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ABSTRACT

The Brazilian-endemic greenbeack parrotfish, Scarus trispinosus Valenciennes, 1840,
is the largest herbivorous reef fish in the South Atlantic. Following the sharp decline
of large carnivorous reef fishes, parrotfishes (Labridae: Scarinae) were progressively
targeted by commercial fisheries in Brazil, resulting in a global population decline of
50% for S. trispinosus. Most of its remnant population is concentrated in the Abrolhos
Bank, where the present study was conducted. We present novel information on
age, growth and the reproductive cycle of S. trispinosus, based on 814 individuals
obtained from commercial fisheries’ landings and scientific collections, between 2010
and 2013. Sex ratio was biased toward females (1:8), and spawning occurred year-
round with discrete peaks in February-March and June-December. Increment analysis
indicated annual deposition of growth rings in otoliths, which presented 1-22 rings.
The asymptotic length at which growth is zero (Lo,) was estimated from a Bayesian
logistic regression at 85.28 cm, growth rate (K) at 0.14 year_l, and the theoretical
age at zero size (fp) at 0.16. Subregional demographic structuring was detected,
with predominance of slower-growing individuals in shallower inshore reefs and
predominance of faster-growing and older individuals in deeper offshore sites. We
demonstrate that S. trispinosus is highly vulnerable to over-exploitation due to its large
size, long live and slow-growth, and review the management measures proposed since
its Red List assessment in 2012.
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INTRODUCTION

Parrotfishes play key ecological roles on reef ecosystems, including herbivory, corallivory,
bioerosion and sediment transport (Bonaldo, Hoey ¢ Bellwood, 2014; Russ et al., 2015).
The greenbeack parrotfish, Scarus trispinosus Valenciennes, 1840, is the largest herbivorous
reef fish in the tropical and subtropical Southwestern Atlantic (SWA), occurring as a
genetically homogeneous population in the continental shelf from near the Amazon River
mouth southward to the rocky reefs off Santa Catarina (00°50'-28°S) (Moura, Figueiredo ¢
Sazima, 2001; Pinheiro et al., 2018; Bezerra et al., 2018). This Brazilian-endemic parrotfish
is among the most abundant reef fishes in the small and species-poor SWA coralline reefs,
where it may comprise >50% of total fish biomass (Rocha ¢ Rosa, 2001; Francini-Filho ¢
Moura, 2008a; Francini-Filho & Moura, 2008b). Depending on body size, the greenbeack
parrotfish feeds as a scraper or excavator, eating algal turfs and macroalgae (Francini-Filho
et al., 2008).

In the last three decades, catch rates of large carnivorous reef fishes (e.g., snappers/-
Lutjanidae and groupers/Epinephelidae) declined sharply in the SWA (Fredou, Ferreira ¢
Letourneur, 2009; Freitas et al., 2011). Up until the 1980’s parrotfishes were rarely captured
by recreational fishers and were not targeted by commercial fisheries. However, in the
mid 1990’s parrotfish captures intensified in Northern and Northeastern Brazil (Ferreira
et al., 2012; MMA, 2014; Roos et al., 2015), with widespread usage of gillnets, traps and
spears, followed by a remarkable abundance decline of S. trispinosus at all studied locations
(e.g., Francini-Filho & Moura, 2008a; Francini-Filho & Moura, 2008b; Bender et al., 2014;
Pereira et al., 2016). Its population is estimated to have declined by >50% over the past
three decades, and S. trispinosus is currently considered one of the world’s most endangered
parrotfishes (Comeros-Raynal et al., 2012).

In addition to the weak governance structures of Brazil and most other developing
countries (Pomeroy & Andrew, 2011), management of large tropical reef fishes is
complicated due to their gregarious behavior and spawning aggregations, longevity,
slow-growth, and late-maturation (Choat, Axe ¢» Lou, 1996; Taylor ¢ Choat, 20145 Taylor
et al., 2018). Despite such challenges, biological data may be used to implement simple
management measures (e.g., size limits, seasonal closures), and may also contribute
to determine productivity and resilience to exploitation (Wooton & Smith, 2014;
Aschenbrenner et al., 2017; Hoffmann et al., 2017).

Here we provide novel information on age, growth and reproductive parameters
of S. trispinosus and propose that slow-growth and longevity are major drivers of its
vulnerability to over-exploitation. We determined the time and periodicity of rings’
formation in otoliths and investigated growth and size structure from catches originating
at heavily fished coastal reefs and less impacted deeper offshore reefs within the Abrolhos
Bank, the region where most of the remnant population of the greenbeack is concentrated
(Ferreira et al., 2012). We also provide suggestions to facilitate future monitoring of age
structure and to improve fisheries management based on simple indicators than can be
easily acquired, understood and incorporated by stakeholders (Froese, 2004; Busilacchi et
al., 2012; Aschenbrenner et al., 2017).
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Figure 1 Map of the Abrolhos Bank region, Brazil. The two benthic megahabitats (reefs and rhodolith
beds) and marine protected areas (MPAs) where Scarus trispinosus occurs are depicted, as well as the mu-
nicipalities in which samples were obtained.

Full-size Gal DOI: 10.7717/peerj.7459/fig-1

MATERIALS AND METHODS

Study area

The Abrolhos Bank (16°40'-19°40'S, 39°10'-37°20'W) is a 46,000 km? enlargement of
the eastern Brazilian shelf (Fig. 1) with depths rarely exceeding 70 m (Mouwura et al., 2013).
The region encompasses South Atlantic’s largest reefs (20% of the area) and rhodolith
beds (~40%), the two benthic megahabitats where parrotfishes are common. The region
is under the synergistic effects of climatic and local anthropogenic stressors (Bruce et al.,
2012; Ribeiro et al., 2018). Abrolhos is Brazil’s main reef fisheries ground (Freitas et al.,
2014) and bears the country’s first no-take National Marine Park (910 km?, declared in
1983) and two community-based Extractive Reserves (ERs), Cassurubé (1,010 km?, 2009)
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and Corumbau (815 km?, 2000). Reef fisheries are predominantly artisanal (Freitas et al.,
20115 Freitas et al., 2014), and the main landings occur in the cities of Porto Seguro, Prado,
Alcobaga, Caravelas and Nova Vigosa (Fig. 1). While the fleet that lands in Porto Seguro,
Alcobaga and Prado largely explore offshore deeper reefs and rhodolith beds, the fleet that
lands in Caravelas and Nova Vi¢osa exploit mostly coastal reefs (1-20 m depth) (Freitas
et al., 2018; Moura et al., 2011; Moura et al., 2013; Previero ¢ Gasalla, 2018; Teixeira et al.,
2017).

Sampling and processing

Specimens were obtained from weekly random sampling at Alcobaga (offshore reef
fisheries) and Caravelas (coastal reef fisheries) (Fig. 1), between October 2010 and
September 2013. Fishes were captured with gillnets (coastal reefs) and spears (coastal and
offshore reefs), and were frequently eviscerated before landing/sampling. Size-distributions
(n=3,106 individuals) were recorded using a randomly selected subsample encompassing
>50% of the specimens at each landing event. For samples taken after evisceration (n = 369),
TW was obtained from a linear regression between total length (TL) and total weight (TW).
Individuals in the smaller size classes (13.5-30.0 cm TL, n = 17) were collected in Timbebas
Reef (Fig. 1) in December 2012.

Gonads were fixed in 10% formalin for 24 h and stored in 70% ethanol. Gonad
weight (GW) was measured to the nearest 0.01 g before dehydration in increasing alcohol
concentration series, clearing in xylene, and paraffin embedding. Histological sections (4—6
pm) were stained in Harris haematoxylin and eosin. Classification of gonadal development
follows Brown-Peterson et al. (2011) as: immature (never spawned), developing (developing
ovaries/testis, not ready to spawn), spawning capable (developmentally able to spawn),
regressing (cessation of spawning) and regenerating. The latter four stages were considered
sexually mature, or adults.

Due to the absence of immature males, the TL at which 50% of individuals were
mature (Lsg) and the minimum size at maturity (L,;,) were estimated only for females,
using Bayesian methods (King, 2013; Kinas ¢» Andrade, 2010). For Lspestimates we used
the logistic regression model PMF =1 (1 +exp(a+ B *L)) — 1, where PMF is the
proportion of mature females in length class L, a is a parameter, and Lsg = —a* 8 — 1. The
model was implemented using uninformative priors, using the Automatic Differentiation
Model Builder software (Fournier et al., 2012). Samples from the posterior distributions
of parameters were obtained with a Markov Chain Monte Carlo algorithm (Gelman et al.,
2004), using a 10 million chain and samples saved at every 10,000 interactions.

Reproductive cycles of sexually mature females were assessed by recording monthly
changes in the gonadosomatic index (GSI), calculated as GSI = (GW /(TW —GW)) % 100,
where GW corresponds to gonad weight. Gonadal development and GSI were analyzed
by grouping samples from the four years of sampling in 12 months. Normality and
homocedasticity of TL and GSI data were verified with Shapiro-Wilk and Barlett tests, and
a t-test was used to compare TL between sexes. Sex ratios for each size class were compared
with two-tailed Chi-square tests, and mean TL between sexes were compared with the
Mann—Whitney U-test (Zar, 1999).
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Figure 2 Length frequencies of S. trispinosus individuals captured in the Abrolhos Bank, Brazil (2010—
2013). (A) Pooled samples showing the fraction of individuals whose otoliths were removed and pro-
cessed. (B) Samples discriminated by sex. Significance level of 5% (x2 > 3,841) Chi® two tailed; * ratio
with zero.

Full-size &l DOL: 10.7717/peerj.7459/fig-2

A subsample of 401 individuals (13.5-86.0 cm TL) (Fig. 2A) with similar numbers of
individuals at each five cm size class was selected for assessing age and growth parameters
(Lai et al., 1996). Right side sagittae otoliths were removed, washed and dried, weighted to
the nearest 0.1 g and embedded in polyester resin UN 1866 (Secor, Dean ¢ Laban, 1991;
Panfili, Troadec & Wright, 2002). Sectioning (0.40 mm) was performed with a Buehler-
Isomet metallographic saw. Cuts were performed transversely through the core, from the
inner to the outer face of the otolith, and were subsequently fixed on glass slides (Secor, Dean
¢ Laban, 1991). Sections were photographed with a Digital Microscope Camera OPT5000
and images were processed following Campana (2001). The number and distance between
rings were obtained along an axis from the core to the dorsal region of the otolith (light
bands considered age rings), with two independent readings in random order and without
prior knowledge about the specimen (Campana, 2001).

Accuracy of readings was assessed by calculating the average percentage error (APE),
following Beamish ¢ Fournier (1981) and Campana (2001). Trends between readers were
determined by calculating the probability of disagreement (PD) and average magnitude of
inter-reader discrepancies (IRD) (Marriott & Mapstone, 2006). A marginal ratio increase
(MRI) analysis was performed to assess ring formation periodicity, using individuals
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<50.0 cm TL (last rings of older animals are closely spaced and difficult to read). The
MRI analysis assumes no significant differences in otolith growth between adjacent rings,
and consists in the computation of the ratio between the growth after the formation of
the last ring, and between the second to the last ring (Campana, 20015 Williams, Davies &
Mapstone, 2005). Differences in marginal increases between two subsequent seasons were
assessed with a t-test (Campana, 2001). Growth was modeled with the von Bertalanffy
growth function (VBGF) fitted by minimizing the sum of squares using the Gauss-Newton
algorithm (Beverton ¢ Holt, 1957), with the length L of an individual j with age t (L; ;)
corresponding to Lt +¢; j, where &; ; is a random variable that follows a normal distribution
with mean equaling zero and variance o'2. The VBGF parameters were estimated for the
first and second readings, for the average of the readings, for males and females pooled, and
for each sex separately. Curves for both sexes were compared using Kimura’s likelihood
ratio test (Haddon, 2001). Differences in growth of fish from different cross shelf strata
(offshore and inshore) were investigated using back-calculated TL and ages obtained in the
second reading, using the Allometric Biological Intercept (ABI) model (Vigliola & Meekan,
2009). This model assumes proportional growth rates of otolith and fish, and is calculated
using otolith radius and the distance between the core and each age ring. The relationship
between otolith weight and age was calculated and compared with those of other scarins
from which growth ring periodicity was validated by tetracycline labeling (Choat, Axe ¢
Lou, 1996; Taylor ¢ Choat, 2014).

The minimum age at which females mature (A,;;,) was recorded, and the age at
which 50% of females were mature (Asp) was estimated by fitting the logistic regression
model P =100/(1+ exp —r* (A — Asp)), where P is the percentage of mature fish on
age-class A and r is the maturity width (King, 2013). To predict the probability that an
individual is mature based on its length, observations (0 = immature, 1 = mature) and
TL were fitted to a binary logistic model, with further construction of maturity ogives
(maturity-at-length probability plots). Generation time (GT') was estimated with the
equation GT = Aso+ (Z x (Longevity — Asg)), where Z is the total mortality rate and Asy is
the mean age at which 50% of the population is mature. Calculations were performed using
the Fisheries Stock Assessment (FSA) package (Ogle, Wheeler ¢ Dinno, 2018) in R 3.0.1 (R
Development Core Team, 2008). Natural mortality (M) was estimated for each cross-shelf
strata from equation In(M) = a+ bIn(t,,4y ), where t,,,x is the maximum TL in the sample
(Hoenig, 1983). Fishing mortality (F) was obtained from the difference between total
mortality (Z) and M. For comparative purposes, M, Z and survival (S) were also calculated
following Chapman ¢ Robson (1960), Alverson ¢ Carney (1975) and Pauly (1980). The
status of the studied stock was assessed with three simple indicators (Froese, 2004), all of
them based on length distribution and/or optimum length (L, ), as follows: (i) percentage
of mature specimens (>Ls) in the catch; (ii) percentage of fish caught at £10% of the
optimum length (L), obtained empirically with the equation Lyy; =3 % Loo/3+M /k
(Beverton, 1992); (iii) percentage of large fish in the catch (>1.1 Ly).

Collections were made under SISBIO permit #45738-2.
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Figure 3 Transverse thin sections of S. trispinosus ovaries. (A) Spawning capable ovary with oocytes
under different development stages: PG (primary growth), CA (cortical alveolar), Vtgl (primary vitelloge-
nesis), Vtg2 (secondary vitellogenesis), GVM (germinal vesicle migration), and YC & GVBD (yolk coales-
cence and germinal vesicle breakdown). (B) Regenerating ovary. (C) Detail of a hydrated oocyte (H) and a
Postovulatory Follicle (POF).

Full-size &l DOI: 10.7717/peerj.7459/fig-3

RESULTS
Reproductive biology

Most gonads (89%) were ovariform (n = 405), while the remaining (11%) were testiform
(n=50). This overall 1:8 (male:female) sex ratio became biased toward males in the largest
size classes (66.0-86.0 cm TL) (2, p > 0.05) (Fig. 2B). Total Length (TL) and Weight (TW)
ranged between 33.0-86.0 cm and 1,000-11,111 g for males, and 26—75 cm and 118-7,355
g for females. Males’ mean TL (69.0 £ 9 cm) and TW (5,432 £ 1,708 g) were significantly
higher than those of females (TL 47.0 & 10 cm; TW 2,068 & 1,506 g) (t-test, p < 0.05).
Gonads were bilobed and caudally united with the ova/sperm duct. Oocytes presented a
conspicuous elliptical shape in all stages. Groups of oocytes under different developmental
stages were detected in all adult females, indicating asynchronous oogenesis. Immature
females had small ovaries with ovigerous lamellae filled with primary growth oocytes and
narrow lumens. Developing females had bigger and more vascularized ovaries with different
stages of early development oocytes (cortical alveolar, primary and secondary vitellogenic)
(Fig. 3A). Spawning capable females had large and well-vascularized ovaries with oocytes
ranging from early to advanced developmental stages (tertiary vitellogenic and hydrated
oocytes, yolk coalescence, germinal vesicle breakdown, postovulatory follicles) (Fig. 3C).
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Figure 4 Transverse thin sections of S. trispinosus testicles. (A) Spawning capable with central lumen
(CL) full of spermatozoa (Sz) and lumen of lobules (L); (B) developing phase with few Sz and several
yellow-brown bodies interspersed in the lamellas; (C) developing phase with Sz, Spermatogonia (Sg), ser-
toil cels (Sc) and red blood cells (RBC).

Full-size &al DOI: 10.7717/peerj.7459/fig-4

Regenerating females had small gonads with empty lumens and spaces between oocytes
in lamellas, presenting only primary vittelogenic and cortical alveolar oocytes (Fig. 3B).
Several spawning capable and regenerating individuals presented granular yellow-brown
bodies among oocytes, with similar shapes and sizes. Spawning capable males had large and
firm testes with lobular lumens and sperm ducts full of spermatozoa (Fig. 4A). Regenerating
males had threadlike and reduced testes with few spermatogonia and vestiges of sperm in
the central duct, which lacked lobules. Testes had seminiferous tubules arranged in lamellas
and a well evident central sperm duct (Fig. 4). Developing males presented spermatogonias
and few spermatozoa in the lumen of seminiferous tubules. Some testes also presented
yellow-brown bodies interspersed in the lamellas (Figs. 4B and 4C).

The L for females was 51.0 cm TL and the estimated L5y was 38.5 cm TL (mean of the
posterior distribution), with the 90% CI between 37.4-39. one cm TL (Fig. 5). Spawning
capable males and females were present year-round, and variation in GSI (females) indicates
two reproductive peaks: February-March, and June-September (Fig. 6).
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Figure 6 Gonadosomatic Index (GSI) for female S. trispinosus captured in the Abrolhos Bank, Brazil
(2010-2013). Outliers are shown as circles, means as squares, and bars represent standard deviation
(0.95%).

Full-size &l DOL: 10.7717/peerj.7459/fig-6

Age and growth

The first otoliths’ readings recorded 2—-22 rings, and the second 1-22 rings. Most otoliths
(81.2%) had 4-9 rings. Specimens >70 cm TL generally had >8 rings (Supplemental
Information 1). The APE between readings was 8.33% (CV = 11.78%), with higher PD in
older classes. The IRD ranged between 0.5-1 for most ages, reaching 3 for readings of older
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individuals. The MRI analysis indicated growth marks formed annually between November-
December, with significant differences in marginal increment between November-January
(t test for independent samples = 5.39, p =0.03) (Supplemental Information 2).

The adjustment of growth parameters to observed data is presented in Fig. 7. Growth
parameters (sexes pooled) were 85.28 cm (Lo ), 0.14 years‘l (K) and 0.16 years (t0)
(Tables 1 and 2). Parameters estimated for each sex and area (inshore/offshore) showed
significant lower Lo, and K for females, and also for specimens from inshore reefs (Tables 1
and 2, Fig. 7).

Growth was remarkably fast in the initial 20% of the life-span, when 50% of L., was
achieved. Retro-calculated ages of specimens from inshore and offshore reefs/rhodolith
beds evidenced faster-growing and older individuals in the latter (Fig. 8). Only individuals
<9 years were captured in inshore reefs, while most individuals with 3-22 years came from
offshore reefs/rhodolith beds (Fig. 8). The relationship between otolith weight and age was
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Table 1 Parameters of von Bertalanffy growth (VBG) estimates for the Scarus trispinosus specimens sampled in the Abrolhos Bank, Brazil (sec-
ond otoliths’ readings). Each line indicates the growth parameters for each sex and cross-shelf strata (inshore and offshore).

Sex/area Lo, (cm) S.E. K (year™!) S.E. ty (year) S.E. S.D. of residuals Total mortality (Z)
Grouped sexes 85.28 4.59 0.14 0.02 0.16 0.40 10.30

Male 80.10 4.59 0.25 0.09 0.54 1.21 9.65

Female 77.46 8.05 0.17 0.05 0.40 0.68 9.57

Inshore reefs 42.48 2.05 0.44 0.10 0.56 0.35 5.97 0.76

Offshore reefs 85.75 7.10 0.11 0.03 —2.62 1.70 8.96 0.25

Table 2 Kimura test by sex, area and grouped sexes for second otolith’s readings of Scarus trispinosus
from the Abrolhos Bank, Brazil. Lines describe the alternative hypothesis of differential growth among
sites and sexes.

Males and Females

Tests Hypothesis Chisq daf P

1 Hovs H1 Linfl = Linf2 3.31 1 0.069
2 Ho vs H2 K1 =K2 0.05 1 0.823
3 Ho vs H3 t01 = t02 0.54 1 0.462
4 Ho vs H4 Linfl = Linf2, K1 = K2, t01 = t02 15.84 3 0.001
Tests Hypothesis Chisq df P

1 Ho vs H1 Linfl = Linf2 3.98 1 0.046
2 Ho vs H2 K1 =K2 1.81 1 0.179
3 Hovs H3 t01 = t02 3.11 1 0.078
4 Ho vs H4 Linfl = Linf2, K1 = K2, t01 = t02 44.93 3 0.000

linear and similar to those of other parrotfishes for which annual ring formation has been
validated (Supplemental Information 3).

For pooled samples (males and females, inshore and offshore), A5y and Ajgowere
estimated at 4.45 and 11 years (95% CI), respectively (Fig. 9). Total mortality (Z) ranged
between 0.87-0.92, natural mortality (M) between 0.17-0.35 (22% of Z), survival (S)
between 0.40-0.42, and fishing mortality (F) was estimated at 0.68 (78% of Z, or 3.5 times
larger than M). Estimated generation time was 20.6 years.

Juvenile, adult, L,y; and large fish (>1.1 L,;) specimens corresponded to 10.6, 89.4,
28.4 and 7.0% of all landings (inshore and offshore), respectively (Fig. 10). Samples
obtained by spearfishing in offshore reefs included 1.1% of juveniles and 98.9% of adults
(n=2,458). Large fish (>1.1 L,p;) and L,y specimens captured with spearfishing in offshore
reefs and rhodolith beds represented 8.9 and 35.8% of adults, respectively. In samples
obtained by spearfishing in inshore reefs, juveniles corresponded to 41.6%, while adults
represented 58.4% (n =485). Large fish (>1.1 Lyy;) were absent from inshore reefs, and
Lops individuals represented only 1.6% of the landings. In gillnet fisheries, performed only
inshore, juveniles and adults corresponded to 61.3 and 38.7% of the landings, respectively
(n=163). Specimens >L,,; were absent.
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DISCUSSION

The histo-morphological aspect of testicles, presence of yellow-brown bodies in Developing
testicles, sex ratio strongly biased toward females, and only males comprising the largest
size classes indicate that S. trispinosus is a protogynous hermaphrodite. We did not record
external sexual dimorphism enabling discrimination of IP and TP individuals, but the
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presence of small and potentially primary males (<Lsg) indicates that S. trispinosus
may be diandric (Fig. 2B), a condition that is often associated with the presence of
territorial TP males that access females by interference (Warner, 1975; Robertson ¢ Warner,
1978; Robertson, Reinboth & Bruce, 1982; Streelman et al., 2002). However, territoriality in
S. trispinosus seems to be weaker, or at least less frequent, than that displayed by other
diandric labrids (Buckman ¢ Ogden, 1973; Van Rooij, Kroon & Videler, 1996; Mumby ¢
Wabnitz, 2002). The overall sex ratio of S. trispinosus, biased toward females (1:8), is typical
of other protogynous hermaphrodite reef fishes, either monandric or diandric (HCFRU,
2008; Ebisawa et al., 2016), but protogyny needs confirmation (Sadovy-de Mitcheson &
Liu, 2008). Similarly to its two closely related species, S. guacamaia and S. coelestinus,
color pattern of juvenile S. trispinosus resembles that of adults, except for the presence of
inconspicuous whitish stripes and a yellowish area on nape in small juveniles (<5.0 cm
TL) (Fig. 11). Together with the consistent co-occurrence of different reproductive stages,
the temporal variation in the GSI indicates that the reproduction of S. trispinosus occurs
year-round, with increased activity in February-March and August-September (Fig. 6).
This pattern agrees with the reproductive seasonality of most parrotfishes, with increased
spring-summer activity (HCFRU, 2008; Afonso, Morato ¢ Santos, 2008; Ebisawa et al.,
2016). When compared to other large roving herbivorous reef fishes, such as surgeonfishes
(Acanthuridae), which reach >40 years, parrotfishes are shorter-lived, with life spans
between 5-30 years (Choat, Axe ¢ Lou, 1996; Taylor & Choat, 2014; Taylor et al., 2018).
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Figure 11 Color pattern of Scarus trispinosus. (A) Juvenile specimen showing yellow area on nape. (B)
Adult individual. Both images from the Abrolhos Bank reefs, Brazil. Photo by Ronaldo B. Francini-Filho.
Full-size & DOL: 10.7717/peerj.7459/fig-11

Scarus trispinosus is not only one of the world’s largest parrotfishes, but is also among the
most longevous, reaching >20 years) (Choat et al., 2006; Taylor et al., 2018).

Otolith banding can be hard to detect in tropical fishes (Fowler et al., 1995; Green et
al., 2009), but there is no evidence for increment formation that is not annual among
parrotfishes (Choat, Axe & Lou, 1996; Choat ¢ Robertson, 2002; Taylor & Choat, 2014).
Here, we used evidence from marginal increments along the year to show that S. trispinosus’
bands form annually between November and December. This timing coincides with its
main reproductive peak (Fig. 6), when energetic trade-offs between growth and gamete
production are expected to be stronger (Sadovy, 1996; Wooton & Smith, 2014). The average
percentage error (APE) between otolith readings (8.33%, CV = 11.78%) remained within
the intermediate degree of accuracy (Campana, 2001) and the magnitude of inter-reader
discrepancies (IRD) (0.5-1.5 for most ages) was also relatively low, reaching only 3
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for individuals >20 years. Akin to other parrotfishes, S. trispinous presented a linear
relationship between otolith weight and age, which was less variable than the range of sizes
at age (Supplemental Information 3).

Our VBGF presented a good fit (Fig. 7), but TL variation within some age classes
(e.g., 5-9 years) was high, tending to stabilize around 70 cm from 9-10 years onwards. For
instance, the older individual (22 years) attained 77 cm TL, while the two largest individuals
(86 cm TL) had intermediate ages (10 and 12 years). This pattern is frequent among fishes
(e.g., Sainsbury, 1980; Pauly, 1990), and can be related to either spatial differences in
growth rates or to the presence of multiple cohorts. Co-occurrence of different cohorts is
expected in S. trispinosus, as it spawns year-round, and large sized individuals may perform
regional level movements from deeper to shallower areas (Francini-Filho ¢ Moura, 2008a).
Spatial variation in growth and other demographic patterns among parrotfishes has been
associated to sex, fishing effort and resource quality/availability (Gust, Choat ¢ Ackerman,
2002; Taylor & Choat, 2014; Lessa et al., 2016). Across the Abrolhos Bank, there is high
cross-shelf variability in environmental conditions and fishing effort (Bruce et al., 2012;
Freitas et al., 2011; Freitas et al., 2014; Moura et al., 2011; Moura et al., 2013; Ribeiro et al.,
2018), coinciding with the sharp demographic partition between our samples from coastal
(slower-growth and ages <9 years) and offshore reefs (faster growth and ages between 3-22
years) (see Fig. 8 and Table 1).

Juvenile S. trispinosus are absent from estuaries (Moura et al., 2011; Giglio ¢ Freitas,
2013), but occur from coastal reefs and nearshore tidepools to offshore reefs and rhodolith
beds (>20 m depth). Conversely, its sister species S. guacamaia is frequent (as juveniles) on
mangroves and estuaries, and the closely related S. coelestinus (5-75 m depth range) is more
abundant along inshore reef flats than in deeper areas (Mumby et al., 2004; Dorenbosch
et al., 2006). Regional-scale movements of S. trispinosus seem to be performed only by
adults (Francini-Filho & Moura, 2008b), and may be driven by density-depend and/or
reproductive processes. The demographic structuring recorded herein (see Fig. 8 and
Table 1) may be associated to differential food quality in inshore and offshore reefs, as well
as in rhodolith beds. Scarus trispinosus feeds preferably on turf algae and crustose coralline
algae (CCA) (Francini-Filho et al., 2010), but inshore reefs and rhodolith beds are largely
covered by a frondose macroalgae canopy, especially during summer (Amado-Filho et al.,
2012; Brasileiro et al., 2016). In the late winter, macroalgae are partially washed from these
habitats, which may become more suitable for feeding on turf and CCA, and therefore
elicit feeding and reproductive movements during spring and early summer.

Distance offshore is a good overall predictor of fishing effort (Teixeira et al., 2017),
and the Abrolhos’ coastal reefs are indeed subjected to longer-term and heavier fishing
effort than offshore reefs (Previero ¢ Gasalla, 2018). The region’s fisheries are among
the oldest export-oriented economic activities in Brazil, with salted groupers being the
most important product of the Porto Seguro Province in the 16th Century (Bueno,
1999). However, up until recently reef fisheries have been concentrated in carnivores
captured with hook-and-line or longlines in nearshore reefs, which are easily located for
being visible from the sea surface. Herbivorous fish captures followed the introduction
of snorkeling and spearfishing by tourists in the late 1980’s (Ferreira ¢» Gongalves, 1999),
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Table 3 Data-poor indicators (Froese, 2004) for the different area and fisheries for Scarus trispinosus in the Abrolhos Bank, Brazil.

Indicator Pooled Coastal reefs Coastal reefs Offshore
samples spearfishing gillnet reefs

I = percentage of mature specimens (> Ls,) in the catch 10.6% 41.6% 61.3% 1.1%

II - percentage of fish caught at £10% of the optimum length (L) 28.4% 1.6% 0% 35.8%

IIT = percentage of large fish in the catch (> 1.1 L) 7.0% 0% 0% 8.9%

and offshore reef fisheries are associated with the popularization of GPS and illegal usage
of SCUBA and diving hookahs from the late 1990’s on. Indeed, the deeper non-emerging
reefs and rhodolith beds of Abrolhos, which represent >80% of the region’s reef fishing
grounds, were not mapped until recently (Moura et al., 2013). Therefore, the cross-shelf
demographic partition detected herein seems to be related to both fishing effort/gear and
habitat quality/adult’s movements. The Alcobaga landings (larger and faster-growing fishes)
came largely from spearfishing in offshore reefs, while the Caravelas landings (smaller and
slower-growing fishes) came from gillnetting and spearfishing in coastal reefs. The “Rosa
Lee phenomenon” caused by fishing, which first selects the largest individuals (Lee, 1920),
may also account for the slower growth of older individuals, which do not correspond to
the largest individuals in our sample (Ricker, 1975; Sinclair, Swain ¢ Hanson, 2002).

For Perciformes, the fishing mortality rate (F) equivalent to the maximum sustainable
yield (FMSY) is assumed to be 0.922 times the natural mortality rate (M) (F/FMSY ratios
>1 indicate overfishing (Caddy ¢ Mahon, 1995)). In the studied population, overfishing
is clear, once F (0.68, or 78% of Z) was 3.5 times the M rate (0.17-0.35, or 22% of
Z). A significant portion of captures bellow Lsy, Asp and Ao (38.5 cm TL, 4.5 and 11y,
respectively) (see Fig. 10, Table 3) comprises additional overfishing evidence (Froese, 2004),
and may be especially relevant due to the long generation time estimated for S. trispinosus
(20.6 years). The overfished status is more acute in coastal reefs, as juveniles represent 61.3
(gillnet) and 41.6% (spearfishing) of the landings in Caravelas, which also include very
few Lopt and Large fish (>1.1 L,p;) (Table 3). When catches indeed represent the age and
size structure of the stock, a healthy age structure shall include 30-40% of such large fish
(dubbed “mega-spawners”), in order to increase stock resilience against random events and
fishing pressure (Froese, 2004; Johnson et al., 2013). Despite the more favorable indicators
from offshore reefs, the Abrolhos’ parrotfish fisheries require immediate attention from
managers and fishers.

Following the Red List assessment of S. trispinosus as an Endangered species (Ferreira
et al., 2012), which was based on population decline (IUCN criterion A2d; Rosser ¢
Mainka, 2002), a National fishing ban for all Endangered and Critically Endangered species
was declared in 2014 by an Executive Order (Portaria 445/14) from the Ministry of the
Environment (MMA, 2014). The National-level ban was not suggest by the scientists
that assessed S. trispinosus status and was suspended in 2015, after a legal charge by the
fishing industry backed up by the Fisheries and Aquaculture Ministry (SEAP). The Red List
provides a relatively cheap and transparent framework for assessing concerning declines
of exploited species, and generally agrees with fisheries metrics (Davies ¢ Baum, 2012).
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However, complete fishing bans may comprise inappropriate management responses (Rice
¢ Legace, 2007). In 2018, MMA and SEAP settled the dispute between ministries and
issued a Joint Executive Order (Portaria Interministerial 59-B/2018) with the rules and
conditions for S. trispinosus captures. Currently, it can only be captured within the size
slot of 39.0-63.0 cm TL, with spears, during the day and without air sourcing to divers.
In addition, S. trispinosus may only be fished inside implemented multiple-use Marine
Protected Areas or other types of legally established Fishery Management Areas (e.g.,
Acordos de Pesca). Fishes may be landed eviscerated but never in fillets, in order to allow
control and monitoring. Net usage and recreational fisheries are prohibited. Compliance
levels have not yet been assessed.

Management based on slot sizes may be difficult to implement in artisanal fisheries
(Busilacchi et al., 2012; Freitas et al., 2014; Aschenbrenner et al., 2017), akin to most other
rules established by the latest Executive Order. For instance, artisanal fisherfolks from
Caravelas (Cassurubé Extractive Reserve) and other small localities with formal co-
management regimes in the Abrolhos region (e.g., Corumbau Extractive Reserve) depend
on nearshore catches below Lsg (see Roos ef al., 2016 for a similar situation in Northern
Brazil). Despite such challenges and the critical state of S. trispinosus, it is important to
recognize that complete fishing bans that depend on strict enforcement in remote and
poor localities are not effective. Relatively simple fishing rules based on (often limited/data
poor) scientific evidence and co-management were finally legally established for artisanal
fisheries in Brazil, but their effectiveness remains to be verified by long-term monitoring.
Control over commercialization and better-informed consumption are major remaining
gaps, as the most valuable and often Endangered reef fishes are largely sold in larger
centers or exported (Freitas et al., 2011). In addition, we remark that the novel rules add
to the burden that is already being carried by Brazilian marine protected areas (MPAs),
which are historically poorly planned and managed (e.g., Francini-Filho ¢ Moura, 2008a;
Francini-Filho & Moura, 2008b; Moura et al., 2013). Therefore, if long-term funding and
co-management mechanisms and incentives are not introduced, fisheries management in
Brazilian MPAs will not only be doomed, but may also compromise their core objectives
centered on biodiversity conservation.

CONCLUSION

The Brazilian-endemic and Endangered S. trispinosus was identified as the second largest
(86.0 cm TL) and most longevous parrotfish in the Atlantic (22 years). Protogynous
hermaphroditism is suggested. The species spawns year-round in South Atlantic’s largest
reef complex, with reproductive peaks in February-March and August-September. The
well-evident demographic partition recorded between coastal (slow-growth, ages <9 years)
and offshore reefs (fast growth, ages 3—22 y) is possibly related to regional level movements,
fishing effort and resource quality and availability. Due to its longevity and slow-growth,
S. trispinosus is highly vulnerable to over-exploitation. Its contentious management history
and several measures that were recently implemented (2018) are presented and discussed.
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