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Abstract: We previously reported that 3-pentylcatechol (PC), a synthetic non-allergenic urushiol derivative,
inhibited the growth of Helicobacter pylori in an in vitro assay using nutrient agar and broth. In this study,
we aimed to investigate the in vivo antimicrobial activity of PC against H. pylori growing in the stomach
mucous membrane. Four-week-old male C57BL/6 mice (n = 4) were orally inoculated with H. pylori
Sydney Strain-1 (SS-1) for 8 weeks. Thereafter, the mice received PC (1, 5, and 15 mg/kg) and triple therapy
(omeprazole, 0.7 mg/kg; metronidazole, 16.7 mg/kg; clarithromycin, 16.7 mg/kg, reference groups) once
daily for 10 days. Infiltration of inflammatory cells in gastric tissue was greater in the H. pylori-infected
group compared with the control group and lower in both the triple therapy- and PC-treated groups.
In addition, upregulation of cytokine mRNA was reversed after infection, upon administration of triple
therapy and PC. Interestingly, PC was more effective than triple therapy at all doses, even at 1/15th the dose
of triple therapy. In addition, PC demonstrated synergism with triple therapy, even at low concentrations.
The results suggest that PC may be more effective against H. pylori than established antibiotics.

Keywords: urushiol; 3-pentylcatechol; 3-pentadecylcatechol; Helicobacter pylori; antimicrobial;
triple therapy

1. Introduction

Helicobacter pylori infection is a major public health concern worldwide. This infection occurs
in the gastric mucosa of more than 50% of the world’s population [1] and it is directly associated
with gastrointestinal disorders, including chronic gastritis, peptic ulcer disease, mucosa-associated
lymphoid tissue (MALT) lymphoma, and gastric cancer [2–5]. Gastric cancer is the second leading
cause of cancer-related mortality worldwide, following only lung cancer [6]. Furthermore, H. pylori
infection is also associated with numerous extra-gastric disorders, such as cardiovascular, neurologic,
hematologic, dermatologic, head and neck, and urogynecologic diseases, as well as diabetes mellitus
and metabolic syndrome [7,8].

The international gold-standard treatment for H. pylori infection is triple therapy, comprising
two antibiotics (usually selected from clarithromycin, metronidazole, amoxicillin, and tetracycline)
and a proton-pump inhibitor, for 7–14 days [9–11]. However, the success rates of these H. pylori
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eradication therapies are less than 80%, and the failure rate of H. pylori eradication therapy has increased,
primarily due to increased antibiotic resistance [12–14]. Another reason for treatment failure is patient
non-adherence, owing to the complexity of the treatment: it involves the repeat administration of
at least three drugs over a long period [15]. In addition, these drugs are associated with several
side effects, including abdominal pain, nausea, and diarrhea [16]. The high cost of H. pylori treatment
may also be a disadvantage [15]. Therefore, there is an urgent need for the development of safe and
effective therapeutic agents for H. pylori infections.

Lacquer tree (Toxicodendron vernicifluum (Stokes) F.A. Barkley, Anacardiaceae) has been used for
thousands of years as a protective surface-coating material and in traditional medicine in China, Japan,
and Korea [17]. It is particularly effective for treating gastrointestinal disorders, such as gastritis and
gastric cancer [17]. Urushiols are a group of compounds with alkyl side chains comprising 15 or 17
carbon atoms at the C-3 position of catechol. They are the major constituents of lacquer tree sap,
accounting for 60–70% of the total content [18]. In addition to their various biological activities [19–23],
urushiols display antimicrobial activity against H. pylori [24]. However, urushiols can also cause
serious contact dermatitis [25–27], which is a limitation associated with their use.

Previously, we chemically synthesized catechol-type urushiol derivatives with different alkyl
side chain lengths of –C5H11, –C10H21, –C15H31, and –C20H41 at the C-3 position (Figure 1) [28].
Among these compounds, 3-decylcatechol (�C10H21) and 3-pentadecylcatechol (PDC, natural type,
–C15H31) induced contact dermatitis; however, 3-pentylcatechol (PC, –C5H11) and 3-eicosylcatechol
(EC, –C20H41) did not [28]. In addition, PC and EC exhibited strong antioxidative activity and high
affinity for phospholipid membranes [28]. Notably, PC demonstrated enhanced antimicrobial effects in
agar and broth cultures against various microorganisms involved in food spoilage and pathogenicity [29].
In addition, PC inhibited H. pylori to a greater extent than nalidixic acid, erythromycin, tetracycline,
and ampicillin, which have been used in H. pylori eradication therapy [29]. Moreover, unlike PDC
(Part I), PC was absorbed in the blood after oral administration [30,31]. Therefore, PC is expected to
effectively eradicate H. pylori in gastric tissue. In this study, the in vivo antimicrobial activity of PC
against H. pylori was evaluated and compared to that of triple therapy.
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2. Results

2.1. Confirmation of Infection and Associated Gastric Disorders after H. pylori Inoculation

After 30 days of H. pylori Sydney Strain-1 (SS-1) inoculation, the colonization of H. pylori and
associated gastric disorders in mouse gastric tissue were confirmed via quantitative polymerase chain
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reaction (qPCR) and histological analysis. The relative mRNA expression of the inflammatory cytokines,
tumor necrosis factor alpha (Tnfα) and interleukin-1 beta (Il-1β) was upregulated to a greater extent in
mice in the infected group than in mice in the control group (Figure 2). In addition, the expression
of H. pylori-related genes, urease subunit alpha (ureA) and cytotoxin-associated gene A (cagA),
was detected in mice in the infected group, but not in mice in the control group (Figure 2). Histological
analysis revealed characteristics of gastritis, including inflammatory cell infiltration, erosion,
and catarrhal inflammation in the gastric tissue of the infected group (Figure 3). These results indicate
that H. pylori successfully colonized the stomachs of mice after inoculation and induced gastric disorders.
Therefore, this animal model was used to investigate the in vivo antimicrobial activity of PC against
H. pylori.
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Figure 2. Expression levels of tumor necrosis factor alpha (Tnfα), interleukin-1 beta (Il-1β),
urease subunit alpha (ureA), and cytotoxin-associated gene A (cagA) mRNA in mouse gastric tissue
following Helicobacter pylori Sydney Strain-1 (SS-1) inoculation. H. pylori SS-1 was administered to
C57BL/6 mice for 30 days. N.D., not detected.
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Figure 3. Histological analysis of hematoxylin and eosin-stained mouse gastric tissue after H. pylori
SS-1 inoculation. H. pylori SS-1 was administered to C57BL/6 mice for 30 days. (A) uninfected control;
(B) inflammatory cell infiltration (dotted line) in an H. pylori-infected mouse; (C) erosion (dotted line)
in an H. pylori-infected mouse; (D) catarrhal inflammation (dotted line) in an H. pylori-infected mouse.
Scale bar = 20 µm.

2.2. Effect of PC on the Gastric Tissue Histology of H. pylori-Infected Mice

We evaluated and graded the level of inflammatory cell infiltration in the gastric mucosa of
H. pylori-infected mice via hematoxylin and eosin (H&E) staining (Figure 4). Grades of 0 to 3 were
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assigned, as follows: 0, normal; 1, mild; 2, moderate; 3, marked. All mice in the uninfected control
group displayed a score of 0 (no infiltration of inflammatory cells), whereas those in the infected
group displayed a score of 2 (moderate infiltration of inflammatory cells) and 3 (marked infiltration of
inflammatory cells) in two mice each. The inflammation scores in all treatment groups were lower
than those in the infected group. Interestingly, the scores were lower in mice treated with low doses of
PC (1 and 5 mg/kg) compared with those treated with triple therapy.
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Figure 4. Effect of 3-pentylcatechol (PC) treatment on the histology of gastric tissue from
H. pylori-infected mice (hematoxylin and eosin staining). Inflammatory cell infiltration was graded
from 0 to 3: 0, normal; 1, mild; 2, moderate; 3, marked. #, inflammatory cell infiltration score of
control group; •, inflammatory cell infiltration score of H. pylori-infected group; ∆, inflammatory
cell infiltration score of H. pylori + triple therapy-treated group; N, inflammatory cell infiltration
score of H. pylori + 3-pentadecylcatechol (PDC)-treated group; ♦, inflammatory cell infiltration score of
H. pylori + 1 mg/kg of PC-treated group; �, inflammatory cell infiltration score of H. pylori + 5 mg/kg
of PC-treated group; �, inflammatory cell infiltration score of H. pylori + 15 mg/kg of PC-treated group.
Different letters (a, b, and c) indicate a significant difference (p < 0.05), ascertained via the
Tukey–Kramer test.

2.3. Effect of PC on H. pylori Eradication and Cytokine Expression

To assess the effect of PC therapy on H. pylori eradication, the mRNA expression of the H. pylori
markers cagA, ureA, and neutrophil-activating protein A (napA) was assessed in pyloric antrum tissue
via qPCR. As shown in Figure 5, all three H. pylori-related transcripts were detected in the infected mice,
but not in the uninfected control mice. This suggests that PC can effectively eradicate H. pylori, even at
a dose at 1/15th of the antibiotics used in triple therapy. This response was also observed when
analyzing the mRNA expression of inflammatory cytokines Tnfα and Il-1β in the pyloric antrum tissue
(Figure 6). The expression of both Tnfα and Il-1β was markedly upregulated in the infected group
compared with the uninfected control group; however, these genes were significantly downregulated
upon PC treatment and in the reference groups. Moreover, PC treatment reduced the levels of two
inflammatory cytokines more efficiently than triple therapy. Notably, in mice treated with 1 and
5 mg/kg of PC, the mRNA expression of Tnfα and Il-1β was downregulated, similar to the observation
in the uninfected control mice. These results suggest that PC effectively eradicates H. pylori in the
gastric mucosa and also helps alleviate gastrointestinal disorders at much lower concentrations than
conventional antibiotics.
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2.4. Synergistic Effect of PC in Combination with Triple Therapy

Next, we evaluated the in vivo efficacy of PC in combination with triple therapy. The expression
of H. pylori-related genes (cagA, ureA, and napA) was not completely suppressed in the triple
therapy group when the antibiotic concentration was decreased (Figure 7). In contrast, when PC was
administered with triple therapy, the expression of the H. pylori-related genes was not observed with
all concentrations (Figure 7).

Next, we evaluated the synergistic effect of PC and triple therapy on the inflammatory response
(Figure 8). When mice were treated with triple therapy alone, inflammation was not completely
suppressed. However, when mice were treated with PC and triple therapy, cytokine expression
decreased to a level similar to that observed in the uninfected control group. These results indicate that
PC demonstrated synergism with conventional antibiotic therapy, suggesting that the use of antibiotics
can be reduced in the treatment of H. pylori.
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(GOT) levels were determined using commercial ELISA kits to evaluate the in vivo toxicity of PC 

Figure 7. Expression of H. pylori ureA, napA, and cagA mRNA in the gastric tissue of the
H. pylori-infected mice following combination treatment with PC and triple therapy. Different letters
indicate a significant difference (p < 0.05), ascertained via the Tukey–Kramer test. Triple therapy was
administered at four concentrations. 1, Existing concentration of triple therapy (metronidazole and
clarithromycin: 16.7 mg/kg; omeprazole: 700 µg/kg); 1/5, one-fifth of the existing concentration of
triple therapy; 1/10, one-tenth of the existing concentration of triple therapy; 1/15, one-fifteenth of the
existing concentration of triple therapy. PC was administered at 1 mg/kg. N.D., not detected.
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Figure 8. Expression levels of Tnfα and Il-1β mRNA in the gastric tissue of the H. pylori-infected
mice after combination treatment with PC and triple therapy. Different letters (a, b, and c) indicate a
significant difference (p < 0.05), ascertained via the Tukey–Kramer test. Triple therapy was administered
at four concentrations. 1, Existing concentration of triple therapy (metronidazole and clarithromycin:
16.7 mg/kg; omeprazole: 700 µg/kg); 1/5, one-fifth of the existing concentration of triple therapy;
1/10, one-tenth of the existing concentration of triple therapy; 1/15, one-fifteenth of the existing
concentration of triple therapy. PC was administered at 1 mg/kg.

2.5. Hepatotoxicity of PC

Plasma glutamate pyruvate transaminase (GPT) and glutamate oxaloacetate transaminase (GOT)
levels were determined using commercial ELISA kits to evaluate the in vivo toxicity of PC after oral
administration (Figure 9). No significant differences were observed between the PC-treated groups
and the uninfected control group. These results indicate that PC does not cause liver toxicity.
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3. Discussion

Urushiols are major constituents present in high concentrations in lacquer tree sap [18],
with antimicrobial activity against H. pylori [24]. However, urushiols induce contact dermatitis [25–27],
thereby limiting their application.

Previously, PC, a non-allergenic urushiol derivative (Figure 1), was chemically synthesized [28],
and its antimicrobial activity against various food spoilage and pathogenic microorganisms was
determined [29]. PC displayed marked antimicrobial effects in both agar and broth cultures [29].
In addition, PC demonstrated greater anti-H. pylori activity than nalidixic acid, erythromycin,
tetracycline, and ampicillin, which have been widely used to eradicate H. pylori [29]. In the present study,
we investigated the in vivo antimicrobial activity of PC against H. pylori and compared it with
triple therapy, which is considered the international gold-standard treatment for H. pylori infections.

C57BL/6 mice were inoculated with H. pylori SS-1 to generate a model of H. pylori infection.
In the pyloric antrum tissue, the increased expression of Tnfα and Il-1β mRNA, which are involved
in H. pylori-induced inflammation [32], was more prominent in the infected group than in the control
group (Figure 2). In addition, characteristics of gastritis were detected in the gastric tissue of the
infected mice upon H&E staining (Figure 3).

To determine the in vivo antimicrobial activity of PC, mice were inoculated with H. pylori SS-1 for
60 days. Subsequently, three doses (1, 5, and 15 mg/kg) of PC were administered to the H. pylori-infected
mice once daily for 10 days. Anti-H. pylori activity was compared between the PC-treated groups,
the positive control group, the triple therapy group, and the group receiving PDC, a natural urushiol
derivative. Mortality and inflammation upon H. pylori infection were assessed via qPCR and histological
analysis of the pyloric antrum tissue, the major habitat of H. pylori [33].

Histological analysis of the gastric tissues following H&E staining (Figure 4) revealed that
all uninfected mice appeared normal; in contrast, inflammatory cell infiltration increased in the
infected group. Inflammation scores were reduced upon PC treatment, which was more effective than
triple therapy (Figure 4).

The CagA toxin, encoded by cagA, is one of the most widely studied H. pylori virulence factors.
The CagA effector protein is injected into host target cells via a type IV secretion system and is highly
associated with inflammation and the development of gastric cancer [1]. The napA encodes the
NapA protein, which activates neutrophils, prevents oxidative DNA damage [34], and regulates the
adhesion of H. pylori to stomach mucin and host epithelial cells [35]. The ureA contributes to acid
resistance in H. pylori via the production of ammonia through the enzymatic degradation of urea
in the gastric environment [1]. H. pylori-related genes, cagA, ureA, and napA, were analyzed via
qPCR to evaluate the extent of H. pylori eradication (Figure 5). All three genes were detected in
the infected group only and not in the uninfected groups and those receiving treatment (Figure 5).
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Therefore, these data indicate that H. pylori can be completely eradicated by PC at a much lower
concentration than antibiotics. In addition, the expression of H. pylori-induced Tnfα and Il-1β mRNA
was markedly downregulated following PC treatment (Figure 6). Moreover, the levels of these two
inflammatory cytokines were effectively reduced in all the PC-treated groups compared with the triple
therapy group (Figure 6).

A recent study showed that epidermal growth factor receptor signaling, implicated in gastric
inflammation and carcinogenesis, remains activated following the eradication of H. pylori by
antibiotics [36]. In addition, clarithromycin does not affect the expression of inflammatory markers
in patients with atherosclerosis [37]. Knoop et al. (2016) reported that antibiotic therapy accelerates
inflammation via the translocation of native intestinal bacteria [38]. Our results indicate that PC not
only eradicates H. pylori but also improves H. pylori-induced gastritis. Although further studies are
required to investigate the underlying mechanism of action, these results reflect the strong antioxidant
activity and amphipathic structure of PC [28,39]. In addition, despite using a low concentration
of PC, synergistic effects were observed with triple therapy (Figures 7 and 8). Thus, PC can markedly
reduce the concentration of antibiotics used and can overcome issues associated with the misuse of
antibiotics [16]. In addition, the poor treatment compliance of patients owing to the need to take large
amounts of antibiotics, which is a major obstacle in the antibiotic treatment of H. pylori infections [15],
can be improved.

The plasma levels of liver transaminases, GOT and GPT, are useful biomarkers of liver injury.
These enzymes are released in the blood upon hepatocyte necrosis due to acute hepatitis, ischemic injury,
or toxic injury [40]. In the present study, plasma GPT and GOT levels were determined following the
oral administration of PC. No evidence of liver toxicity was observed following treatment with PC
(Figure 9).

4. Materials and Methods

4.1. Chemicals

3-Pentylcatechol (PC) and 3-pentadecylcatechol (PDC) were chemically synthesized in accordance
with our previous method [28]. Clarithromycin, metronidazole, and omeprazole were purchased from
TCI Chemical Industry (Tokyo, Japan). All other chemicals and solvents were of analytical grade,
unless specified otherwise.

4.2. H. pylori Strain and Culture Conditions

Mouse-adapted H. pylori Sydney Strain-1 (SS-1) was obtained from the Korean Culture Center of
Microorganisms (KCCM, Seoul, Korea) and cultured on Columbia agar or in broth medium (MB cell,
Seoul, Korea), containing 5% horse serum (Gibco, Gaithersburg, MD, USA). The culture was incubated
at 37 ◦C in a 10% CO2 incubator (MCO175, Sanyo, Osaka, Japan), and the bacteria were sub-cultured
every 72 h [29]. Culture purity was assessed regularly.

4.3. Animals and Infection

All experimental procedures were approved by the Institutional Animal Care and Use Committee
of Chonnam National University (no. CNU IACUC-YB-2012-26). Four-week-old C57BL/6 male mice
were purchased from Samtako Bio Korea (Osan, Korea). Mice were reared in an environmentally
controlled animal facility, operating on a 12:12 h dark/light cycle at 20 ± 1 ◦C and 55 ± 5% humidity,
with ad libitum access to water and standard laboratory chow (Harlan Rodent diet, 2018S, by Samtako
Bio Korea) [24].

Four mice per group were inoculated with H. pylori SS-1, which can effectively colonize the mouse
gastric mucosa [41]. A total of 100 µL aliquots (108 CFU) of Columbia broth were administered to the
mice for 60 days, three times every 2 days, using a zonde needle. After 30 days of inoculation, three mice
were sacrificed to confirm infection. Blood was withdrawn from the abdominal aorta of the mice under
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light anesthesia (isoflurane) and collected in heparinized tubes. Plasma was obtained via centrifugation
(2767× g, 4 ◦C, 15 min). The pyloric antrum of the stomach was harvested for quantitative polymerase
chain reaction (qPCR) and histological analysis. Uninfected mice were administered the same volume
of fresh Columbia broth; this group was considered the negative control. All samples were stored at
−80 ◦C until use.

4.4. PC Treatment after H. pylori Infection

Following 60-day H. pylori inoculation, PC was administered to the infected mice with 100 µL
of water once daily for 10 days [24]. Triple therapy and PDC, a natural form of urushiol, were used as
referencegroups. Infectedmiceweredividedintosevenexperimentalgroups(n=4): controlgroup(uninfected,
negative control); H. pylori-infected group; H. pylori infection + triple therapy treatment group; H. pylori
infection + PDC 26.7 mg (83.3 µmol)/kg treatment group; H. pylori infection + PC 1 mg (5.6 µmol)/kg
treatment group; H. pylori infection + PC 5 mg (27.8 µmol)/kg treatment group; and H. pylori
infection + PC 15 mg (83.3 µmol)/kg treatment group. Triple therapy comprised omeprazole (700 µg/kg),
metronidazole (16.7 mg/kg), and clarithromycin (16.7 mg/kg). After 10 days of treatment, the mice were
euthanized and samples were harvested as described above.

To confirm the synergistic effect of PC with triple therapy, triple therapy was administered at four
concentrations, as follows: existing concentration (metronidazole and clarithromycin: 16.7 mg/kg;
omeprazole: 700 µg/kg), one-fifth, one-tenth, and one-fifteenth of the existing concentration. In contrast,
PC was administered at the same concentration (1 mg/kg). In accordance with the above conditions,
triple therapy and PC were administrated orally to the H. pylori-infected mice once daily for 5 days.
The control and infection groups received distilled water under the same conditions. After 5 days of
treatment, the mice were euthanized and samples were harvested, as described above.

4.5. Histological Examination

Gastric tissue was fixed in 4% (w/v) paraformaldehyde (PFA) in phosphate-buffered saline
(PBS, pH 7.4) for 24 h, dehydrated in a graded ethanol series (70%, 80%, 90%, 95%, and 100%),
cleared in xylene, embedded in paraffin, and sectioned into 5-µm-thick slices. Serial sections were
stained with hematoxylin and eosin (H&E) and examined microscopically to determine whether the
gastric mucosa contained any pathological lesions [42].

4.6. RNA Analysis

Total RNA was isolated from mouse gastric tissue using the TRI Reagent® (Molecular Research Center,
Cincinnati, OH, USA). cDNA was synthesized using the ReverTra Ace® qPCR RT kit
(Toyobo, Osaka, Japan), and qPCR amplification was accomplished using a Mx3000P qPCR System
(Agilent Technologies, Santa Clara, CA, USA). Primer sequences are listed in Table 1. mRNA expression
levels were normalized to those of the mouse ribosomal protein, Large, P0 (Rplp0), as the internal
control, determined via the comparative threshold cycle method [43].

Table 1. Primers used in this study.

Gene
Sequence

Forward Reverse

Rplp0 GTGCTGATGGGCAAGAAC AGGTCCTCCTTGGTGAAC
Tnfα CGAGTGACAAGCCTGTAGCC AGCTGCTCCTCCACTTGGT
Il-1β ATGAGAGCATCCAGCTTCAA TGAAGGAAAAGAAGGTGCTC
cagA CCGATCGATCCGAAATTTTA CGTTCGGATTTGATTCCCTA
ureA TGTTGGCGACAGACCGGTTCAAATC GCTGTCCCGCTCGCAATGTCTAAGC
napA CCATGTGCATAAAGCCACTG GAGTTTGAGCGCTTCGGATA

Ribosomal protein (Rplp0), Large, P0; tumor necrosis factor alpha (Tnfα); interleukin-1 beta (Il-1β);
cytotoxin-associated gene A (cagA); urease subunit alpha (ureA); neutrophil-activating protein A (napA).
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4.7. Determination of Plasma Glutamate Oxaloacetate Transaminase (GOT) and Glutamate Pyruvate
Transaminase (GPT) Levels

Plasma GPT and GOT levels were determined using GPT and GOT enzyme-linked
immunosorbent assay (ELISA) kits (Asan Pharmaceutical, Seoul, Korea) in accordance with the
manufacturer’s instructions.

4.8. Statistical Analysis

Data are presented as the mean ± standard deviation and were determined using Statistical
Package for Social Sciences (SPSS, IBM, Armonk, NY, USA) version 19.0. Statistically significant
differences were ascertained using one-way analysis of variance, followed by the Tukey–Kramer and
Student’s t-tests. p < 0.05 was considered significant.

5. Conclusions

In summary, we compared the in vivo antimicrobial effects of PC and conventional triple therapy
against H. pylori using a mouse model of H. pylori infection. PC completely eradicated H. pylori,
even when administered at a dose 1/15th that of conventional antibiotics used for triple therapy.
In addition, gastritis was rapidly alleviated upon PC treatment. Thus, PC may be a potential viable
alternative to triple therapy for H. pylori and gastrointestinal disorders.
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