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Background: Burn injury is a life-threatening disease that does not have ideal biomarkers.
Therefore, this study first applied weighted gene co-expression network analysis
(WGCNA) and differentially expressed gene (DEG) screening methods to identify pivotal
genes and diagnostic biomarkers associated with the skin burn process.

Methods: After obtaining transcriptomic datasets of burn patient skin and normal skin
from Gene Expression Omnibus (GEO) and performing differential analysis and functional
enrichment, WGCNA was used to identify hub gene modules associated with burn skin
processes in the burn patient peripheral blood sample dataset and determine the
correlation between modules and clinical features. Enrichment analysis was performed
to identify the functions and pathways of key module genes. Differential analysis, WGCNA,
protein-protein interaction analysis, and enrichment analysis were utilized to screen for hub
genes. Hub genes were validated in two other GEO datasets, tested by
immunohistochemistry for hub gene expression in burn patients, and receiver
operating characteristic curve analysis was performed. Finally, we constructed the
specific drug activity, transcription factors, and microRNA regulatory network of the
five hub genes.

Results: A total of 1,373 DEGs in GSE8056 were obtained, and the top 5 upregulated
genes were S100A12, CXCL8, CXCL5, MMP3, and MMP1, whereas the top 5
downregulated genes were SCGB1D2, SCGB2A2, DCD, TSPAN8, and KRT25. DEGs
were significantly enriched in the immunity, epidermal development, and skin development
processes. In WGCNA, the yellow module was identified as the most closely associated
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module with tissue damage during the burn process, and the five hub genes (ANXA3,
MCEMP1, MMP9, S100A12, and TCN1) were identified as the key genes for burn injury
status, which consistently showed high expression in burn patient blood samples in the
GSE37069 and GSE13902 datasets. Furthermore, we verified using
immunohistochemistry that these five novel hub genes were also significantly elevated
in burn patient skin. In addition, MCEMP1, MMP9, and S100A12 showed perfect
diagnostic performance in the receiver operating characteristic analysis.

Conclusion: In conclusion, we analyzed the changes in genetic processes in the skin
during burns and used them to identify five potential novel diagnostic markers in blood
samples from burn patients, which are important for burn patient diagnosis. In particular,
MCEMP1, MMP9, and S100A12 are three key blood biomarkers that can be used to
identify skin damage in burn patients.

Keywords: burn injury, WGCNA, skin wound, peripheral blood, ROC

INTRODUCTION

Thermal injury is a challenging disease and a leading cause of
death worldwide (Greenhalgh, 2019). Burns affect approximately
300 million people worldwide annually and have high morbidity
and mortality rates, resulting in 176,000 people dying from burn
injuries in 2015 (Haagsma et al., 2016). Moreover, severe burns
can rapidly disrupt body homeostasis, leading to multi-organ
dysfunction and life-threatening injuries (Auger et al., 2017). A
key limiting factor for poor clinical outcomes in burn patients is
the lack of reliable diagnostic tools to identify critical burn events
and their extent, and subsequently initiate targeted intensive
treatment (Niggemann et al., 2021). Therefore, clarifying the
underlying pathogenesis of burn injury and exploring effective
treatments for burn injuries are urgently required.

Burn patient prognosis is improving with the progress of
modern medicine; however, due to the limitations and lags of
traditional burn diagnosis, patients do not receive appropriate
treatment. Research has focused on how to distinguish different
degrees of burns by molecular diagnostic methods and on the
application of appropriate treatment strategies in a timely
manner. Burns are traditionally graded into three levels of
thickness based on the degree of tissue damage: superficial
(first-degree burns), partial-thickness (second-degree burns),
and full-thickness (third-degree burns). Partial-thickness/
second-degree burns can be further subdivided into
superficial- and deep-part-thickness burns (McGill et al., 2007;
Greenhalgh, 2019). Clinical diagnosis by visual and tactile
examination remains the current standard for determining the
depth of a patient’s burn injury. This method has a serious lag in
determining the patient’s condition and does not provide timely
information regarding the patient’s progress due to the rapid
progression of burn injury (Lee et al., 2020). Therefore, the
development of an effective molecular diagnostic burn
technique is necessary to improve early burn care, reduce
complications, and decrease treatment-associated costs. The
inflammatory response triggered by thermal injury frequently
transcends the local environment, leading to local verification and

changes in blood flow. We hypothesize that the extensive
perturbations of the skin caused by thermal injury lead to
differential changes in gene expression in peripheral blood
tissues, which can be useful for diagnosing burns and
identifying changes in burn conditions.

With the rapid development of next-generation sequencing
technology, numerous new computational algorithms have been
developed to help identify disease-specific biomarkers. Weighted
gene co-expression network analysis (WGCNA) (Langfelder and
Horvath, 2008), a novel systems biology method, assists in the
construction of free-scale gene co-expression networks and the
detection of gene modules and hub genes. We can determine
which modules are associated with disease phenotypes by
analyzing the relationship between modules and clinical
features (Zhu et al., 2021).

In our study, we aimed to identify potential biomarkers
associated with burn injuries. The secondary aim was to assess
the discriminative capacity of novel mRNA biomarkers in
peripheral blood for burn injury diagnosis by integrated
analysis. The flowchart illustrated in the present study is
presented in Figure 1. First, we identified differential
expression profiles between burn and normal tissues using the
GSE8056 dataset. Next, we extracted the top 100 differentially
expressed genes (50 upregulated and 50 downregulated)
according to log2|FC| size as the most significantly
differentially expressed genes (DEGs). Next, we identified the
gene module with the greatest correlation with the burn process
and investigated the connectivity between this gene module and
burned skin features using WGCNA. The key module with the
highest level of significant correlation with burned skin injury was
identified, and the genes with |gene significance|>0.8 and |
module membership| >0.8 were selected as hub genes in the
key yellow module. Gene Ontology (GO) enrichment and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed to clarify the possible functions of key modules.
Furthermore, DEGs were subjected to a protein-protein
interaction (PPI) network analysis to identify hub genes
(degree ≥5). The overlapping genes between hub genes in the
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key module and hub genes in DEGs were defined as key genes
(ANXA3, MCEMP1, MMP9, S100A12, and TCN1), and the
expression levels of the five hub genes were evaluated in burn-
related GEO datasets and verified by immunohistochemical
(IHC) analysis of the collected skin tissues. This is the first
report of utilizing WGCNA to explore skin tissue damage-
related biomarkers of burn injury. This study lays the
foundation for exploring the molecular mechanisms of burn
injury and contributes to the identification of potential
diagnostic biomarkers for burn injuries.

MATERIALS AND METHODS

GEO Datasets
In this study, we obtained a gene expression microarray from the
NCBI GEO official website (Barrett et al., 2013) (https://www.
ncbi.nlm.nih.gov). The microarray data were all obtained from
the GPL570 platform with the accession number GSE8056 (Ou
et al., 2015) (number of burn wound tissues � 9, number of
normal skin tissues � 3, tissue source: skin), GSE19743 (Zhou
et al., 2010) (number of patient samples � 114, number of normal
samples � 63, tissue source: blood), GSE37069 (Peterson et al.,
2014) (number of patient samples � 553, number of normal
samples � 37, tissue source: blood), and GPL15433 platform for
RNAseq count expression profile data GSE139028 (Schutte et al.,

2020) (number of patient samples � 6, number of normal samples
� 3, tissue source: skin).

DEG Analysis
Microarray data from three datasets were pre-processed using the
robust multichip analysis algorithm using Affymetrix default
analysis settings (Shanahan et al., 2012). In the event of
multiple probes corresponding to one gene, we took the
average value as the expression level of the gene. First, burn
patients and healthy people (serving as controls) were analyzed
for differential expression. The DEGs from GSE8056 were
identified using the Limma package (Ritchie et al., 2015) in R
on normalized count data. The parameters |logFC| > 2 and p <
0.05 were used as the screening criteria for DEGs. Next, top 100
genes (top 50 upregulated and 50 downregulated) were selected as
the significantly DEGs for further analysis. Moreover, we focused
on tagging the top 10 genes (5 upregulated and 5 downregulated)
and plotted circles using the OmicsCircos (Hu et al., 2014)
package to visualize the distribution of the most DEGs on the
chromosomes and their expression in each sample. For RNAseq
data in GSE139028, expression levels were transcripts per million
(TPM)-normalized and ENSG-ID transformed. The TPM values
were used to evaluate the gene expression levels.

The GO Term Enrichment and Pathway
Analysis of Differential Gene Expression
To evaluate the biological functions and pathways affected by
differential gene sets affecting burn patients, the DEG sets from
GSE8056 were used to perform GO and KEGG pathway
enrichment analysis using the clusterProfiler package (Yu
et al., 2012), with Q (Bonferroni-corrected p-value) <0.05 set
as the statistically significant threshold. GO terms, including
biological processes (BPs), cellular components (CCs),
molecular functions (MFs), and KEGG pathways with p < 0.05
and false discovery rate <0.05, were considered statistically
significant. The GO and KEGG analysis results were visualized
using the “ggplot2” R package.

Construction of Co-expression Modules by
WGCNA of Datasets
For co-expression analysis, the DEGs from GSE8056 were
selected as hub gene sets for the construction of a WGCNA
(Langfelder and Horvath, 2008). We used this gene set with the
expression profile dataset GSE19743 to construct the gene co-
expression networks. Thereafter, the network modules correlated
with the burn process and hub genes in modules were identified,
and the corresponding soft thresholds were selected to filter out
the key modules to achieve a scale-free network R2 close to 0.9. To
further determine the potential biological functions and pathways
in the burn injury-related module, we performed GO and KEGG
pathway enrichment analyses of the target modules. Meanwhile,
key gene sets were screened based on gene significance >0.2 and
module membership >0.8. Then, the key gene sets were extracted
for GO functional enrichment and KEGG pathway analyses.

FIGURE 1 | Study flowchart. (Study workflow. FC, fold change; GEO,
Gene Expression Omnibus; GO, Gene Ontology; GS, gene significance;
KEGG, Kyoto Encyclopedia of Genes and Genomes; MM, module
membership; WGCNA, weighted gene co-expression network analysis).
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GO Enrichment and KEGG Pathway
Analysis of Genes in Each Module
GO enrichment and KEGG pathway analyses were performed to
determine the potential BPs, CCs, and MFs of genes in each
module. Furthermore, significant KEGG pathway and GO
enrichment analysis were implemented by the hypergeometric
test, with an adjusted p-value (q value) < 0.05 considered
significant. The GO enrichment analyses with the top 30 GO
enrichment results (10 BPs, 10 CCs, and 10 MFs) were plotted for
the bar graphs, whereas GO and KEGG pathway analyses were
visualized using the “ggplot2” R package.

PPI Network and the Identification of Hub
Genes
To explore the PPIs between hub genes, the hub genes in the key
modules filtered using WGCNA were imported into the STRING
database (https://www.string-db.org/), which was continuously
amplified to obtain a PPI network containing 14 nodes and 21
edges as a way to investigate the role of burn-related DEGs in the
network. We identified the five most essential burn injury-
associated genes based on the differential expression,
functional enrichment results, and PPI network analysis results.

Expression Analysis and Receiver
Operating Characteristic Curves of the Five
Hub Genes
To validate the accuracy of the obtained key genes, the accuracy of
each key gene was evaluated by receiver operating characteristic
(ROC) validation and the area under the curve (AUC) value. We
used the five identified key genes as the validation set data using
GSE37069 with GSE13902 expression data and performed ROC
validation using the pROC (Robin et al., 2011) R language
package to verify the classification efficacy of the key genes in
the validation set data. Alternatively, to verify the accuracy of the
obtained key genes, t-tests were performed to determine
significant differences in gene expression levels between burn
patients and normal controls. Statistical significance was set at
p < 0.05.

The Collection of Patient Tissue Specimens
and IHC Staining
We collected 13 burn patient skin samples (deep second-degree
burn tissue) from 2020 to 2021 from burn patients associated
with the Chinese Han population. We received approval from
the subject review committee of Foshan First People’s Hospital,
and the patients signed an informed consent form and were
informed prior to sample collection. After dehydration,
formalin-fixed and paraffin-embedded skin tissues were
sectioned at 4 μm for IHC. Antigen retrieval was performed
by incubating the samples in citrate buffer (pH 6.0) for 15 min.
After blocking with a mixture of methanol and 0.75% hydrogen
peroxide, sections were incubated overnight with primary
antibodies (ANXA3, Abcam, Cambridge, United Kingdom, 1:
100; MCEMP1, Abcam 1:150; S100A12, Signalway Antibody,

MD, United States, 1:100; TCN1, Invitrogen, MA, United States,
1:50; MMP9, Signalway Antibody, 1:50), followed by incubation
with a secondary antibody conjugated with horseradish
peroxidase (goat anti-rabbit, 1:500, Cell Signaling
Technology, MA, United States). Sections were washed three
times with phosphate-buffered saline and incubated with
diaminobenzidine. Next, we performed a comprehensive IHC
score according to the total degree of staining and the area of
positive cells, and the scoring criteria and steps described in our
previous article (Zhou et al., 2021).

Analysis of Drug Activity, Transcription
Factors, andmicroRNA Interaction Network
of the Five Hub Genes
To further analyze the relationship between the action of key
genes and drugs, we used three leading drug-target databases,
Drugbank (Wishart et al., 2018) (https://www.drugbank.com/),
DGIdb (Cotto et al., 2018) (https://dgidb.genome.wustl.edu/),
and PubChem (Wang et al., 2017) (https://pubchem.ncbi.nlm.
nih.gov/), to identify drugs acting on the five hub genes based on
the active structural domains of drugs and to construct a
network of target gene-drug interactions. For target gene
transcription factor analysis, we used the ChEA3 (https://
maayanlab.cloud/chea3/) prediction database (Keenan et al.,
2019) to construct a network between transcription factors
and genes. Additionally, the targets of experimentally
validated microRNA (miRNA)-mRNA interactions were
screened based on Starbase (V2.0) (Li et al., 2014),
miRTarBase (Huang et al., 2020), and TarBase (Karagkouni
et al., 2018). Next, the collected mutual relationship data were
imported into Cytoscape (Shannon et al., 2003) for network
visualization.

RESULTS

Study Flowchart
The research flowchart is presented in Figure 1.

Differentiation Analysis
Differential analysis was performed using GSE8056 (burn skin
samples vs. normal skin samples). |logFC (fold change)| >1 for
upregulated genes and |logFC| >-1 for downregulated genes were
selected as standards. A total of 1,373 DEGs (adjusted p-value
<0.05) were obtained, of which 673 were upregulated and 700
were downregulated. Volcano and heat maps of the differentially
expressed genes are plotted in Figures 2A,B, and it can be seen
that the differentially expressed genes exhibit significantly
different expression patterns between the burned and normal
samples. Next, we extracted the top 100 differentially expressed
genes (50 upregulated and 50 downregulated) as the most
significant differentially expressed genes according to log2|FC|
size. For a visual representation of the top 100 differentially
expressed genes, the R package Omiccircos was used to draw
the circos-plot for visualization (Figure 2C). Heat maps in the
circos-plot were drawn according to the expression patterns in
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FIGURE 2 | Heatmap, volcano plot, and chromosome circos plot for differentially expressed genes identified in the GSE8056 dataset. The volcano map (A)
indicates the difference of up-and downregulated genes, where red represents upregulation and blue represents downregulation. Heatmap (B) represents the
differentially expressed genes expression patterns of differentially expressed genes in the upper burn patients versus the normal population group. Circos plot (C) shows
the top 100 differentially expressed genes expression patterns and the distribution of the chromosomal location where they are located, with the outer circle
representing the chromosome and the location of the gene in the chromosome, and the heatmap in the inner circle representing the expression of the top 100
differentially expressed genes (DEGs) in the burn dataset GSE8056. The top 5 upregulated differentially expressed genes (red) and top 5 downregulated differentially
expressed genes (blue) according to |log2FC| values are connected in red and blue in the center of the circos plot, respectively.
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differential analysis corresponding to the samples, with
upregulated and downregulated genes connected by red and
blue lines, respectively. The top five upregulated genes were
S100A12, CXCL8, CXCL5, MMP3, and MMP1, whereas the
top five downregulated genes were SCGB1D2, SCGB2A2, DCD,
TSPAN8, and KRT25.

GO Enrichment Analysis and KEGG
Signaling Pathway Analysis of DEGs in
GSE8056
To further explore the molecular mechanism involved in the
burn injury skin tissues, we performed GO enrichment and
pathway enrichment analysis based on the differential gene set
previously obtained from the GSE8056 database and found
that GO enrichment results were significantly enriched in BPs
such as immunity, epidermal development, skin development,
CCs such as collagen extracellular matrix (ECM), and MFs
such as signal transduction receptor activity (Figure 3A).
KEGG pathway analyses of DEGs were significantly
enriched for cytokine-cytokine receptor interaction,
chemokine signaling pathway, ECM-receptor interaction,
glutathione metabolism, and osteoclast differentiation
pathways (Figure 3B).

WGCNA and Identification of Hub Genes
The sample clustering dendrogram of GSE19743 (Figure 4A)
showed no obvious discrepancy between the samples
incorporated into the WGCNA. We selected 8 as the optimal

soft threshold power based on the scale-free topology model and
the mean connectivity (Figure 4B). The gene cluster dendrogram
is shown in Figure 4C, where each leaf and branch on the tree
represents a gene and co-expression module, respectively. The
heat map (Figure 4D) illustrates the correlation between different
modules and burn traits. We obtained 5 modules except for the
gray module, in which the yellow consensus module was the most
relevant module with burn traits (correlation value � 0.89;
significance level p < 0.05). Furthermore, 30 hub genes were
selected in yellow co-expression modules with gene significance
>0.8 and module membership >0.8. We constructed a scatter plot
of the characteristic hub genes in the yellow module (Figure 4E).
We then visualized the most significant module in the PPI
network using the Cytoscape software (Figure 4F).

GO Enrichment and KEGG Signaling
Pathway Analyses of Differentially
Expressed Genes in Different Modules
We performed GO and KEGG pathway enrichment analyses for
eachmodule separately to identify the BPs, CCs, andMFs affected
by each module in the burn injury process. We used the statistical
method of hypergeometric test and selected p-values< 0.05 with
corresponding Q-values< 0.05 as the significantly enriched
pathways and MFs and found that the blue module was mainly
correlated with mitotic nuclear division and chromosome
segregation, and affects MFs such as microtubules and
microfilaments of cells. In the brown module, the genes
primarily affected a series of pathways and MFs at the level of

FIGURE 3 | GO and KEGG pathway analyses of DEGs identified in the GSE8056 dataset. (A) The histogram represents the GO pathway analysis of DEGs. The
green bar represents BP (Biological process), blue represents CC (Cellular Component), and orange represents MF (Molecular Function). (B) Bubble diagram of the
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differential genes.
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signal regulation, such as protein kinase B signaling and negative
regulation of response to external stimuli. Themain function of the
green module is to affect immune-related BPs, such as neutrophil
degranulation and phagocytosis. The most significant BPs for the
turquoise module are epidermal development and skin

development. Finally, the yellow module plays an important
role in the immune response of the body, emergency response
to inflammation, and epidermal development (Figures 5, 6).

We performed KEGG pathway analyses for each module separately
to investigate the KEGG pathways affected by each module. We used

FIGURE 4 | Weighted gene co-expression network analysis (WGCNA) of burn-related key modules with PPI network analysis of key modules. (A) Sample
clustering dendrogram of GSE19743 to detect outliers. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for selecting various soft-
thresholding powers (β). (C) Clustering dendrogram for genes in burn traits; each color below represents one co-expression gene module. (D) Heatmap depicting
correlations between module and burn traits. (E) Scatter plot of the key module. Each point in the scatter plot represents one gene. (F)Hub genes in yellowmodule
revealed by PPI using the cytoscape software.
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the statistical method of hypergeometric test to select pathways with P-
and Q-values <0.05, as significantly enriched pathways, and we found
that the blue module predominantly affected pathways related to cell

cycle and cell division. In the brown module, genes mainly affected a
series of signaling pathways involved in the metabolism of multiple
compounds. The green module mainly functions as a biological

FIGURE 5 | The GO enrichment results of different modules in WGCNA are shown in the histogram, with different colors representing different categories of genes.
Green represents BP, blue represents CC, and orange represents MF (BP: Biological process, CC: Cellular component, MF: Molecular function). (A) GO enrichment
analysis results of the blue module. (B)GO enrichment analysis results of the brownmodule. (C)GO enrichment analysis results of the green module. (D)GO enrichment
analysis results of the turquoise module. (E) GO enrichment analysis results of the yellow module.

FIGURE 6 | Histogram of KEGG enrichment results of the modules with the count value and significant p-value. (A) Results of KEGG enrichment analysis for the
blue module. (B) Results of KEGG enrichment analysis for the brown module. (C) Results of KEGG enrichment analysis for the green module. (D) Results of KEGG
enrichment analysis for the turquoise module. (E) Results of KEGG enrichment analysis for the yellow module.
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pathway that affects cell differentiation and phagocytosis. The turquoise
module mainly functions in BPs affecting cell junctions and ECM-
receptor interactions. Finally, the yellow module plays an important
role in the complement and coagulation cascades of the organism,

Staphylococcus aureus infection response, and cytokine and cytokine
receptor interactions. Meanwhile, we performed GO and KEGG
analyses on hub genes in the red module, which are shown in
Supplementary Figure S1.

FIGURE 7 | The ROC curve of five hub genes in GSE37069 and GSE139028. (A–E) The ROC curve of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 in
GSE37069. The x-axis shows specificity, and the y-axis shows sensitivity. ROC, receiver operating characteristic; AUC, area under the ROC curve.

FIGURE 8 | Validation of expression levels of 5 hub genes in 4 burn-related GEO datasets. (A) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and
TCN1 between burned patients and normal patients in GSE8056. (B) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients
and normal patients in GSE19743. (C) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients in
GSE37069. (D) The expression level of ANXA3, MCEMP1, MMP9, S100A12, and TCN1 between burned patients and normal patients from GSE139028. The red
boxplot indicates the burn patient group, and the blue boxplot indicates the normal sample group. A t-test was performed to compare the means of the two groups (*
represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001, ns represents not significant).
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ROC Analysis of the Selected Five Hub
Genes
Next, we selected the five most critical burn-related hub genes,
ANXA3, MCEMP1, MMP9, S100A12, and TCN1, according to the
principle that the expression differences in hub genes were
significant and co-occurred in the PPI network and in the
enrichment results. Based on the expression data of these genes
in GSE37069 and GSE13902 separately, the ROC curve was plotted
to assess the diagnostic value of the genes for burn injury (Figure 7).
Figures 7A–E depicts the results of ROC validation analysis of the
five hub genes ANXA3 (AUC � 96.05%), MCEMP1 (AUC �
95.56%), MMP9 (AUC � 96.63%), S100A12 (AUC � 97.06%),
and TCN1 (AUC � 93.11%) in the GSE37069 validation dataset.

Validation of Expression Levels of 5 Hub
Genes in Four Burn-Related Databases
ANXA3,MCEMP1,MMP9, S100A12, and TCN1were identified as
the key hub genes for burn status and were selected for subsequent
analysis. We further visualized the expression of these genes in the
GSE123568 dataset and found that the expression levels of these
genes were significantly higher in the burn group than in the
normal group (p < 0.05, Figure 8A). The expression patterns were
also verified using GSE19743 (Figure 8B), GSE37069 (Figure 8C),

and GSE139028 (Figure 8D) datasets, and the results revealed that
the expression levels of the five hub genes were constantly
increased in the burn tissues (p < 0.05).

Preliminary IHC Validation
IHC staining was performed. These five genes showed
significantly high expression in the epidermal tissues of burn
patients (Figure 9), demonstrating that their significant changes
in the early stages of burn injury may mediate the drastic changes
in the immune microenvironment induced by burn injury and
induce inflammatory responses.

Construction of Drug Activity, Transcription
Factors, and miRNA Regulatory Network of
the Five Hub Genes
We constructed the regulatory relationships of the target gene-drug
interaction network using three drug-target databases, Drugbank,
DGIdb, and PubChem. For target gene transcription factor
analysis, we extracted and constructed a reciprocal relationship
network between target genes and transcription factors through the
ChEA3 website. Finally, we used three major miRNA and target
gene databases, TarBase (V8.0), Starbase (V2.0), and miRTarbase,
to extract the miRNA-target gene relationship based on the
reciprocal relationship between miRNA and genes in the
structure of miRNA-mRNA pairing relationships. The
regulatory network of the above regulatory pairs was mapped
and constructed using Cytoscape software (Figures 10A–C).

DISCUSSION

Burn injury is the leading cause of death around the world;
however, the pathophysiology of burn wound tissue requires
further investigation. Therefore, we aimed to explore the
potential pathogenesis of burn-induced molecular changes in
the peripheral blood of patients. We found that burn wound
tissue-related genes with significant expression differences were
mainly enriched in BPs such as immunity, epidermal development,
and skin development, CCs such as collagen ECM, and MFs such
as signal transduction receptor activity. KEGG pathway analysis
showed significant enrichment of cytokine-cytokine receptor
interaction, chemokine signaling pathway, ECM-receptor
interaction, glutathione metabolism, osteoclast differentiation,
and other pathways. To identify the modules that most strongly
associated with genetic changes in burn wounds in blood samples
from burned patients, we divided all genes into six separate
modules through WGCNA algorithm analysis. The yellow gene
module most closely associated with tissue damage in the burn
process was also significantly positively correlated in the immune
response of the organism, the emergency response to
inflammation, and epidermis development. KEGG analysis
showed an important role mainly in the complement and
coagulation cascade of the organism, S. aureus infection,
cytokine-cytokine receptor interactions, and other pathways.

Next, based on the principles of the 1. differential expression of
hub genes, 2. co-occurrence in the PPI network, and 3.

FIGURE 9 | Expression of the hub genes in burn injury skin tissues. (A)
Representative images of immunohistochemical expression of ANXA3,
MCEMP1, MMP9, S100A12, and TCN1 in deep second-degree burn skin
tissues from second-degree burn patients (N � 13). (B) The histogram
demonstrated that ANXA3, MCEMP1, S100A12, TCN1, and MMP9 showed
positive expression in second-degree burn samples.
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enrichment results, the five hub genes in the key yellow module
were identified as the key genes for burn injury status, namely,
ANXA3, MCEMP1, MMP9, S100A12, and TCN1. To verify the
results of bioinformatics analysis, we performed ROC curve
analysis to evaluate the diagnostic value of the five genes. The
results demonstrated that these genes might serve as diagnostic
markers for burn injury, because the AUC of these five genes was
>0.9 in the GSE37069 validation dataset.

ANXA3, a member of the calcium-dependent phospholipid-
binding protein family, has been shown to be involved in cellular
growth and signal transduction pathways (Wang et al., 2019; Guo
et al., 2021; Yang et al., 2021). Nevertheless, no previous study has
documented the role of ANXA3 in burn injury. MCEMP1, a single-
pass transmembrane protein, exerts profound influence in regulating
mast cell differentiation and immune responses (Li et al., 2005). It
was determined, for the first time, that the high expression of
MCEMP1 in peripheral blood might serve as a prognostic
biomarker of stroke (Raman et al., 2016) and that it plays a role
in the pathogenesis of inflammation (Li et al., 2005) and sepsis (Xie
et al., 2020). These previous studies demonstrated thatMCEMP1 is a
key regulator of several inflammation-related diseases. However,
whether MCEMP1 is associated with burn injury remains unclear.
MMP9 is involved in the degradation of the ECM in BPs, such as
reproduction (Wang et al., 2021) and tissue remodeling (Nandi et al.,
2020). Burn injuries can trigger tissue changes that can explain the
variation in the levels of different biochemical markers that can be
recorded both locally and systemically. Certain events observed in
burn wounds, such as vascular hyperpermeability, have been
associated with MMP released after trauma (Nagy et al., 2015).
Furthermore, numerous studies have reported that the chronic
inflammatory-induced secretion of MMP9 accelerates inner tissue
remodeling after thermal burn injury (Stanciu et al., 2021), which is
strongly correlated with the worsening result. It has been reported
that S100A12, an epidermal pro-inflammatory cytokine, induced the
formation of a hypertrophic scar (Zhao et al., 2017). Therefore, we

hypothesized that S100A12 may be involved in the occurrence of
burns because it is involved in the formation of skin scarring after
burns. TCN1, a member of the vitamin B12-binding protein family,
is responsible for the formation of secondary granules in neutrophils
and facilitates the transport of cobalamin into cells. It was
demonstrated by microarray and experimental methods that
TCN1 and S100A12 may affect the disease process of acne by
participating in the innate immune and cellular differentiation
processes of hair follicles and epidermal keratin-forming cells
(Zouboulis et al., 2020). These studies suggest that TCN1 and
S100A12 may participate in burn injury. Notably, the expression
of these five hub genes was verified in the GSE37069 andGSE139028
datasets, and this expression was significantly increased in the burn
group in all four GEO datasets. In addition to developing and
validating these five key pivotal genes associatedwith burn diagnosis,
we have also predicted target drugs, transcription factors, and
regulatory microRNAs associated with these five burn diagnostic
markers, and these predicted target drugs and molecules provide
new targets for burn treatment.We should conduct futuremolecular
experiments to identify their role in burn treatment.

In conclusion, using multiple data set analysis, we identified
genetic changes in epidermal tissue after burns and the biological
functions of this process, and screened the modulemost relevant to
skin damage based on WGCNA analysis in the blood sample
dataset of burn patients and analyzed its MFs. Then, we further
screened five key genes in the module within that module and then
performed expression andROC analysis to validate their diagnostic
efficacy. Finally, preliminary IHC validation of the five hub genes
was performed in the epidermal tissues of burn patients.

CONCLUSION

There were several highlights to the current study. First, few
studies have focused on identifying diagnostic biomarkers in

FIGURE 10 |Construction of interaction network maps with transcription factors (A), miRNAs (B), and drug activity (C) for these five hub genes ANXA3, MCEMP1,
MMP9, S100A12, and TCN1. (A) Interaction network diagram of the five hub genes and transcription factors, where red nodes represent key genes and blue nodes
represent the transcription factors corresponding to the five hub genes. (B) Interaction network diagram of key genes and miRNAs, where red nodes represent key
genes and yellow nodes represent miRNAs corresponding to the five hub genes. (C) Interaction network diagram of key genes and drug activities, where red nodes
represent key genes and yellow nodes represent the drugs corresponding to the five hub genes.
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peripheral blood for burn skin injuries. Skin tissue expression
profiles of healthy individuals and burn patients help us to
gain a comprehensive understanding of their pathological
processes and to identify diagnostic biomarkers for burn
injuries. Second, WGCNA has a particular advantage in
processing gene expression datasets because it can estimate the
connectivity between modules and clinical features. However, this
study had some limitations. Here, we validated the expression level
and diagnostic efficacy of five potential diagnostic biomarkers
identified on a dataset of blood samples from real burn patients
and on skin tissue. However, the number of clinical cases we
validated was small. The specific roles of these biomarkers in burns,
their specific associations with clinical features, such as burn extent
and scar healing, and their diagnostic roles require further
investigation and validation in a larger number of clinical patients.
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