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A B S T R A C T

Neuromelanin sensitive magnetic resonance imaging (NMS-MRI) has been crucial in identifying abnormalities in
the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) as PD is characterized by loss of dopa-
minergic neurons in the SNc. Current techniques employ estimation of contrast ratios of the SNc, visualized on
NMS-MRI, to discern PD patients from the healthy controls. However, the extraction of these features is time-
consuming and laborious and moreover provides lower prediction accuracies. Furthermore, these do not account
for patterns of subtle changes in PD in the SNc. To mitigate this, our work establishes a computer-based analysis
technique that uses convolutional neural networks (CNNs) to create prognostic and diagnostic biomarkers of PD
from NMS-MRI. Our technique not only performs with a superior testing accuracy (80%) as compared to contrast
ratio-based classification (56.5% testing accuracy) and radiomics classifier (60.3% testing accuracy), but also
supports discriminating PD from atypical parkinsonian syndromes (85.7% test accuracy). Moreover, it has the
capability to locate the most discriminative regions on the neuromelanin contrast images. These discriminative
activations demonstrate that the left SNc plays a key role in the classification in comparison to the right SNc, and
are in agreement with the concept of asymmetry in PD. Overall, the proposed technique has the potential to
support radiological diagnosis of PD while facilitating deeper understanding into the abnormalities in SNc.

1. Introduction

Parkinson's disease (PD) is a progressive, neurodegenerative dis-
order characterized by loss of dopaminergic neurons in the substantia
nigra pars compacta (SNc) (Mann and Yates, 1983). Neuromelanin
which is a by-product of dopamine synthesis is a neuronal pigment
which can be visualized in the SNc. Depigmentation of the SNc, sec-
ondary to loss of dopaminergic neurons is a conspicuous feature of PD,
which although well visualized neuropathologically is poorly replicated
by neuroimaging (Hutchinson and Raff, 2000). The role of conventional
neuroimaging in the diagnosis of PD has been therefore limited, despite
several methods to study the SNc as these techniques have been unable
to directly visualize the SNc. The introduction of the “neuomelanin-
sensitive MRI” (NMS-MRI), a 3T T1 weighted high-resolution fast spin-
echo neuromelanin sensitive sequence by Sasaki et al., revolutionized
the technique of visualizing the SNc (Sasaki et al., 2006). Following

this, several studies have demonstrated the utility of this sequence to
differentiate between patients with PD and controls using manually
extracted features of the SNc that include the contrast ratio, area and
volumes (Matsuura et al., 2013; Ogisu et al., 2013; Ohtsuka et al., 2013;
Prasad et al., 2018b). Between these features the contrast ratios are
well-accepted as they have demonstrated the highest discriminative
power. However, these techniques have limited clinical utility and re-
producibility owing to the time-consuming nature of computing these
features, with a high scope for operator errors. Moreover, these features
require SNc borders to be well defined which are difficult in patients
with PD due to higher loss of neuromelanin containing neurons that
may substantially decrease the contrast on the scan and may bias the
analysis by excluding highly impacted areas of the SNc, leading to an
over-estimate in contrast ratios (Sulzer et al., 2018).
At present the diagnosis of PD is highly dependent on clinical fea-

tures and although dopamine transporter positron emitted topography
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is useful, it is not cost-effective and cannot be routinely employed.
Hence, it is crucial to employ other neuro-imaging techniques to aid in
the early or differential diagnosis of PD. Recent advances in the areas of
machine learning and data-driven analysis have demonstrated the uti-
lity of different brain imaging modalities for automated diagnosis of PD.
Table 1 provides a brief review of recent articles that have used ma-
chine learning and statistical learning techniques to predict PD from
MRI modalities.
Considering the above-mentioned utility of the NMS-MRI in the

differentiation of PD from healthy controls, and the relative ease of
acquiring this sequence, we endeavor to utilize this sequence in an
automated classification framework for PD prognosis and diagnosis.
The main objective of the present study therefore is to create markers
for PD using state-of-art deep convolution neural network (CNN) on
NMS-MRI and compare it to classifiers based on (1) contrast ratios with
machine learning (CR-ML) and (2) radiomics with machine learning
(RA-ML) using regions of interest of the SNc. Our CNN based classifier is
fully automated and is free of defining SNc borders as it uses a larger
region of interest. Moreover, it employs the technique of discriminative
localization to compute class activation maps (CAMs) that facilitate
deeper understanding into the most important regions that participate
in the classification.

2. Methodology

2.1. Subject recruitment and clinical evaluation

Forty-five patients with PD, 20 patients with atypical parkinsonian
syndromes (APS) - multiple system atrophy (MSA), progressive

supranuclear palsy (PSP), and 35 healthy controls (HCs) were recruited
from the general outpatient clinic and movement disorder services at
the Department of Neurology, National Institute of Mental Health and
Neurosciences (NIMHANS), Bangalore, India. The diagnosis of idio-
pathic PD was based on the UK Parkinson's Disease Society Brain Bank
criteria (Hughes et al., 1993), the diagnosis of MSA was based on the
criteria by Gilman et al. (Gilman et al., 2008), and PSP was diagnosed
based on the National Institute of Neurological Disorders and Stroke
and Society for Progressive Supranuclear Palsy criteria (Litvan et al.,
1996), and confirmed by a trained movement disorder specialist (au-
thor PKP). Patients included in this study have been part of other stu-
dies from this group (Prasad et al., 2018a; Prasad et al., 2018b; Shah
et al., 2017; Shah et al., 2018) and all patients and controls provided
informed consent prior to recruitment in the original projects.
Demographic and clinical details such as gender, age at presenta-

tion, age at onset of motor symptoms, disease duration, Unified
Parkinson's Disease Rating Scale (UPDRS-III) OFF-state scores, and
Hoehn and Yahr stage were recorded. Clinical laterality (CL) was es-
tablished by measuring the difference between the right and left
UPDRS-III sub scores, i.e., question 23–26 (Barrett et al., 2011). A dif-
ference of ≥1 was considered as CL. A subject with PD was said to have
either right CL or left CL based on which side had a higher score. For
patients with APS, i.e., MSA or PSP, gender, age at presentation, age at
onset of motor symptoms, and disease duration were recorded. Age and
gender matched HCs with no family history of parkinsonism or other
movement disorder were recruited.
The demographic and clinical data of patients with PD, APS and HC

were compared using a standard analysis of variance (ANOVA). The
level of significance was set at p < .05.

Table 1
Brief review of methods employed by recent studies that have used machine learning and statistical learning techniques to predict PD from MRI modalities.

Author, year Number of subjects Methods employed Accuracy (%)

Salvatore et al., 2014 PD (n=28) VBM PD vs HC: 83.2
PSP (n=28) Principal component analysis PSP vs HC: 86.2
HC (n= 28) SVM PSP vs PD: 84.7

Cherubini et al., 2014a, 2014b Tremor dominant PD (n=15) VBM, DTI
ET with rest tremor (n=15) SVM

Cherubini et al., 2014a, 2014b PD (n=57) VBM, DTI 100
PSP (n=21) SVM

Rana et al., 2015 PD (n=30) Region of interest based 86.67
HC (n= 30) SVM

Singh and Samavedham, 2015 PPMI cohort Self-organizing maps 99.9
PD (n=518) SVM
SWEDD (n=68)
HC (n=245)

Huppertz et al., 2016 PD (n=204) Volumetry 80
PSP-RS (n=106) SVM
MSA-C (n= 21)
MSA-P (n=60)

Adeli et al., 2016 PPMI cohort Joint feature-sample selection 81.9
PD (n=374)
HC (n=169)

Abos et al., 2017 PD (n=27) Functional connectome 80
HC (n=38) SVM

Peran et al.,2018 PD (n=26) VBM, T2* relaxometry, DTI PD vs MSA: 96
MSA-P (n=16)
MSA-C (n=13) Self-organizing maps
HC (n= 26)

Amoroso et al., 2018 PPMI cohort Connectivity measures 93
PD (n= 374) SVM
HC (n=169)

Ariz et al., 2019 PD (n=40) NM-MRI based atlas of 79.9
HC (n=39) Substantia nigra

DTI: Diffusion tensor imaging; ET: Essential tremor; HC: Healthy controls: MSA-C: Multiple system atrophy with predominant cerebellar features; MSA-P: Multiple
system atrophy with predominant parkinsonian features; NM-MRI: Neuromelanin sensitive magnetic resonance imaging; PD: Parkinson's disease; PPMI:Parkinson's
Progression Markers Initiative; PSP: Progressive supranuclear palsy; PSP-RS: Progressive supranuclear palsy-Richardson syndrome; SVM: Support vector machine;
SWEDD: Scans without evidence of dopaminergic deficit; VBM: Voxel based morphometry.

S. Shinde, et al. NeuroImage: Clinical 22 (2019) 101748

2



2.2. Imaging

MR images were acquired on 3T Philips Achieva scanner with a 32-
channel head coil at NIMHANS, Bangalore, India. High resolution 3D
neuromelanin contrast sensitive sequence i.e., the spectral pre-satura-
tion with inversion recovery (SPIR) sequence was acquired using TR/
TE: 26/2.2ms, flip angle: 20°, reconstructed matrix size: 512×512,
field of view: 180×180×50mm, voxel size: 0.9× 0.9×1mm,
number of slices: 50 with an acquisition time 4min 12.9 s. T1, T2, Fluid
attenuation Inversion Recovery (FLAIR) and diffusion weighted images
were acquired to eliminate the possibility of brain lesions. The MR
images were retrieved from the archive and screened for gross cortical
structural abnormalities by an experienced neuroradiologist (author
JS), after which the images were set perpendicular to the fourth ven-
tricle floor with coverage between the posterior commissure and in-
ferior border of the pons.

2.3. Convolutional neural nets with discriminative localization (CNN-DL)

CNNs are a modern adaption of the traditional artificial neural
network architecture where millions of 2D convolutional filter para-
meters are computed from multiple levels of granularity and trans-
formed into the desired output by end-to-end optimization (Krizhevsky
et al., 2012). The CNN can therefore be considered as an automated
feature extraction tool with a classifier in the final stages.
In our case, we employed a boxed region around the brain-stem on

the axial slices of the NMS-MRI as input to the 2D CNN (Fig. 1). The
CNN transforms these input images into an output vector with class
probablities by passing them through a chain of convolutional layers.
This is achieved by allowing the network to learn complex image fea-
tures and by optmizing the weights of these features to facilitate better
classification. The CNN architecture we employed was derived from
ResNet50 design (He et al., 2016), which is a standard CNN archi-
tecture, and has been shown to work with superior performance on
medical image classification tasks such as in tumor classification
(Chang et al., 2018; Korfiatis et al., 2017). ResNets, unlike other CNN
architectures which usually only stack multiple convolutional layers,
consists of short-cut “residual” connections that facilitate effectively a
deeper neural architecture without increasing the computational com-
plexity. Our design (as shown in Fig. 1) consists of 16 residual blocks,
each of which contains 3 convolutional layers and an identity

connection. The convolutional layers contain variable sized kernels that
capture the patterns and features of varying granularity depending
upon the depth of the layer. A max-pooling layer that abstracts the
maximum value and downsamples the image, is applied before the first
block and after 3,4,6 and 3 residual blocks as shown in Fig. 1. The last
convolutional layer acquires the most abstract markers that is given as
input to the global average pooling (GAP) layer which averages across
the output of the convolutional layer for both the classes resulting in 2
representations, one for each class using a softmax activation.
Throughout the CNN architecture, we employ rectified linear unit

(ReLU) activations and with a learning rate of 0.0001 which decays
based on the number of iterations. The weights of each of layers are
updated to train the complete CNN model by minimizing the catego-
rical cross entropy loss function as given in Eq. (1) where yn is target
output probability, yn is the predicted output probability, N is number
of testing samples and J(w) is categorical cross-entropy loss and is
achieved by using the Adam optimizer.

= +
=

J w
N

y log y y log y( ) 1 [ (1 ) (1 )]
n

N

n n n
1

n
(1)

Finally, to reduce the susceptibility to over-fitting, as a standard
practice, data augmentation was performed which increased the dataset
by several folds. The augmentation was achieved via random combi-
nations of image translations, minor shifting as well as horizontal and
vertical flipping to create 10 times the original data. The CNN-DL was
implemented in Python 3.6 using the Keras library with the tensorflow
library at the backend on a NVIDIA-quadroP6000 with 24GB GPU
memory.
To obtain the discriminative activations, we forward propagated the

input image and acquired the weights (w1, w2, w3… wn) at the output
layer for the respective class, as given in Zhou et al. (Zhou et al., 2016).
The feature maps (f1, f2, f3… fn) obtained from the last convolutional
layer were upsampled to match the resolution of the original input
image. To create the class activation map, the weights for the respective
class were then multiplied with the corresponding feature maps and
then added together, as shown in Fig. 1. The resulting map can there-
fore demonstrate the most discerning regions in the image for each
subject.
Finally, to assess any contra-lateral deficits in PD, as have been

shown in earlier studies, for each correctly classified subject the mean
activations were computed separately on the left and right, by dividing

Fig. 1. The figure displays a schematic diagram of the CNN architecture. ResNet50 architecture was employed with 16 blocks (50 layers in total). The class activation
maps (CAMs) were computed using global average pooling as shown in the figure.
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the input image into two parts. Analysis of variance (ANOVA) was
performed between the mean activations of left and right of all the
subjects. The p-value threshold was retained at 0.05.

2.4. Contrast ratio classifier (CR-ML)

To compute the contrast ratio, technique described in Prasad et al.
(Prasad et al., 2018b) was employed. A section of the midbrain at the
midpoint of the mamillary bodies was selected for placement of ROIs.
Signal intensity (SI) was measured by placing 10mm2 circular ROIs over
the lateral part of bilateral SNc, and a normative SI (SIN) was obtained
by placing a ROI anterior to the cerebral aqueduct. Contrast ratios (CRs)
of the SNc were calculated based on the methodology described by
Ohtsuka et al. (Ohtsuka et al., 2013). The following equation was used
for the calculation of the CRs:

=CR SI SIN
SIN (2)

where SI is the value of the SI of either right or left SNc, and SIN is the SI
of the region anterior to the cerebral aqueduct. CR for right and left SNc
was computed separately. The left and right contrast ratios were em-
ployed in a random forest (Breiman, 2001) with XGBoost classification
[https://xgboost.readthedocs.io/en/latest/], which is a gradient
boosting framework, for comparison with our CNN model. The random
forest classifier used 100 trees and the tree construction employed the

‘exact means exact greedy’ algorithm with a learning rate of 0.05 and a
maximum depth of the trees= 6. It was implemented in Python 3.6
using scikit-learn and xgboost libraries. The complete schematic pro-
cedure is shown in the Supplementary Material Fig. 1.

2.5. Radiomics based classifier (RA-ML)

Radiomics involves extraction of a large number of quantitative
measures such as textures, intensity features, grey-level co-occurrences,
grey-level run lengths, statistical measures and energy features (Gillies
et al., 2015). For our analysis, we employed the PyRadiomics (van
Griethuysen et al., 2017) toolbox and computed 1470 number of fea-
tures (details of which are provided in Supplementary Material Table 1)
from the 3D SNc right and left region of interests. Bilateral SNc ROIs
were created by manual segmentation of the NMS-MRI. An expert
neurology PhD scholar (author -SP) who was blinded to the groups,
delineated the right and left SNc on the axial slices and created a 3D
binary mask. The radiomic measures were normalized using min-max
normalization and were used as features in a random forest classifier
(Breiman, 2001) with XGBoost for classification between PD and
healthy controls. The classifier details are described in the earlier sec-
tion. This was performed as a comparison with our proposed CNN
model. Ten top-ranked (most discriminative) radiomic features were
computed using the average information gain for each feature over all
the decision trees (f-score), to facilitate deeper understanding of the

Table 2
Demographic and clinical details of patients with Parkinson's disease, atypical parkinsonian syndromes and healthy controls.

PD (n=45) APS (n= 20) HC (n=35) PD vs HC APS vs HC PD vs APS

Gender (M: F) 32:13 13:07 22:13 0.47 1.00 0.77
Age 58.00 ± 8.70 53.65 ± 7.19 55.00 ± 5.40 0.07 0.43 0.06
Age at onset 51.90 ± 8.64 50.95 ± 7.59 – – – 0.67
Duration of illness⁎ 6.26 ± 4.06 2.80 ± 1.38 – – – 0.0005
UPDRS III (OFF) 36.58 ± 13.66 NA – – – –
H & Y stage 1.70 ± 0.54 – – – – –

APS: Atypical parkinsonian syndromes; F: Female; H & Y: Hoehn and Yahr; HC: Healthy controls; M: Male; NA: Not applicable; UPDRS: Unified Parkinson's disease
rating scale.

⁎ PD vs Atypical parkinsonian syndromes p < .01.

Fig. 2. Receiver operating characteristics for all the three methods employed (a) cross-validation (b) testing.
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patterns of abnormality from the NMS-MRI images in PD. Supplemen-
tary Material Fig. 1 shows the schematic diagram for the procedure
employed.

2.6. Training and testing of the models

The dataset was randomly divided into training and testing while
retaining the PD:HC ratio in both the classes. We used, 25 healthy
controls and 30 PD subjects for training and cross-validating (5-fold
validation) the models (our proposed CNN-DL and the comparative CR-
ML and RA-ML) and the remaining 10 HCs and 15 PD patients (25
subjects) for testing the models. The receiver operation characteristics
(ROC), accuracy, sensitivity and specificity (Powers, 2011) were com-
puted on the cross-validation and test dataset and reported.
A separate CNN based classifier was constructed to discern PD from

APS (MSA and PSP). The dataset was randomly divided into training

and testing while retaining the PD:APS ratio. 30 PD and 14 APS were
used for training and 5 fold cross-validation, while 15 PD and 6 APS
were left out for testing. The receiver operation characteristics (ROC),
accuracy, sensitivity and specificity were computed on the cross-vali-
dation and test dataset and reported. The heat-maps from the CNN were
also computed and reported.

3. Results

Table 2 provides complete demographic and clinical information of
the dataset under consideration. No significant difference was observed
between the ages of PD in comparison to the controls. The mean age at
onset of motor symptoms was 51.90 ± 8.64, with mean disease
duration of 6.26 ± 4.06. The mean Hoehn and Yahr stages were
1.70 ± 0.54, and UPDRS-III (OFF) scores were 36.58 ± 13.66.
Asymmetry in motor symptoms at evaluation was observed in all sub-
jects with PD. Based on the UPDRS-III sub-scores, 60% (n=27) pa-
tients with PD showed right CL and 40% (n=18), showed left CL.
The APS group was composed of 15 patients with MSA and 5 pa-

tients with PSP. The mean age of patients in this group was
53.65 ± 7.19, with mean disease duration of 2.80 ± 1.38. The dura-
tion of illness was significantly different between the PD and APS
groups. With the exception of a single patient with PD, all other subjects
(PD, HC and APS) were right-handed.
Our CNN-DL classifier performed with a cross-validation accuracy of

83.7% (AU-ROC=0.90) and test accuracy of 80% (AU-ROC=0.91),
while the CR-ML performed with a cross-validation accuracy of 52.7%
(AU-ROC=0.47) and a test accuracy of 56.5% (0.54 AU-ROC), while
RA-ML performed with a cross-validation accuracy of 81.1% (AU-
ROC=0.89) and 60.3% test accuracy (0.54 AU-ROC). Fig. 2 shows the
ROC curves for the CNN-DL in comparison with the other two methods.
The testing accuracy, sensitivity and specificity are reported in Table 3.
The top-most radiomics based features included the run length features,
non-uniformity, surface-volume ratio, grey level emphasis as shown in
Fig. 3.

Table 3
Performance of CNNs compared to contrast ratios with machine learning (CR-
ML) and radiomics with machine learning (RA-ML) and performance of CNNs
on PD vs APS.

CR-ML RA-ML CNN-DL CNN-DL(PD-APS)

Cross validation
Accuracy 52.7% 81.8% 83.6% 81.8%
Sensitivity 0.28 0.76 0.80 0.96
Specificity 0.73 0.86 0.88 0.50
AU-ROC 0.469 0.890 0.906 0.718

Testing
Accuracy 56.5% 60.3% 80.0% 85.7%
Sensitivity 0.53 0.69 0.86 1.00
Specificity 0.60 0.50 0.70 0.50
AU-ROC 0.540 0.540 0.913 0.911

AU-ROC: Area under the receiver operating characteristic; APS: Atypical par-
kinsonian syndromes; PD: Parkinson's disease. First 3 columns report PD-HC
classification results.

Fig. 3. Radiomic features in order of their importance as plotted against the corresponding f-scores.
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Fig. 4 demonstrates the class activation maps computed from CNNs
for three patients. It was observed that in majority of the patients, the
activations were more concentrated on the left SNc, which has been
quantified and plotted in Fig. 5. The activations on the left demon-
strated a significant trend as they were greater than the right (p-
value= .09). Similarly, for HCs, the activations on the left were more
concentrated than on the right, however were not significant (p-
value= .35).
The classification model for PD vs. APS performed with a cross-

validation accuracy of 81.8% and a test accuracy of 85.7%. (as shown in
Table 3). Fig. 6 demonstrates the ROC for cross-validation and testing of
the classifier as well as sample heatmaps for 2 subjects.

4. Discussion

This work presented a framework for creating predictive markers of
PD using state-of-art CNNs based on NMS-MRI. We obtained a superior
accuracy in classifying PD from HCs as well as from APS and demon-
strated that our technique was better than contrast ratio-based pre-
dictions as well as predictions based off radiomic features computed
from the SNc region, and therefore, may be utilized to support a PD
diagnosis. Moreover, our CNN based classifier did not require ex-
tracting SNc borders as it employed a larger region of interest while the
class activation maps illustrated the most important regions and with a
significant trend in asymmetry which is in concurrence with the usual
clinical picture of PD.
NMS-MRI has been frequently utilized and has demonstrated po-

tential to differentiate PD from healthy controls and other parkinsonian
and tremor disorders. Studies in NMS-MRI have shown that this se-
quence can be used to measure the concentration of the neuromelanin
in SNc and lower signal intensities have been observed in patients with
PD in comparison to healthy subjects (Ohtsuka et al., 2013; Prasad
et al., 2018b; Sasaki et al., 2006). However, these studies have been
limited to contrast and volume features with group-wise uni-variate
techniques used for analysis. Moreover, these features either require
accurate boundaries of the SNc to be computed or placing manual ROIs
to compute the contrast. We alleviated these setbacks in NMS-MRI

analysis by employing an automated deep learning framework which
once trained can be directly employed on every new patient facilitating
a PD biomarker effortlessly, which may support in treatment planning
and efficacy.
MR based machine learning for PD is not novel and multiple groups

have made an effort in classifying PD (as shown in Table 1). These
studies have utilized a host of techniques that include supervised pre-
dictive models such as support vector machines (SVMs) (Abos et al.,
2017; Amoroso et al., 2018; Cherubini et al., 2014a; Cherubini et al.,
2014b; Huppertz et al., 2016; Rana et al., 2015; Salvatore et al., 2014)
as well as unsupervised models such as self-organizing maps (Peran
et al., 2018; Singh and Samavedham, 2015) on data acquired from
morphological T1 weighted MRI, functional MRI, diffusion tensor
imaging, SPECT, etc. (Adeli et al., 2016; Ariz et al., 2019) and have
reported high but variable accuracies. However, none of these studies
employ NMS-MRI, a powerful imaging technique for PD diagnosis as
described earlier. Furthermore, most of these studies employ millions of
features from single or multiple modalities which include voxel level
features, on a small sample size using SVMs that builds a hyperplane in
the n-feature dimensional space. Even though such models achieve a

Fig. 4. Examples of class Activation Maps of PD patients demonstrating that the SN area is highly activated while classifying PDs from Controls. In the first two
subjects it can be observed that the left SNc is activated while in the third subject left and right SNc both are activated.

Fig. 5. Boxplot demonstrating the asymmetry in activations computed from the
CNNs.
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good classification performance, it could be highly susceptible to over-
fitting (Cherubini et al., 2014a). To account for this, some studies ex-
tract the most effective attributes from voxel-based morphometry
(VBM) analysis and use the mean values from significant clusters as
features (Cherubini et al., 2014b; Huppertz et al., 2016; Peran et al.,
2018). Although this reduces the vulnerability to overfitting, extracting
features off the population analysis may reduce the test accuracy as the
pre-computed features from VBM may not be directly applicable to the
test subjects. Unsupervised techniques such as self-organizing maps
have also been employed on T1 MRIs (Singh and Samavedham, 2015).
Our work is pioneering in terms of employing CNNs to classify PD, as
CNNs can automatically extract relevant information from the images
under consideration making the overall framework more applicable
into a clinical setting. Such ability of CNNs in extracting discriminative
features using local spatial coherence at various resolutions, is attrac-
tive, as it often accounts for better classification performance, espe-
cially on large datasets, when compared to a similar task on empirically
drawn features such as CRs and/or Radiomic features in this case or
VBM based clusters, diffusion measures etc. from earlier studies
(Cherubini et al., 2014b; Huppertz et al., 2016; Peran et al., 2018). We
demonstrate this in Fig. 2 where the AU-ROC of the CNN is superior to
other techniques with manually extracted features. Such superior per-
formance however may come with certain tradeoffs such as inadequate
information about the internal operation and behavior of the CNNs.
Gaining insights into the working of the CNN is highly crucial where the
classes cannot be visually discerned and the classifier could be highly
susceptible to overfitting. This is where our class activations computed
using the GAP layer play a vital role as they not only illustrate the most
discriminative regions but also facilitate deeper understanding of the
CNN operation. Figs. 4 and 5 together demonstrate a trend in activa-
tions that are more concentrated in the left SNc than the right as has
been shown before using manually extracted CRs (Prasad et al., 2018a).
In controls, the left mean activation was higher than the right however
with no trend for significance. This observation of asymmetrical acti-
vation of the SNc is in concurrence with the observations of clinical
asymmetry in PD. In the current cohort 60% of subjects demonstrated
right CL suggestive of a higher extent of dopaminergic neuronal loss
over the left SNc, and the observation of a higher activation, albeit with
a trend for significance is in agreement with this observation. Fur-
thermore, the observation of asymmetric activations even in controls is
similar to previous observations (Prasad et al., 2018a). The mean ac-
tivations in controls were lower than in patients suggesting that our
model could effortlessly identify the regions which need to be highly
weighted in patients with PD in comparison to healthy controls.

To compare our CNNs with other standard techniques we employed
another novel method of extracting multiple radiomic features from the
SNc region of interest. Radiomics, is a state-of-art technique more
commonly employed in tumor classification problems. However, a re-
cent study demonstrated the applicability of texture features in classi-
fying PD using quantitative susceptibility maps (QSM) and R2* maps
(Li et al., 2019). In our case, RA-ML displayed superior cross-validation
accuracy, however could not perform at the same level on the test data
(Table 3). Fig. 3 illustrates the most significant features that partici-
pated in the radiomics classification. These features involved grey level
run length matrices that provide the size of homogenous runs for each
grey level, non-uniformity measures, surface-volume ratios and grey
level dependent matrix features that quantify the dependency of one
voxel to another. These features overall captured the subtle changes in
PD in the SNc that are revealed through NMS-MRI.
Although the NMS-MRI based CNN-DL classifier in the present study

provided good accuracy in differentiating between PD and healthy
controls, the clinical utility of this technique is dependent on testing the
ability of the classifier to differentiate between PD and other parkin-
sonian disorders such as PSP and MSA. Earlier work by Matsuura et al.
(Matsuura et al., 2013) and Ohtsuka et al. (Ohtsuka et al., 2014) have
demonstrated the utility of the NMS-MRI to differentiate between PD,
MSA-P and PSP. On similar lines, we performed a preliminary analysis
on discerning PD from other parkinsonian disorders, using our proposed
CNN-DL model. Our superior classification accuracy to discriminate PD
from atypical parkinsonian disorders provides evidence that our tech-
nique is highly robust exhibiting great potential to be employed in a
clinical setting. The heatmaps illustrated the areas that were highly
discriminative in PD vs APS as shown in Fig. 6.
It is important to note that the regions of interest on the NMS-MRI

that also included the brain stem were drawn manually, as input to the
CNN, however, using deep learning-based techniques the boxed regions
can be created automatically. Secondly, the APS group included mul-
tiple pathologies (MSA and PSP). However, owing to the small sample
size we were unable to evaluate these as separate groups. Finally, the
APS group had a shorter duration of illness in comparison to the PD
group, this is secondary to the faster rate of progression of such pa-
tients, owing to which such patients are evaluated earlier in the course
of illness. Nevertheless, a larger sample size is certainly required to
establish the utility of the method.
In summary, we introduced a novel computer aided PD diagnostic

framework using the neuromelanin signal. Our findings show a superior
accuracy using CNNs as compared to radiomics, while the underlying
activation maps (Fig. 4) confirm the involvement of SNc in the

Fig. 6. Figure showing the (a) ROC curves for PD-APS classifier (cross-validation and testing) (b) sample heatmaps for one APS subject and one PD subject.
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classification. This is commensurate with the idea of atypical neuro-
melanin contrast on the SNc in PDs, in comparison to HCs as well as to
APS, thereby facilitating prediction of the underlying PD pathology.
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