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Polymerase eta (or Pol h or POLH) is a specialized DNA polymerase that is able to bypass
certain blocking lesions, such as those generated by ultraviolet radiation (UVR) or cisplatin,
and is deployed to replication foci for translesion synthesis as part of the DNA damage
response (DDR). Inherited defects in the gene encoding POLH (a.k.a., XPV) are associated
with the rare, sun-sensitive, cancer-prone disorder, xeroderma pigmentosum, owing to
the enzyme’s ability to accurately bypass UVR-induced thymine dimers. In standard-of-
care cancer therapies involving platinum-based clinical agents, e.g., cisplatin or oxaliplatin,
POLH can bypass platinum-DNA adducts, negating benefits of the treatment and
enabling drug resistance. POLH inhibition can sensitize cells to platinum-based
chemotherapies, and the polymerase has also been implicated in resistance to
nucleoside analogs, such as gemcitabine. POLH overexpression has been linked to the
development of chemoresistance in several cancers, including lung, ovarian, and bladder.
Co-inhibition of POLH and the ATR serine/threonine kinase, another DDR protein, causes
synthetic lethality in a range of cancers, reinforcing that POLH is an emerging target for the
development of novel oncology therapeutics. Using a fragment-based drug discovery
approach in combination with an optimized crystallization screen, we have solved the first
X-ray crystal structures of small novel drug-like compounds, i.e., fragments, bound to
POLH, as starting points for the design of POLH inhibitors. The intrinsic molecular
resolution afforded by the method can be quickly exploited in fragment growth and
elaboration as well as analog scoping and scaffold hopping using medicinal and
computational chemistry to advance hits to lead. An initial small round of medicinal
chemistry has resulted in inhibitors with a range of functional activity in an in vitro
biochemical assay, leading to the rapid identification of an inhibitor to advance to
subsequent rounds of chemistry to generate a lead compound. Importantly, our
chemical matter is different from the traditional nucleoside analog-based approaches
for targeting DNA polymerases.
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INTRODUCTION

Cancer will directly affect the lives of over one-third of the
population, with the process of carcinogenesis involving (at
least) six biological phenomenon/hallmarks (1): sustaining
proliferative signaling, evading growth suppressors, resisting cell
death, enabling replicative immortality, inducing angiogenesis,
and activating invasion and metastasis. Many of these hallmarks,
if not all, can be fostered by genomic instability that arises due to
excessive DNA damage or defects in DNA damage response
(DDR) components. The upregulation of certain DDR pathways
is also a compensatory mechanism employed by cancer cells to
adapt to the elevated background levels of DNA damage imparted
by their rapid cell division and increased metabolism (2) or to
survive treatment-related DNA-damaging agents, like certain
forms of chemotherapy and radiotherapy (3, 4). The recognition
that these intrinsic changes in the DDR (i.e., sporadic inactivation
or upregulation) offer therapeutic opportunities has led to
advances in cancer treatment efficacy. Most notably, the
discovery that homologous recombination repair (HRR)-
defective breast and ovarian cancers are uniquely sensitive to
poly (ADP-ribose) polymerase (PARP) inhibitors via a
mechanism broadly referred to as synthetic lethality (SL) has led
to improved drug design/application and better outcomes for
many of these cancer-affected individuals (5). Thus, further
development of DDR inhibitors to combat both intrinsic and
acquired drug resistance presents an enormous therapeutic
opportunity that could widen the repertoire of initial treatment
options and re-sensitize cells to therapies that have failed due to
upregulation of DDR pathways. Two primary therapeutic
approaches involving DDR targeting could include:
combinatorial treatments that involve anticancer genotoxic
agents and SL, a phenomenon that as mentioned above exploits
a sporadic DDR defect to achieve cancer-specific cell death. Here,
we provide results on our early drug discovery efforts around the
identification and development of novel inhibitors targeting
human DNA polymerase eta (Pol h or POLH).

DDR is an intricate system involving damage recognition, cell
cycle regulation, DNA repair, and cell fate determination,
playing a significant role in cancer etiology and therapy.
POLH, a.k.a., xeroderma pigmentosum variant (XPV) protein,
is a translesion DNA polymerase that is a member of the Y family
of polymerases (6, 7). The enzyme exhibits low fidelity on
undamaged DNA, yet accurately copies ultraviolet (UV) light-
induced dithymine cyclobutane pyrimidine dimers (CPDs) by
inserting A-A opposite the lesion. In addition to UV-induced
DNA damage, POLH has been shown to bypass cisplatin
adducts, as well as oxaliplatin adducts (8–14). Additional
studies suggest that POLH may also play an important role in
oxidative stress resistance, likely by carrying out translesion
synthesis (TLS) (15, 16) of bulky oxidative base lesions, such as
cyclopurines (17–19).

Consistent with the known biochemistry, elevated POLH
expression correlates with reduced cisplatin sensitivity in models
of lung and bladder cancer (8). Strategic downregulation of POLH
in these cases re-sensitizes cancer cells to cisplatin treatment,
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supporting targeting of the polymerase in certain situations of
acquired drug resistance. Suppression of POLH expression also
enhances cisplatin-induced apoptosis of cancer stem cells isolated
from both ovarian cancer cell lines and primary tumors (10).
Furthermore, studies indicate that POLH is a predictive factor of
treatment response and survival of metastatic gastric
adenocarcinoma patients receiving oxaliplatin-based first-line
chemotherapy (20). In addition to its well-established role in
platin drug resistance, preclinical studies indicate that POLH-
deficient cells are 3-fold more sensitive to the nucleoside analogs
b-D-arabinofuranosylcytosine and gemcitabine, and even more
sensitive (10-fold) to gemcitabine/cisplatin combination treatment
(21), a commonly used clinical regimen for treating a wide
spectrum of cancers, including bladder, pancreatic, ovarian,
cervical, and non-small cell lung. Additional investigations have
revealed that co-inhibition of POLH and ATR, a protein central to
the replicative stress response, offers a SL approach for the
treatment of a range of cancer types (22, 23). Notably, ATR
inhibitors are progressing well in the clinic (24, 25), and ATR
haploinsufficiency, arising due to somatic mutations in one allele,
is frequent in certain cancers (26), presenting therapeutic
opportunities for POLH inhibition. Despite the promise of
targeting POLH in anticancer therapies, clinical inhibitors have
yet to be developed.

It is worth emphasizing that polymerases are validated targets in
several clinical paradigms. For example, one of the most important
polymerases against which medicines have been made is the DNA
polymerase of HIV-1 (i.e., the reverse transcriptase, RT), the main
target of antiretroviral therapies involving both nucleotide and non-
nucleotide inhibitors (NRTIs and NNRTIs). In this context, it is
intriguing that POLH has also been recently found to be a human
RT, although the precise biological role of this biochemical function
is still unclear (27). Other examples include the development of
inhibitors against viral RNA polymerases (RdRp), such as the drug
remdesivir (28), which was first developed as an Ebola Virus RdRp
inhibitor (29) and is now being pursued in SARS-CoV-2 (30), as
well as the clinically-approved anti-Hepatitis C NSB5 polymerase
drug sofosbuvir (31). In addition to PARP (see above), POLQ
(DNA polymerase theta), an enzyme involved in double strand
break repair, is another DDR polymerase of current interest in the
design of new oncology therapeutics (32), including in a SL
paradigm involving BRCA1/2 mutations.

With the value in targeting DNA polymerases in general and
POLH in particular, specifically in the context of new oncology
therapeutics, it is not surprising that some attempts have been
made in this direction. Previous work on developing POLH
inhibitors focused on compounds derived from N-aryl-
substituted indole barbituric acid (IBA), indole thiobarbituric
acid (ITBA), and indole quinuclidine scaffolds (9, 33), which are
predicted to interfere with template DNA orientation. However,
these compounds have yet to advance further, and our
assessment based on information available is that could be due
to: (i) precise target engagement/hit validation is unknown due
to absence of crystal structures, preventing further interaction-
based optimization, and/or (ii) suitability of these compounds
for further chemistry tractability/optimization.
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To overcome the bottleneck of lack of information regarding
target engagement of an identified inhibitor, our approach
integrates ABS-OneStep (Accelero Biostructures, CA), a fragment-
based drug discovery (FBDD) approach that uses high-throughput
X-ray crystallographic screening of small molecule fragment
libraries for hit generation (34). This strategy, coupled with
iterative structure-guided optimization/structure-based drug
discovery (SBDD), facilitates the rational development of novel
therapeutics, namely small molecule inhibitors or target ligands in a
targeted protein degradation approach involving a proteolysis-
targeting chimera. Here, we report on the first high resolution
crystal structures of POLH bound to distinct fragments that reveal
direct target engagement, binding site, binding pose and protein-
ligand interactions; and describe functional activity of our hits.
MATERIALS AND METHODS

Protein Expression and Purification
Wild-type human POLH (residues 1–432) was cloned into a
modified pET28p vector with a N-terminal 6-histidine tag and a
PreScission Protease cleavage site. For protein expression, this
POLH plasmid was transformed into BL21 DE3 E. coli cells.
When the optical density of the E. coli cells reached 0.8, isopropyl
ß-D-1-thiogalactopyranoside (IPTG) was added to a final
concentration of 1 µM IPTG. After 20 hrs (16°C) of induction,
the cell paste was collected via centrifugation and resuspended in a
buffer that contained 20 mM Tris (pH 7.5), 1 M NaCl, 20 mM
imidazole, and 5 mM ß-mercaptoethanol (BME). After sonication,
POLH was loaded onto a HisTrap HP column (GE Healthcare),
which was pre-equilibrated with a buffer that contained 20 mM Tris
(pH 7.5), 1 M NaCl, 20 mM imidazole, and 5 mM BME. The
column was washed with 300 mL of buffer to remove nonspecific
bound proteins and was eluted with buffer that contained 20 mM
Tris (pH 7.5), 1 M NaCl, 300 mM imidazole, and 3 mM
dithiothreitol (DTT). The eluted POLH was incubated with
PreScission Protease to cleave the N-terminal 6-histidine-tag.
Subsequently, POLH was buffer-exchanged and desalted to
20 mM 2-(N-morpholino)ethanesulfonic acid (MES) (pH 6.0),
250 mM KCl, 10% glycerol, 0.1 mM ethylenediaminetetraacetic
acid (EDTA), and 3mMDTT and was loaded onto aMonoS 10/100
column (GE Healthcare). Protein was eluted with an increasing salt
(KCl) gradient. Finally, POLH was purified with a Superdex 200 10/
300 GL column (GEHealthcare) with a buffer that contained 20mM
Tris (pH 7.5), 450 mM KCl, and 3 mM DTT.

Hit Generation by High-Throughput X-Ray
Crystallography-Based Screening of
Fragment Library
Hit generation by screening a diverse fragment library and the
crystal structures of their binding sites in a single step was
performed by using the ABS-OneStep platform (Accelero
Biostructures, CA) (34). Briefly, crystals of the apo binary
POLH-DNA complex were reproduced (18) and the
crystallization optimized to generate several hundred crystals
Frontiers in Oncology | www.frontiersin.org 3
of relatively uniform quality for library screening directly by
ultra-high throughput X-ray crystallography. Approximately 300
crystals of the POLH-DNA complex were then used to screen the
ABS-Real300 (Accelero Biostructures) 300-fragment library, one
fragment at a time. A total of approximately 300 individual X-ray
diffraction data sets were collected at SSRL on beamline 9-2 using
the BLU-ICE (35) data collection environment. The data sets
were collected at 100 K, using a Pilatus 6M detector (Dectris).
The data were processed with data processing and structure
determination pipelines within the ABS-OneStep platform using
XDS (36) and CCP4 (37), with structure determination
performed by molecular replacement using our 1.5Å resolution
apo POLH-DNA binary complex as the search template.

DNA Synthesis Assay for
Screening Inhibitors
POLH biochemical assays testing nucleotide incorporation
activity were performed as previously described (38). The
reaction mixture contained 3 nM POLH, 200 nM DNA, 50 µM
dNTP, 150 mMKCl, 45 mM Tris (pH 7.5), 5 mMMgCl2, 10 mM
DTT, 0.1 mg/mL bovine serum albumin, 5% glycerol, and 10%
DMSO, and 0.01-20 mM inhibitory compound. Initial tests and
next phase assays were executed using DNA template (5’-GAG
TCA TGT TTA CGC TAG GCA C-3’) and 5’-fluorescein-
labeled primer (5’-GTGCCTAGCGTAA-3’). Reactions were
conducted at 37°C for 5 min and were stopped by adding
formamide quench buffer to the final concentrations of 40%
formamide, 50 mM EDTA (pH 8.0), 0.1 mg/ml xylene cyanol,
and 0.1 mg/ml bromophenol. After heating to 97°C for 5 min
and immediately placing it on ice, reaction products were
resolved on 22.5% polyacrylamide urea gels. The gels were
visualized by a Sapphire Biomolecular Imager and quantified
using the built-in software. Visual representation of the acquired
data was rendered in Graph Prism. For the initial inhibitor tests,
each compound was assayed for any inhibitory effect on POLH
nucleotide incorporation activity at different concentrations
(0.01, 0.1, and 1 mM for the first batch and 0.2, 2, and 20 mM
for a second batch). The gels were visualized and quantified by a
Sapphire Biomolecular Imager using the built-in software.

For the compounds that exhibited signs of inhibition, each
compound was serially diluted and added to a reaction mixture
to a final concentration of 0.01- 20 mM. The reaction mixture
contained 3 nM POLH, 200 nM DNA, 50 µM dATP, 150 mM
KCl, 45 mM Tris (pH 7.5), 5 mM MgCl2, 10 mM DTT, 0.1 mg/
mL bovine serum albumin, 5% glycerol, and 10% DMSO. Assays
were performed and examined similarly as in the initial test.
Quantification of IC50 and fitting was executed by Graph Prism.
RESULTS

Determination of Apo POLH-DNA Binary
Complex Crystal Structure
Crystals of the apo binary POLH-DNA complex were
reproduced (18), and we generated several hundred crystals of
November 2021 | Volume 11 | Article 778925
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relatively uniform quality for library screening directly by ultra-
high throughput X-ray crystallography (see below). During the
optimization process, we obtained the highest resolution crystal
structure of a POLH-DNA binary complex to date, at 1.5Å
resolution, which was refined to a crystallographic R/Rfree of
13.0/19.0% (Figure 1). This structure revealed details of water-
mediated interactions in the binary complex that we can utilize
for our structure-guided inhibitor optimization (Figure 2), and
provided us with a very high resolution binary complex structure
to use as our template for crystal structure determination by
molecular replacement of fragment-bound crystal structures.

Fragment Hit Generation and Hit
Elaboration for Hit-to-Lead Development
Hit identification was achieved in a single step using ABS-
OneStep, which combines fragment-based screening with X-
ray crystallography. Using approximately 300 crystals of the
POLH-DNA binary complex and screening a diverse,
unbiased, 300-fragment library, one fragment at a time,
produced four hits, resulting in a hit rate of 1.3%. A total of
approximately 300 individual X-ray diffraction data sets were
collected, processed, and crystal structures determined. All
crystallographic data sets were approximately in the ~1.7-2.2 Å
resolution range with reasonable crystallographic R/Rfree values.
A screening schematic for hit generation and a representative hit
(XPTx-0267) from a 1.7 Å crystal structure is shown in a partial
view interacting with POLH (Figure 3). Due to intellectual
property considerations, high resolution details of compound
engagement with POLH or specifics of the fragment growth
cannot be shown at this time.

Inhibitor Validation by Biochemical Assays
Fragment hits from the screen were subjected to fragment
growth strategies, such as alternating the functional groups,
Frontiers in Oncology | www.frontiersin.org 4
analog growth, and scaffold hopping, by our in-house
medicinal chemistry team. An initial limited iteration of
fragment elaboration led to the selection of 40 compounds for
testing in an in vitro nucleotide incorporation (POLH)
biochemical assay as previously described (38). The assay was
performed in two steps: an initial pass at detecting functional
activity at either 0.01, 0.1, and 1 mM of the compound; or 0.2, 2,
and 20 mM for a second batch of the compounds (Figure 4),
followed by a more detailed pass at different compound
concentrations to determine IC50 and Hill slopes. About 15 of
the 40 compounds subjected to the first step were advanced to
the second step for detailed measurements (Figure 5). In these
follow-up studies, we obtained one compound with a
submillimolar IC50 (230 µM), about eight compounds with
IC50 ~1-5 mM, and one compound with an IC50 of ~8 mM;
all had Hill slopes of ~0.8-2.4. Having in hand a set of
compounds displaying varied inhibition levels provides
alternative starting points and/or development paths. Based on
the initial profiling, our approach quickly led to the identification
of our lead compound, XPTx-0289, with an IC50 of 230 µM
(Figure 6), with additional backup compounds also
being identified.
DISCUSSION

FBDD holds immense promise in the development of target-
specific novel and active chemical matter, as demonstrated by
the advancement of several medicines to the clinic. Our FBDD
strategy has quickly produced functional compounds from
weak hits identified in our initial library screens, irrespective
of where the compounds were on the potency spectrum from
weak to strong. Indeed, we have shown for two of our targets,
POLH (herein) and apurinic/apyrimidinic endonuclease 1
A B

FIGURE 1 | (A) Ribbon representation of the highest resolution 1.5Å crystal structure of the POLH-DNA binary complex. (B) Determination of water structure (red
spheres) revealing details of water-mediated interactions, to aid structure-based drug discovery efforts on POLH.
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(APE1; see more below), where biochemical assays could not
detect functional activity of the original fragments, that from a
single/initial round of fragment growth and expansion, we can
rapidly facilitate hit-to-lead conversion using just the
empirical knowledge intrinsic to the crystal structures.
While library screening by biophysical assays like SPR
(Surface Plasmon Resonance) and NMR (Nuclear Magnetic
Resonance) are better than biochemical assays at detecting
protein-fragment interactions during library screening,
Frontiers in Oncology | www.frontiersin.org 5
they do not provide information on binding site, binding
pose, or protein-ligand interactions. Biophysical assays also
do not separate hits into orthosteric or allosteric site binders
or reveal potentially new binding hotspots. By integrating a
method with the widest detection range (i.e. , X-ray
crystallography), the FBDD approach allows one not to miss
relevant chemical matter during screening and facilitates
rapid hit-to-lead optimization efforts via a structure-
guided approach.
A B

FIGURE 3 | (A) Schematic of our approach to hit generation by screening fragment libraries directly by X-ray crystallography in a primary screen. (B) 1.7Å crystal
structure of a POLH-DNA-Hit ternary complex with R/Rfree 16.7/20.7% in a 2fo-fc electron density map at 1. 5s map contour.
FIGURE 2 | Highest resolution 1.5Å crystal structure of the POLH-DNA binary complex with R/Rfree 13.0/19.0% in a 2fo-fc electron density map at 1.0s map
contour, revealing details of water-mediated interactions, in aid of our structure-based drug discovery efforts on POLH.
November 2021 | Volume 11 | Article 778925
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While the measured potencies for XPTx-0289 (IC50 230 µM)
and XPTx-0267 (2 mM) may appear low, such values, and even
weaker, are typical for starting hits in FBDD projects. For
instance, recent examples of programs successfully advancing
fragments with initial low potencies (>2 mMKd or IC50) include
inhibitors against Cyclophilin D (39), Mycobacterium
tuberculosis InhA (40), and WDR5-Myc (41). For our DDR
target APE1, we now have in hand a lead inhibitor with a Ki of
350 nM (IC50 ~500 nM) after a single round of fragment
expansions encompassing ~200 compounds based on the
starting hit from a similar crystallography-based primary
screen using ABS-OneStep (34). Notably, in our APE1 effort,
the original fragment hit had undetectable activity as an inhibitor
of APE1 AP site cleavage activity in a standard biochemical
assay. The rapid advancement of an initial hit to significantly
improved congener inhibitors demonstrates the power of our
platform to rapidly execute hit-to-lead campaigns for the
development of target-specific inhibitors. Indeed, XPTx-0289 is
now ready to advance to lead generation in a hit-to-lead
campaign, in conjunction with cellular TLS and co-
inhibition assays.
FIGURE 5 | IC50 determination for some representative compounds an in vitro assay for DNA synthesis.
FIGURE 4 | Initial pass at detecting functional activity in an in vitro assay for DNA synthesis. ** Represents compounds that had a 20% drop in product conversion
at both 20 mM and 2 mM, * represents compounds that had a 20% drop in product conversion at only 20 mM.
FIGURE 6 | Concentration-dependent inhibition of DNA synthesis by
compound XPTx-0289.
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