR administration (Figure 1).

These results are consistent with previous reports on the in vivo

anti-tumor effect of AICAR on glioblastoma, breast cancer and

glioma xenografts [20,24,27] and suggest a potential non-

chemotherapeutic strategy for retinoblastoma.

Recent studies demonstrated that AICAR inhibited cancer cells

in vivo by inducing apoptosis [20] or through cytostatic

mechanism [24]. We found that that the tumor mass of Y79

transplanted into nude mice treated with AICAR contained an

increased number of apoptotic cells (Figure 2F) and cells with

decreased mitotic figures, which may be attributed to the

apoptogenic and antiproliferative activity of AICAR in vivo. A

decreased Ki67 value in the masses of Y79 tumor of the mice

treated with AICAR (Figure 2C) also suggested that the

proliferation of the tumor was suppressed by AICAR, because

Ki67 has been considered a good marker to evaluate the

proliferation ability of cancers, especially of recurrent cancers [38].

Angiogenesis, the growth of new blood vessels from preexisting

capillaries, is necessary for solid tumor growth and metastasis

[39,40]. Anti-angiogenesis therapy provides a novel approach for

cancer management [39]. Retinoblastoma, originating from

retina, maintains itself from retinal vasculature initially, and as

the tumor grows and outstrips the retina, neovascularization in

Figure 3. AICAR suppressed tumor angiogenesis and inflammatory cells infiltration. (A, B) Microvessel density in tumor tissues was
determined by immunofluorescent staining by an endothelial-specific antibody CD31. (A) Control group and (B) AICAR-treated group. (C)
Quantitative analysis of fluorescent-positive area (per 4000 mm2) in tumors. Vessel density was significantly suppressed in AICAR-treated mice group
(**p,0.01). (D, E) Macrophage- and neutrophil- infiltration in Y79 xenografts. Typical photomicrographs of immunofluorescent staining for CD11b
(red) in Y79 xenografts. Nuclei were stained with propidium iodide (blue). Y79 cells isolated from control mice (D) and AICAR-treated mice (E). (F)
Quantitative analysis of the CD11b (+) cells/DAPI (+) cells ratio in tumors. The number of CD11b (+) cells was significantly lower in the AICAR-treated
mice group than in the control mice group (**p,0.01). Each column represents the mean 6 SEM. Scale bars (A, B, D, E), 200 mm.
doi:10.1371/journal.pone.0052852.g003
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retinoblastoma becomes the source of tumor survival and

malignant progression. Studies have shown that inhibition of the

angiogenesis of retinoblastoma could be a new strategy for

retinoblastoma therapy [41]. In the present study, we reported

for the first time that intraperitoneal injection of AICAR inhibited

retinoblastoma growth in xenografted mice and that vessel density

in tumor tissues was decreased by AICAR (Figure 3A–C). In

addition, AICAR suppressed macrophage infiltration (Figure 3D–

F). The last result may be a reflection of less vessel infiltration or a

result of less overall inflammation, as AICAR has been shown to

have anti-inflammatory properties [42–44]

Studies have shown that VEGF is highly expressed in

retinoblastoma [45] and that transfection of VEGF siRNA to

retinoblastoma cells led to the inhibition of tumor growth via

reduction in neovascularization [46]. In other studies AICAR and

activation of AMPK has been related with cytoprotection and

stimulation of angiogenesis in situations of ischemia/re-perfusion

injury [47,48]. The decrease in angiogenesis by AICAR may be an

indirect effect of the decreased tumor mass rather than a direct

effect on angiogenesis. AMPK stimulating angiogenesis under

ischemia condition [47,48] may be related to its protective effect

on endothelial cells in stress. The inhibition of angiogenesis in

cancer may be attributed to its effects on production and secretion

of cytokines. Recently, Zhou et al [49] reported that AMPK

upregulates TNFSF15, a cytokine that exerts a potent inhibitory

effect on tumor angiogenesis. It is, also, possible that the various

effects of AICAR depend on the specific cell type, cellular events

following external stimuli, paracrine effects and/or downstream-

regulated pathways.

Proliferation of cancer cells requires oncogenic growth signals as

well as sufficient metabolic energy for biogenesis of cellular

constituents [50]. The ‘‘Warburg effect’’ [51], a metabolic

derangement in cancer cells resulting in increased glucose uptake

Figure 4. AICAR treatment of retinoblastoma is associated with activation of AMPK, inhibition of mTORC1 and decrease of p21. A.
AICAR treatment of retinoblastoma is associated with activation of AMPK. Western blot analysis of phosphorylated ACC (Ser-79) (a downstream
effector of AMPK) showed significant increase of pACC in tumours from AICAR treated mice comparing to control (**p,0.01, n = 19). B and C.
Treatment with AICAR resulted in the inhibition of the mTORC1 pathway. Western blot analysis of tumor xenografts harvested from mice treated with
AICAR showed significant decrease of mTOR pathway downstreams, pS6RP (Ser235/236) and the p4E-BP1 (Ser65) when compared to PBS-treated
mice (***p,0.001 for both, n = 17 for pS6RP and n = 23 for p4EBP1). D. AICAR down-regulates p21WAF1/Cip1 in AICAR treated tumors as shown via
Western blot analysis (*p,0.05, n = 23). Density values bands are graphically expressed relative to control. GAPDH was used as a loading control in all
panels. Multiple bands represent separate biological samples. Each column represents the mean 6 SEM.
doi:10.1371/journal.pone.0052852.g004

Figure 5. AICAR does not alter the levels of cyclins A, D and E in
retinoblastoma in vivo. Quantitative RT-PCR analysis of tumors
treated with AICAR in comparison with control shows no significant
difference. Each column represents the mean 6 SEM.
doi:10.1371/journal.pone.0052852.g005
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and glycolysis, provides a selective advantage to rapidly prolifer-

ating tumor cells by supplying cellular bioenergetics required to

support tumor progression. Cells must coordinate diverse

processes including cell division, cell migration, and cell polarity

with the cell’s metabolic status. AMPK is posited to function as a

central sensor/regulator of energy status within the cell, and could

thus have direct roles in linking metabolism to cell division [34]. It

can interface with diverse signaling molecules ranging from LKB1

to mammalian target of rapamycin [34]. The mTORC1 is directly

inhibited by phosphorylation of raptor as a consequence of

activation of the AMPK [52]. The mTOR kinase pathway

regulate translation repressor protein (4EBP1) activity in vivo

[53,54] via phosphorylation of various 4E-BP1 residues [55].

When hypophosphorylated, the 4EBP1 binds tightly to eIF4E,

preventing proper formation of the eIF4 translation initiation

complex at the 5 end of cap-bearing mRNAs [56,57]. Hyperpho-

sphorylation of 4E-BP1 at Ser65 disrupts this interaction thus

eIF4E is released, allowing it to associate with eIF4G and other

relevant factors to promote cap-dependent translation [56,58]. In

our in vivo study, we showed that AICAR treatment induced the

activation of AMPK, and inhibited mTOR signaling indicated by

dephosphorylation of pS6RP (Ser235/236) and p4EBP-1 (Ser65)

in retinoblastoma tumor xenografts (Figure 5 A,B,D). Decreased

AMPK activation has been found in some cancers [59,60] and

mTOR signaling is has been activated many tumors [61], which

may become an attractive target for cancer therapy.

Progression of the cell cycle in eukaryotic cells is regulated by a

series of serine/threonine protein kinases which consist of a

catalytic subunit, cyclin dependent kinases (CDKs), and a

regulatory subunits, cyclins [35]. Whereas in our in vitro study

we observed changes in the mRNA levels of cyclins A, E and D

after AICAR administration, we did not observe any significant

differences after in vivo administration. In contrast our in vitro

findings of down regulation of p21 was also observed in the in vivo

study. Cdk-interacting protein 1 (Cip1 or p21) is a 21-kDa protein

known as inhibitor of cell cycle progression and tumor suppressor,

owing to its ability to inhibit the activity of CDK–cyclin complexes

and proliferating cell nuclear antigen (PCNA) [62–64]. Both our in

vitro and in vivo studies have seen a paradoxical down-regulation

of p21 in AICAR inhibited retinoblastoma. This paradoxical

down-regulation of p21 has not been reported in any previous

study of AICAR effects on cancer cells. Two possible explanations

are that either p21 was down-regulated as a compensatory

mechanism, or p21 acts as an oncogene in retinoblastoma cells.

Interestingly, p21 has been shown to be overexpressed in a variety

of human cancers including prostate, cervical, breast and

squamous cell carcinomas and, in many cases, p21 upregulation

correlates positively with tumor grade, invasiveness and aggres-

siveness and is a poor prognostic indicator [37]. Some recent

studies suggest that, under certain conditions and in some tumors,

p21 family can promote cellular proliferation, act as a positive

regulator of the cell cycle and inhibit apoptosis [37,65,66].

Interestingly, the studies of Gartel and Radhakrishnan [67]

suggest that p21 may act as a positive regulator of the cell cycle.

In fact, mitogenic stimuli result in transient p21 induction during

G1-S progression. Thus, when p21 is repressed in such a context,

it will lead to impairment of cell cycle progression due to decreased

complex formation of cyclin D-cdk4/cdk6. This may be one of the

mechanisms of AICAR inhibition of Rb cells and their arrest in S

phase. Together, these data suggest that depending on the cell

environment, p21 may function as either a tumor suppressor or an

oncogene and both our studies suggest that p21 may have a novel

function as an oncogene in human retinoblastoma tumor.

Our study demonstrates that AICAR significantly suppresses

the growth of retinoblastoma in vivo by apoptogenic and anti-

proliferative activity and is associated with decreased angiogenesis

and inhibition of macrophage infiltration (Fig. 6). We replicated in

vivo our in vitro finding of paradoxical down-regulation of p21 in

retinoblastoma after AICAR administration, which indicates that

p21 may have a novel function of an oncogene in retinoblastoma

tumor. The studies of AICAR’s anti-inflammatory properties

[43,44], exercise mimetic features [21], and anti-proliferative

effects in vitro and in vivo, provide a foundation for future clinical

strategies that utilize AICAR and AMPK activation by AICAR or

any other pharmacological agent as an attractive target for cancer

therapy as a single agent or in combination with other first-line

agents to improve treatment.
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