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The establishment and maintenance of the polarized epithelial phenotype require a characteristic organization of the cytoskeletal
components. There are many cellular effectors involved in the regulation of the cytoskeleton of epithelial cells. Recently,
modifications in the plasma membrane potential (PMP) have been suggested to participate in the modulation of the cytoskeletal
organization of epithelia. Here, we review evidence showing that changes in the PMP of diverse epithelial cells promote
characteristic modifications in the cytoskeletal organization, with a focus on the actin cytoskeleton. The molecular paths mediating
these effects may include voltage-sensitive integral membrane proteins and/or peripheral proteins sensitive to surface potentials.
The voltage dependence of the cytoskeletal organization seems to have implications in several physiological processes, including
epithelial wound healing and apoptosis.

1. Introduction

The transport of water and solutes across epithelial layers
represents a major achievement of biological evolution and
constitutes the basis for the existence of higher organisms [1].
To accomplish their transport properties, the epithelial cells
acquire characteristic structural and functional features. An
epithelial layer must constitute a well-defined macroscopic
permeability barrier, which results in the selective transport
of solutes and water across the overall tissue. For this, trans-
port epithelia must develop a complex set of cell junctions
and a polarized distribution of membrane molecules, which
localize at distinct apical and basolateral domains of the
plasma membrane [2–5].

The establishment and maintenance of the polarized epi-
thelial phenotype require a characteristic organization of the
cytoskeletal components. There are many cellular effectors
involved in the regulation of the cytoskeleton of epithelial
cells [6–11]. Recently, modifications in the plasma mem-
brane potential (PMP) have been shown to participate in the
modulation of the cytoskeletal organization. The purpose of
this paper is to review evidence relating PMP modifications
to changes in the cytoskeletal organization of epithelia, with

an emphasis on the actin cytoskeleton, and discuss possible
molecular paths mediating these effects. Prior to this, we
briefly review the basic characteristics of the cytoskeleton and
the generation of plasma membrane potentials in epithelial
cells.

2. General Morphological Aspects and
Organization of the Cytoskeleton of
Epithelial Cells

Mature epithelia are characterized by two fundamental mor-
phological and functional features: a tight cellular packing,
supported by the existence of strong adhesive forces between
neighboring cells and a polarized cellular phenotype [5].
These two properties are interdependent, since the establish-
ment of intercellular junctions represents the main positional
cue triggering the development of cell polarization. All the
anchoring junctions, either between cells or between cells
and substrate, are associated to cytoskeletal components that
are crucial for the junction stability. The characteristic orga-
nization of the cytoskeleton of epithelial cells greatly depends
upon these interactions with the cell junctions, as depicted in

mailto:schiffle@mednet.org.uy


2 International Journal of Cell Biology

Actin belt

Terminal web

Tight junctions

Adherens junctions

Desmosomes

Nucleus

Microtubules

Actin filaments

Intermediate
filaments

Stress fibers

Hemidesmosomes

Apical

Basal

Figure 1: Schematic representation of the cytoskeletal organization of a transporting epithelial cell. The scheme shows the cell-cell and
cell-substrate junctions connecting the actin, tubulin, and intermediate filament cytoskeletons. See text for details.

Figure 1. In particular, the actin cytoskeleton associates with
diverse cellular structures in mature epithelial cells (Figure
1). In these cells, the most conspicuous actin structure is
the circumferential actin belt, a bundle of actomyosin fibers
located immediately beneath and associated with the tight
and adherens junctions. Here, the microfilaments and the
cell junctions interact via a complex set of multifunctional
proteins (Figure 2(a)). Actin filaments can also be found
along the lateral membrane [12–14], where it codistributes
with myosin I [15–17]. Short actin filaments are part of
the spectrin-based membrane skeleton network. Besides its
classical role in membrane domain organization [18], this
network is involved in the biogenesis of the lateral membrane
of epithelial cells and in the maintenance of their columnar
shape [19, 20]. Stress fibers at the basal domain are also
actomyosin structures associated to focal contacts and other
cell-substrate junctions [21]. At the apical domain, parallel
bundles of crosslinked actin filaments, extending from the
terminal web, constitute the core of the microvilli.

Polarized epithelial cells exhibit a characteristic pattern
of microtubule organization (Figure 1) [6, 22, 23]. Unlike
fibroblastic-like cells, where centrosomes are responsible for
the nucleation and organization of microtubules, in epithe-
lial cells, most microtubules are acentrosomal. They also pre-
sent distinctive properties in their behavior, stability, dynam-
ics and regulation [24–27]. Typically, in epithelia micro-
tubules organize in long apicobasal-oriented parallel fibers

that span the whole length of the cell, with their minus end
pointing towards the apical surface and in disordered short
filament networks underneath the apical and basal mem-
branes [28–31]. This particular arrangement of microtubules
is crucial for the targeted traffic of vesicles that sustains the
existence of distinctive apical and basolateral domains of
epithelial cells [23, 32]. Figure 1 also schematically shows
that the other major component of the cytoskeleton, the
intermediate filaments, traverses epithelial cells connecting
desmosomes and hemidesmosomes [33].

Intercellular anchoring junctions are key structures for
epithelial organization and function. Among these, the tight
junctions (zonula occludens) selectively seal the intercellular
space at the apical side and prevent the exchange of mem-
brane proteins and lipids between the apical and basolateral
domains. Underneath the tight junctions, the adherens
junctions (zonula adherens) and desmosomes are the main
responsible for the mechanical strength of the cell-cell con-
tacts. A schematic description of the structure of anchoring
junctions is depicted in Figure 2(a). As emphasized by
Matter and Balda [34] for the case of tight junctions, three
levels of organization can be recognized. This conception can
be generalized to all the anchoring junctions. The first level
corresponds to the integral membrane proteins, the second
to a set of proteins mediating, among others, the interaction
between the cytoskeleton and the adhesion proteins, and the
third to the cytoskeletal proteins. The second level is made up



International Journal of Cell Biology 3

Transmembrane
protein

Cytoskeletal filaments

Scaffolding protein

Adaptors, regulatory proteins and
transcription factors

(a)

Short actin filaments

Spectrin

Na+

Actin

Arp 2/3

Cortactin

ENaC

(b)

E-cadherin

Ankyrin

SpectrinNKA
α-subNKA

β-sub

F-actin

(c)

Figure 2: (a) General schematic representation of an anchoring junction. The scheme depicts the basic organization of the proteins
comprising an anchoring junction. The three organizational levels (see text) are represented by different colors; modified from Matter
and Balda [34]. (b) Scheme representing some of the interactions between ENaC and the cytoskeleton. The channel is kept in its membrane
location via the spectrin-based cytoskeleton. In the nonstimulated state, ENaC is bound to F-actin directly and/or by cortactin-Arp2/3
interaction (left panel). Diverse stimuli promote formation of short actin filaments that activate ENaC by direct binding to the channel
(right panel). See main text for references. (c) Scheme representing some of the interactions between the Na+-K+ ATPase (NKA) and the
cytoskeleton; modified from Bennett and Healy [18].

of a complex array of soluble proteins, with many of which
being capable to transit between other cellular compartments
and their juxtamembrane location at the corresponding cell
junction [33]. This complex includes transcription factors,
regulatory proteins, and scaffolding proteins and is a critical
site for the transduction of diverse types of signals [35].
Among these, the acquisition of the epithelial phenotype
is triggered by the recruiting of proteins at the second and

third junction levels, initially induced by the establishment
of cell-cell and cell-substrate contacts [36]. The composition
and interactions of the proteins of the second level are highly
complex and still remain matters of active investigation. The
general organizational pattern shown in Figure 2(a) for the
anchoring junctions can also be extended to include the link-
ing between other types of integral membrane proteins, such
as ion channels and pumps and the cytoskeleton (see below).
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Adherens junctions (AJs) have a central role in the esta-
blishment and maintenance of the epithelial phenotype. In
this respect, classical cadherins have been recognized to be
involved in the establishment of early intercellular contacts
and in the organization of microfilaments and microtubules
[8, 11, 36]. The association between AJ and these cytoskeletal
components is interdependent, since the actin and tubulin
cytoskeletons in turn contribute to AJ formation, stability
and strength [37–43]. Thus, when actin cytoskeleton is
disrupted, AJ formation is impaired [38, 39, 44]. Moreover,
actin cytoskeletal reorganization, as induced for instance by
extracellular calcium deprivation, may determine AJ and
tight junction disruption with the consequent loss of the
epithelial integrity [45, 46]. Likewise, cell-cell contacts stabi-
lize the plus and minusends of microtubules at the adherens
junctions, while the blocking of their dynamic turnover
provokes brakeage of cell-cell contacts [26, 43, 47].

Even in the quiescent state, the cytoskeleton of epithelial
cells is highly dynamical, undergoing constant assembly and
disassembly of its structural units. For this reason, it is sub-
ject to complex mechanisms of regulation, many of which
involve components of cell-cell junctions and other mem-
brane proteins. Since it is not the purpose of this work to
make a thorough revision of this rather involved issue, the
reader is referred to several specialized reviews [11, 36, 48,
49]. In Section 5 we will only mention some regulatory path-
ways that are possible candidates to mediate the responses of
the cytoskeleton to modifications in the plasma membrane
potential.

3. Interactions between Ionic Transport
Systems of the Plasma Membrane and
the Cytoskeleton

Besides its associations with the cell junctions, the cytoskele-
ton also interacts, directly or indirectly, with diverse ion
transport systems of the plasma membrane [50–53]. Simi-
larly to the case of the cell junctions, many of the associations
of the cell membrane channels and transporters with the
cytoskeleton are interdependent (for detailed reviews, see
[50, 52]). In this way, several transport systems are anchoring
sites for the cortical cytoskeleton [54–62]. Conversely, the
binding to the cytoskeleton modulates diverse ion transport
activities [56, 61, 63–68]. This interrelation between the
cytoskeleton and ionic transport systems plays a relevant
role in the physiological properties of transport epithelia
[69, 70]. For example, in the renal medulary thick ascending
limb the Na+/H+ exchanger regulates bicarbonate absorption
by controlling the organization of the actin cytoskeleton
[71]. In human syncitiotrophoblast, gelsolin (an actin reg-
ulatory protein) stimulates nonselective cation channels of
the TRP family in the presence of calcium [72]. In HEK
293 cells, calcium-activated chloride channels require cyto-
skeletal interactions to achieve full activation [73]. A most
noteworthy example of the modulation of ionic transport
by the cytoskeleton is provided by volume-sensitive ion
transport systems, that modify transport rates in response
to changes in cytoskeletal tension [74–76]. In several epi-

thelial cells, where water and salt transcellular transport de-
termine modifications in the cellular volume, stretch-acti-
vated potassium and chloride channels participate in the
regulation of salt transport [77–79]. Among other examples
of the regulation of ionic conductances by the cytoskeleton,
in mammary adenocarcinoma cells a well-organized actin
network is necessary for the proper activation of CFTR by
cAMP [80].

The interrelationship between ion transport systems and
the cytoskeleton is also crucial in cell adhesion and migra-
tion, processes requiring significant cytoskeletal remodeling
and modifications of ion transport. In this respect, it has
been shown that inhibition of the CFTR-dependent conduc-
tance impairs lamellipodia formation in bronchial epithelial
cells [81]. In T-cells, Kv1.3 channels participate in promoting
adhesion by establishing complexes with β1 integrin [82]. In
neuroblastoma cell lines, TRPM7 channels affect cell adhe-
sion by direct interaction with the actomyosin cytoskeleton
[83]. TRPV4 has also been reported to form complexes
with the actin cytoskeleton and regulatory kinases, involved
in lamellipodial formation [61]. Focal adhesion kinase, an
enzyme involved in integrin-mediated focal adhesion, is
activated by forming complexes with Kv1.2 channels both
in epithelial and nonepithelial cells [84]. The inhibition of
either the Na+/H+ exchanger transport activity or its actin
cytoskeletal anchoring significantly decreases migration of
PS-120 fibroblasts [66]. Also, ENaC has been reported to par-
ticipate in the processes of cell migration and wound healing
in epithelia [85, 86] and other tissues [87]. The molecular
nature of this role may imply direct interactions between this
channel and cytoskeletal components. In this respect, it has
been shown that the alpha subunit of ENaC associates with
spectrin [54, 88] and short actin filaments [89]. In addition,
there is evidence that the direct binding between ENaC and
these filaments modifies the channel conductance [90–92].
More recently, Ilatovskaya et al. [68] have shown that, in renal
epithelial cells, the actin cytoskeleton regulates ENaC activity
via a cortactin-Arp2/3 complex. As an example of the struc-
tural relationships between an ion channel and the cytoskele-
ton, Figure 2(b) resumes diverse evidence in a schematic
diagram of the interactions between ENaC and cytoskeletal
components during nonactivated and activated conditions
[50, 54, 68, 88]. To be noted, the mechanism through which
the cytoskeleton promotes modifications in ionic conduc-
tance may depend on the particular transport system. For the
case of ENaC, Figure 2(b) shows that the channel activation
requires direct binding to short actin filaments, produced by
direct PKA phosphorylation of actin or via an actin regula-
tory protein [50]. As another example, in vascular endothelia
4.1 proteins have been proposed to be necessary for the stable
expression of TRPC4 in the plasma membrane [93].

The sodium pump has also classically been recognized
to establish interactions with the cortical cytoskeleton [94].
More recently, it was shown that this enzyme participates in
tight junction assembly in MDCK cells via activation of
RhoA and stress fiber formation [95–97]. In caveolar struc-
tures the sodium pump is the core of a multiprotein complex,
the sodium pump signalosome, that contains several proteins
involved in cytoskeletal regulation [98]. Moreover, in vitro
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experiments reinforce the existence of interrelations between
the Na+-K+-ATPase and actin [64]. The molecular nature
of the interactions between the sodium pump and the
cytoskeletal components, and their physiological relevance,
are beginning to be known in more detail. In this respect,
the critical role of the interaction of ankyrin-G and the
spectrin-based actin cytoskeleton in the membrane retention
of the sodium pump has been well established [19, 99].
The binding of ankyrin with the α1-subunit of the Na+-
K+ ATPase has been shown to be crucial not only for the
membrane anchoring of the enzyme, but also for its traf-
ficking in the polarized cell [100]. Based upon the available
evidence, the scheme of Figure 2(c) summarizes some of the
recognized interactions between the sodium pump and the
cytoskeleton in vertebrate cells. In D. melanogaster, Dubreuil
and coworkers demonstrated the existence of ankyrin-
independent interactions between the sodium pump and
spectrin [101, 102].

4. The Plasma Membrane Potential of
Epithelial Cells

The classical dogma of the ionic transport properties of
epithelia was founded by Ussing and coworkers in the 1950s
and has ever since become the basic paradigm of epithelial
transport [103–105]. According to this model, in its essential
terms, the polarized distribution of the sodium pump and
sodium channels is the basic process that transforms a homo-
geneous cell into an epithelial cell, capable of performing
net transepithelial transport of salt between two separated
compartments (Figure 3). Although the general scheme of
Figure 3(b) may apply to different epithelial cell types, it
is particularly characteristic of tight epithelia [106]. In this
respect, it was recognized that epithelia can be divided into
two categories, tight and leaky, according to the electrical
resistance of the tight junctions [107]. In addition to this
difference, the two types are distinguished by other transport
properties. Thus, besides the low electrical resistance, leaky
epithelia also exhibit a high water permeability and establish
low-transepithelial-potential differences (see below), while
the reverse is true for tight epithelia [108].

In general, since the apical and basolateral domains of
epithelial cells have different compositions of ionic transport
systems, the mechanisms of generation of the membrane
potential differ between them. For the case shown in
Figure 3(b), the PMP across the basolateral membrane is
approximately given by a diffusion potential dominated
by potassium. Among other differential contributions, the
sodium pump may be responsible for the generation of the
basolateral PMP in an electrogenic fashion, particularly if
potassium permeability is low [109]. The composition of
the apical membranes greatly varies among the different
epithelial cell types. Therefore, the generation of the apical
PMP depends on the specific epithelia considered. For
example, in intestinal epithelial cells the sodium-glucose
electrogenic cotransport may be the major contributor to
the apical PMP [110]. The selective modifications in the
ionic conductances at the apical or basolateral domains may

K+

Na+
K+

Na+

Cl−

(a)

ap bl

Na+

Cl−

Na+

Cl−

K+

K+

(b)

Figure 3: Schemes showing some ionic transport systems of the
plasma membrane. (a) In symmetric, nonpolarized cells the sod-
ium pump maintains the electrochemical gradients of sodium and
potassium across the plasma membrane. The sodium and potas-
sium channels underlie the generation of a diffusion potential across
the plasma membrane. Chloride is usually maintained at activities
close to equilibrium. (b) In polarized epithelial cells the asymmetric
distribution of, mainly, sodium channels and the sodium pump
into distinctive apical and basolateral membranes may determine
a net transcellular transport of sodium chloride. (ap: apical; bl:
basolateral; the orange circles represent the sodium pump, and the
other arrows correspond to ionic channels).

play physiological roles in diverse epithelia. Thus, in the
acinar cells of parotid salivary glands, modifications in the
potassium conductance of the apical membrane produce
changes in the fluid flow via changes in the apical PMP
[111–113]. In pancreatic acinar ducts, modifications in
the apical depolarization mediated by the sodium-glucose
cotransporter modulate the amount of basolateral uptake of
chloride and bicarbonate [114]. Another example is given by
the basolateral membranes of tracheal and intestinal cells,
where potassium channels containing the KCNE family of β-
subunits control the chloride flux via modifications in the
basolateral PMP [115].

In epithelial cells, the differential generation of the PMP
at the two membrane domains determines the existence of a
net transepithelial potential difference (TPD). As mentioned
above, tight epithelia are capable to maintain large TPDs as
a consequence, among other factors, of the existence of a
large electrical resistance of the paracellular pathway [108].
On the contrary, the TPDs across leaky epithelia are generally
small. As an example, Figure 4 shows a scheme of some of
the ionic transport systems of corneal endothelium, a typical
leaky epithelium that pumps salt and water from the corneal
stroma to the aqueous compartment of the eye [116, 117].
As can be seen, the presence at the two domains of sodium-
bicarbonate cotransporters with different stoichiometric
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Figure 4: Scheme of a corneal endothelial cell showing electrogenic
transport systems of the apical (ap) and basolateral (bl) membranes.
Orange circle and arrows as in Figure 3, pale orange circles represent
sodium-bicarbonate cotransporters; modified from Montalbetti
and Fischbarg [117].

ratios is the cause for a small TPD (i.e., less than 1 mV).
Among other possible roles, as in paracellular ion movement,
this TPD may have a relevant function in the mechanism of
solute-solvent coupling across corneal endothelium [118].

Epithelial cells in culture may acquire some structural
and physiological characteristics of the in situ epithelial cells,
including the generation of a TPD [119–121]. For the case of
small TPDs, as is the case of corneal endothelium [116], the
employment of voltage-sensitive fluorescent probes provides
with global PMP values which are approximately equal to
the apical and basolateral PMPs of these cells in culture
[117, 122] but does not permit to distinguish between them.
Electrophysiological procedures are required to determine
the PMP at each one of the plasma membrane domains, both
under in situ or culture conditions.

5. Modulation of the Epithelial Actin
Cytoskeleton by Modifications in
the Plasma Membrane Potential

Several authors have suggested that the plasma membrane
potential of nonexcitable cells could play a role in diverse
cellular processes [123–125]. In MDCK cells, Vaaraniemi
et al. [126] found that activation of protein kinase C
determined PMP depolarization and reorganization of the
spectrin-based and actin cytoskeletons. Consistently with
these findings, we showed that the nonspecific modifications
of the PMP (i.e., depolarization or hyperpolarization) pro-
mote changes in the organization of the actin and tubulin
cytoskeletons in bovine corneal endothelial (BCE) cells in
culture [127, 128]. In particular, the changes observed for
the actin cytoskeleton consisted, for the PMP depolarization,
in a gradual loss of the peripheral ring, an increase in F-
actin throughout the cytoplasm, appearance of intercellular
gaps and, for sufficiently prolonged treatments, eventual
cell detachment [127]. Conversely, it was noteworthy to
confirm that PMP hyperpolarization determined the oppo-
site response, that is, an increase in the compactness of
actin at the peripheral ring and an augmented resistance

of intercellular adhesion to diverse destabilizing procedures
[128]. These cytoskeletal responses to PMP modifications
were characteristic of some cultured epithelia in confluence
displaying a typical epithelial phenotype exhibiting, among
other characteristics, a well-defined circumferential actin
ring, whereas nonconfluent or undifferentiated epithelial
cell lines did not manifest a recognizable response [128,
129]. Effects of PMP depolarization on microfilaments were
also observed in kidney tubular cells, where the authors
demonstrated that Rho activation and the consequent
increase in phosphorylation of the light myosin chain are
involved [130, 131]. The role of the PMP on the cytoskeletal
organization was also supported by the finding that, in
vascular endothelia, depolarization decreases cell stiffness by
affecting the cortical actin cytoskeleton [132, 133].

The activities of diverse signaling intermediates are sen-
sible to modifications of the PMP. Thus, in excitable cells,
regulators of G protein signaling (RGS), Rho proteins and
PKA are activated by the calcium increase provoked by PMP
depolarization [134–140]. In renal epithelia, however, the
activation of Rho determined by depolarization is not medi-
ated by cytosolic calcium increase [130, 141]. Among the
integral membrane proteins that could mediate cytoskele-
tal responses to diverse effectors, the phosphatidylinositol
phosphatase Ci-VSP [142] and its homologs [143, 144]
contain a voltage sensor in the transmembrane domain
[145] and produce PIP2, a well-known regulator of the actin
cytoskeleton [146, 147]. Interestingly, this enzyme, present
in epithelial and nonepithelial cells [143, 144], is activated
by PMP depolarization [142]. More recently, in Xenopus
oocytes Zhang et al. [148] described an alternative voltage-
sensitive mechanism to increase PIP2 level in response to
PMP depolarization, via activation of a PI4 kinase. The G
protein-coupled receptors (GPCR) constitute another family
of membrane proteins shown to initiate signaling paths
leading to actin remodeling [149, 150]. These receptors,
activated by a variety of extracellular effectors, are directly
regulated by the PMP [151–156].

At this point, it should be reminded that the “plasma
membrane potential,” as determined from typical electro-
physiological procedures, refers to net electrical potential dif-
ferences between the intra- and extracellular bulk compart-
ments. This difference comprises a series of intermediate
electrical potential changes that include surface potentials
at membrane proximities and the transmembrane potential
[123, 157, 158]. Changes in the surface potentials could affect
peripheral proteins, many of them involved in cytoskeletal
regulation [123, 158]. For example, diverse putative periph-
eral proteins can bind to the inner surface of the plasma
membrane by electrostatic interactions and modify their
degree of attachment in response to modifications in the
surface potential, such as MARCKS [159], PTEN [160], K-
Ras [161], c-Src: [162], Rac1 [163], and ERM proteins [164].
For the particular case of K-Ras it has been shown that, apart
from the inner surface potential, the transmembrane poten-
tial also affects its binding to the plasma membrane [165].

The effects of the PMP on the cytoskeletal organization
could also be mediated by membrane ionic transport systems
directly or indirectly connected to cytoskeletal elements, such
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as the ones mentioned in Section 3. In principle, there are
two main mechanisms through which the PMP could affect
the interrelationship between ion transport systems and the
cytoskeleton: (a) by modifying ionic currents and thus the
ionic environment near the cytoskeletal binding regions, and
(b) by determining electroconformational modifications of
the ion transporting proteins that can be propagated to the
cytoskeletal components, as could be the case for other non-
transporting integral membrane proteins. As an example of
this latter possibility, several ion channels have been pro-
posed to transmit signals via conformational coupling with
integrins, irrespectively of changes in the ionic fluxes [166].
Whatever the mechanism, it must be noted that the par-
ticular ion transport system that would mediate the cyto-
skeletal response to a certain PMP modification (i.e., a hy-
perpolarization or a depolarization) may depend on the
specific procedure employed for the modification. For ins-
tance, in a certain cell type PMP hyperpolarization may be
achieved by increasing the potassium conductivity, deter-
mining augmented potassium efflux, or by increasing the
chloride conductivity, producing increased chloride influx.
Correspondingly, the intermediate path and specific organi-
zational response of the cytoskeleton to the particular PMP
change provoked may also depend on the specific procedure
and ionic path (cf. Section 3).

Another possible mechanism mediating the effects of
PMP modifications on cytoskeletal rearrangements could be
the direct conduction of electrical signals generated at the
plasma membrane by the cytoskeletal components them-
selves. In support of this idea is the finding that actin fila-
ments can propagate electrical signals per se [167].

6. Possible Physiological, Pathological, and
Medical Implications of a Regulation of
the Actin Cytoskeleton by
the Membrane Potential

In principle, it could be expected that the transition of an
epithelial cell from a quiescent to a specific secretion or ab-
sorption state occurs with characteristic modifications both
in cytoskeletal organization and ionic conductances. As sug-
gested from the evidence reviewed in this work, these con-
current modifications could be mediated by the complex
regulatory framework provided by the interactions between
cytoskeletal components and diverse membrane transport
systems. From the results reviewed in the previous section
the modifications in the plasma membrane potential could
participate in the regulation of the organization of the cy-
toskeleton of epithelial cells, possibly via effects mediated by
ionic transport systems. The examples shown in Section 3
support this notion by describing diverse examples of epithe-
lial cells where ionic transport is associated to cytoskeletal
modifications.

As a further physiological counterpart to the results
commented in Section 5, we put into evidence that PMP
depolarization occurs during wound healing in bovine cor-
neal endothelial cells, as a consequence of the increased
expression of the epithelial sodium channel (ENaC), and that

it may have a role in the healing process [85]. To be noted,
the border cells actively participating in the healing response
of epithelia experience characteristic reorganizations of the
actin cytoskeleton, which are blocked by ENaC inhibi-
tion (ibid). ENaC-dependent PMP depolarization was also
observed in the course of wound healing by others in a cell
line of human trophoblast [86] and by us in other epithelia
in culture (unpublished results). Interestingly, in healing
corneal endothelium and epithelium Watsky [168] described
a late hyperpolarizing potassium current that, in view of the
results described above, could have the role of restituting the
membrane potential to its basal value. A role for ENaC in the
processes of wound healing was also proposed by Grifoni et
al. [87] for smooth vascular muscle cells.

Actin has been found to participate in the development of
the apoptotic response [169]. Thus, interference with actin
dynamics by inhibition of its depolymerization enhances
apoptotic activity in HL-60 cells [170, 171]. However, in T-
cells disruption of the actin cytoskeleton promotes caspase-
3-mediated apoptosis [172]. A concurrent finding of interest
within the conceptual framework of this paper is that cells
undergo PMP depolarization in the course of apoptosis, a
fact that has been speculated to play a role in the cytoskeletal
reorganization that takes place during this process [173].

The finding that hyperpolarization of the PMP deter-
mines actin compaction along the adherens junctions and
increases junction stability [128] may have application in the
design of therapeutic strategies. In this respect, the loss of
epithelial intercellular adhesions is at the basis of diverse
pathologies [174, 175]. Some of these represent major med-
ical challenges, such as cancer progression [176–179] ischem-
ic injuries [180] and bowel inflammatory diseases [181].

7. Concluding Remarks

The modifications in the plasma membrane potential have
mostly been classically associated with the physiology of
excitable tissues. In both excitable and nonexcitable cells,
the PMP is an energetic component of the electrochemical
gradients responsible of membrane ionic transport. The
findings reviewed in this work contribute to the concept
that the PMP may also participate in other cellular pro-
cesses, including the establishment and maintenance of the
morphological and functional features of epithelial cells. In
particular, we have emphasized here the possible role of the
PMP in the regulation of the actin cytoskeleton. Although
some knowledge about signaling pathways involved in the
transduction of electrical signals at the plasma membrane
to mechanical modifications of the cytoskeleton has been
unraveled, the involvement of the cytoskeleton in many rele-
vant physiological cellular phenomena permits to anticipate
great progress in this respect in the near future.
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