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Abstract: The loads acting on a workpiece during machining processes determine the modification of
the surface of the final workpiece and, thus, its functional properties. In this work, a method that uses
thermocouples to measure the temperature in precision fly-cutting machining with high spatial and
temporal resolution is presented. Experiments were conducted for various materials and machining
parameters. We compare experimental measurement data with results from modern and advanced
machining process simulation and find a good match between experimental and simulation results.
Therefore, the simulation is validated by experimental data and can be used to calculate realistic
internal loads of machining processes.

Keywords: temperature measurement; thermocouple; precision machining; fly-cutting; machining
simulation; Johnson Cook model

1. Introduction

High-precision milling and cutting have been long established in industrial produc-
tion, and a lot of research has been conducted on these processes as well. The quality of
machined parts has been improved over a long period of time regarding quantities such
as dimensional accuracy or surface roughness. However, the exact impact of machining
processes on the surface properties of the machined parts is often uncertain before ma-
chining and subsequently adjusting the process parameters. The state of the surface and
subsurface layer after machining is referred to as surface integrity [1]. It is of great interest
to understand and describe material modification mechanisms due to machining in order to
be able to predict surface properties beforehand. To understand the material modification,
the local process load on the machined part has to be determined. The interdisciplinary
Transregional Collaborative Research Center (SFB TRR) 136 “Process Signatures” strives
to investigate various machining processes and to analyze the process loads and mate-
rial modification mechanisms that mainly determine the surface integrity of machined
parts [2–4]. To accommodate for the solution of the inverse problem and prediction of
surface properties, the temperature and the local and temporal temperature gradient were
identified as a local material load. This investigation aims to validate the simulation and
the material model generated in the SFB TRR with a highly local temperature measurement
as near to the machining zone as possible. The generated heat of the comparably small
process is expected to only generate high temperatures locally, as seen in [5].

Davies et al. provide a detailed overview on various methods for temperature mea-
surement in machining processes [6]. Nowadays, temperature measurement is generally
performed by thermographic imaging or by commercially available thermocouples. Ther-
mography is mostly suitable for the measurement of temperature on surfaces [7] but can
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also be used to measure temperature in subsurface areas [8]. Thermocouples can either be
used to monitor the temperature of the workpiece [9] or the tool [10].

Precision cutting is a finishing process, which gives a workpiece its final shape and
surface properties. The thermal load in precision cutting is low and highly dynamic, making
it challenging to measure. Commercially available thermocouples usually have a time
constant that is higher than the time between single cuts. High-resolution thermographic
imaging is not fast enough to measure the dynamic of the temperature propagation as
well. Thus, an approach with directly deposited thermocouples on the surface of the
workpiece with minimum time constant due to thin film electrical insulation was realized.
Previous experiments have shown the suitability of this approach for high-speed, high-
resolution temperature measurement [11]. In those experiments, the thermocouple was
formed from a screen-printed silver electrode and the workpiece. However, the sensitivity
of the thermocouple was uncertain, and the use of the workpiece as a second electrode
led to severe noise during the crucial contact of the machining tool and the workpiece.
Thus, in this work, we choose to deposit a fully insulated two-electrode thermocouple from
pure metals.

2. Materials and Methods
2.1. Methods for Temperature Measurement

Temperature measurement can either be implemented by resistive or thermo-electric
sensing [12]. Resistive temperature measurement is based on the dependency of electrical
resistivity on temperature. Common resistive temperature sensors, such as Pt100 or Ni1000,
are commercially available and well established. However, resistive sensors will always
be sensitive to deformation along with temperature. As we expect temperature as well
as strain to occur simultaneously in machining processes near the machined surface,
resistive temperature measurement is not applicable [13]. Thermo-electric temperature
measurement by thermocouples is more complex than resistive measurement, yet it is
non-sensitive to strain. Thus, we decided to fabricate thermocouples on the surface of
workpieces for temperature measurement. The direct deposition on the surface of the
workpiece allows a minimal thermal decoupling between the sensor and the workpiece
caused by the electrical insulation only.

The thermo-electric voltage of a thermocouple is given by

Uth = |S1 − S2|·∆T (1)

with S1 and S2 being the Seebeck coefficients of the materials used for fabrication of the
electrodes and ∆T being the difference in temperature from the joint of the electrodes to
the contact area.

2.2. Sensor Design
2.2.1. Workpiece and Sensor Dimensions

The workpieces for precision machining have a size of 15 mm × 33 mm × 2 mm
(width × height × thickness). We investigated workpieces made of steel (42CrMo4),
aluminum (EN AW-5083), and copper (Cu-OF). The workpieces have been cut from rolled
sheet material.

Five thermocouples are deposited on the surface of each workpiece, as shown in
Figure 1. The electrodes are 500 µm wide with 500 µm spacing at the bottom part of the
workpiece to allow easy electrical contact with a suitable connector. The contact area is not
shown in Figure 1. The electrodes narrow down to a width of 100 µm in the measurement
area. The two electrodes of the thermocouple have an overlapping measurement area of
100 × 100 µm2. Each consecutive thermocouple on the workpiece is 100 µm further away
from the cutting plane to allow for reconstruction of the temperature propagation in the
workpiece. The Seebeck coefficients of gold and platinum are 6.5 and 0 µV/K, respectively.
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Figure 1. Top view of thermocouples on the workpiece. Five thermocouples are formed from gold
and platinum electrodes with varying distance to the cutting plane.

2.2.2. Sensor Fabrication

Microfabrication on small sheets of metal is challenging since most equipment is built
for the use of standard silicon wafer substrates. The rolled material neither has a high-
quality polished surface nor is the material compatible to many standard microfabrication
technologies. Hence, standard processing involving lithography and etching cannot be
used for fabrication.

The fabrication of the sensors can be divided into two major steps: (1) formation of
an insulation layer and (2) the deposition of thermocouple electrodes. The fabrication is
shown in Figure 2 (left). The deposition of ceramic dielectric layers such as SiO2, Al2O3,
or ZrO2 has not been taken into consideration, since the available technical equipment
was not able to fabricate pinhole-free, fully insulating layers of any of those materials on
low-quality surfaces. Instead, the insulation layer was made of epoxy resin. Deposition
was done by manual screen-printing of three layers of the epoxy (UHU Endfest 90 min).
The thickness of the final insulation layer is approximately 3.5 µm.
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Figure 2. Fabrication process (left) and final workpiece (right).

Gold and platinum electrodes are sputter-deposited by a DC sputtering process
with a power of 100 W for a time of 192 s and 200 W for a time of 204 s, respectively.
The resulting layer thickness for both materials is approximately 300 nm. A shadow
mask, which is made of a DRIE etched, 380 µm thick, double-side polished standard
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silicon wafer, is used to structure the electrodes during sputter-deposition. A resolution
of 100 µm can easily be achieved by the use of shadow masks. A custom designed
holder allows the contemporaneous coating of 11 workpieces on the area of a 150 mm
wafer. Sufficient alignment between the shadow mask and the substrate is secured by
corresponding tolerances of the holder, shadow masks, and substrates.

Electrical contacting is done by a Würth ZIF connector, which is glued on the surface
of the substrate. The pins are connected to the electrodes with Panacol Elecolit 414 electrical
conductive glue. The final workpiece is shown in Figure 2 (right).

2.3. Electronics Setup

A custom-built amplification circuit was designed to perform measurements. The
circuit consists of 5 AD8421 high-performance instrumentational amplifiers. The signal was
amplified by a factor of approximately 2010. The electrical connection to the thermocouples
is established by Würth ZIF 10-pin connectors and matching flat cables. The analog-to-
digital signal conversion is done by a National Instruments DAQ USB-6212 data acquisition
unit in the differential input mode. All negative inputs are connected to the ground, while
the positive inputs are connected to the output of the amplifiers. Figure 3 shows the
electronics setup.
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2.4. Setup for Machining

The machining experiments were performed on a Moore Nanotech 350FG (Swanzey,
USA). This ultra-precision machine tool has an air-bearing main spindle and a hydrostatical
supported Y-axis. In order to avoid environmental errors, the machine was operated under
laboratory conditions at a controlled temperature of 20 ◦C. The machine is placed on a
separate foundation with additional active damper units. Thus, temperature and vibration
influences from outside are almost excluded. To favor a machining geometry for a relatively
simple simulation of the process, the experiments were carried out as free quasi-orthogonal
cutting. The uncoated submicron carbide grade tool was mounted on the main spindle
to rotate at a swing diameter of 138 mm. A new tool of the type Arno 31602 AK10
(Ostfildern, Germany) was used on each workpiece. The workpieces were secured in a
workpiece holder, which offered a guidance for the required wired connection between
the temperature sensors and the measuring equipment with reduced interference caused
by other machine components. To measure the process forces, the workpiece holder was
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mounted on a Kistler MiniDyn 9119AA1 (Sindelfingen, Germany). This three-component
dynamometer offers a precise method to measure the process forces in three orthogonal
directions with a sampling rate of 10 kHz.

During the machining experiments, for each workpiece, a new tool with a straight
cutting edge and a cutting edge radius of rβ = 16 µm was applied. In the machining
process, the rotating tool was plunged downwards into the workpiece with a cutting width
of 1 mm and the respecting feed velocity vf to achieve a feed f of 4.5 µm to 18 µm per
revolution of the tool. A schematic representation of the machining process is shown in
Figure 4. A photography of the machining setup and a video of the machining process are
available as Supplementary Data S1 and S2, respectively.

Table 1. Variation of workpiece materials and process parameters.

Workpiece Material Steel(42CrMo4) Aluminum(EN AW-5083) Copper(Cu-OF)

Cutting Speed vc 229 m/min 459 m/min

Feed f 4.5 µm 9 µm 18 µm 36 µm
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Figure 4. Schematic representation of the fly-cutting process. To validate the measurements of the
newly developed sensors, a variation of the machining process was performed to ensure varying
temperatures. The workpiece material was altered between steel (42CrMo4), aluminum (EN AW-
5083), and copper (Cu-OF). Another variation in resulting temperatures was realized variating the
process parameters cutting speed and feed according to Table 1.

Each combination of process parameters was performed three times as machining
experiment, with copper being the exception, where due to the number of workpieces, only
two experiments per parameter combination were conducted. Each workpiece had five
temperature sensors in different depths related to the feed direction. This experimental
implementation results in a database of 10 to 15 measured time-dependent temperatures for
one parameter combination, which accommodates for statistical replication. An increase in
the measured temperature was expected subsequently with each tool engagement in each
experiment and generally with the increase of cutting speed or feed. The feed stopped at a
depth at which the measurement areas of the temperature sensors were definitely reached
and subsequently destroyed in the machining process. This ensures a measurement as near
as possible to the machining zone, right before the sensor is destroyed with further tool
movement in the feed direction.

2.5. Modeling and Simulation

The simulation is divided into two steps. In the first step, the cutting process itself is
simulated and temperature over the workpiece surface and the corresponding heat flux is
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calculated as well. In the second step, the behavior of the heat flux from the workpiece to
the dielectric epoxy layer and the sensor is simulated.

2.5.1. Material Model

A thermo-visco-plastic material model was used in the simulations. The material
behavior included isotropic hardening according to the well-known Johnson–Cook model
(JC). The thermo-physical and mechanical properties of all materials were taken from the
literature [14,15] and are listed in Tables 2 and 3. The resulting yield stress in the JC model
is given by

σ =
[

A + Bεn
p

][
1 + Cln

( .
ε
.
ε0

)][
1−

(
T − T0

Tm − T0

)m]
. (2)

Table 2. Johnson–Cook model coefficient for AISI 4140 [14,15].

JC Constitutive Model A (MPa) 900

B (MPa) 650
C 0.034
m 0.328
n 0.45

.
ε0 (s−1) 0.001
Tm (◦C) 1536
T0 (◦C) 20

Table 3. Physical and mechanical properties of workpiece and tool [14,15].

E (GPa) AISI 4140 204

ν AISI 4140 0.3
ρ (kg/m3) AISI 4140 7850

tungsten carbide 15,000
k (W/mK) AISI 4140 47

tungsten carbide 46
λ (1/K) AISI 4140 12.3·10−6

tungsten carbide 4.7·10−6

Cp (J/kgK) AISI 4140 475
tungsten carbide 203

Inelastic heat fraction 0.9

The material parameters are A, B, C, m, and n with
.
ε0 as the reference strain rate, and

Tm and T0 as the melting and room temperature, respectively.

2.5.2. Friction Model

There is no constant coefficient of friction for the interaction between the cutting tool
and the workpiece as the pressure at the contact surface is very high. Based on the friction
model by Zorev [16], the friction properties at the tool-to-chip interface were defined as:

τ = min(τY, µσ) (3)

τY = σ/
√

3 (4)

The shear stress τ is limited either by the shear flow stress τY of the material or by
Columb friction behavior with a friction coefficient of µ = 0.6 [17]. Table 4 lists the friction
model parameters.
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Table 4. Friction model parameters.

Columb Friction Coefficient 0.6

Friction energy converted to heat (%) 100
Fraction of converted heat distributed to tool surface 0.5

2.5.3. Boundary Conditions and Mesh

The workpiece is fixed in space while the tool moves in Euler space during cutting. The
cutting tool is connected to a reference point on the axis of rotation of the tool. All boundary
conditions, such as rotation, are applied to the reference point. To reduce calculation time, the
dimensions of the workpiece used in the simulations were reduced to 2 mm× 1.5 mm× 10 mm
(X× Y× Z), and only the first five cuts have been considered in this work. Figure 5 shows the
orientation of the workpiece and tool in space.
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Figure 5. Schematic representation of cutting tool and workpiece.

Temperature displacement solid continuum elements were used for modeling the ther-
mal and mechanical behavior of the workpiece. The tool was meshed with C3D4T-Lagrange
tetrahedral elements. Euler volume meshing was realized with EC3D8RT elements with
reduced integration and hourglass control. Based on the recommendations given in [18]
and on our own preliminary investigations, an element size of 18 µm was chosen for
the Euler volume. The initial temperature of workpiece and tool was set to 20 ◦C (room
temperature). Movements of the workpiece in all directions (displacement along the X-, Y-,
Z-axis and rotation about the X-, Y-, Z-axis) were fixed.

The tool was fixed in the Z- and Y-direction. In the simulations, a feed of f1 = 18 µm
and f2 = 36 µm, and a spindle speed of n = 1058.73 min−1 (i.e., as cutting velocity of
vc = 459 m/min) were chosen.

2.5.4. Mass Scaling of Workpiece for Computational Efficiency

The 3D Eulerian FE analysis is computationally intensive and time consuming. The
mass scaling technique is often used to reduce computation time. In addition to mass
scaling, time scaling can be used to further reduce computation time in coupled Eulerian–
Lagrangian modeling [19].

In mass as well as in time scaling, the thermal time constant has to be maintained
by adjusting the thermal properties of the material accordingly. The mass is scaled by
replacing the density ρ with the fictitious density ρ* (km > 1).

ρ∗ = km (5)
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Replacing the density ρ by fictious density ρ* results in a change of the thermal time
constant. Thus, the fictious specific heat cp* must be used to counter this effect.

c∗p = cpk−1
m (6)

A mass scaling factor of km = 25 results in good agreement with experimental values
of mechanical forces. Increasing the scaling factor leads to an increase in deviation from
experimental results. The computation time at a scaling factor of 25 was approximately
18 h. The optimal scaling factor in this work is similar to the factor for milling simulation,
which was determined in [20].

2.5.5. Simulation of Sensor Response

From the simulation of the cutting process, the temperature on the surface of the
workpiece as well as the corresponding heat flux could be calculated. The major challenge
in the simulation of the sensor signal was the calculation of the thermal insulation of the
thermocouple electrodes due to the dielectric layer. The layer was approximately 3.5 µm
thick, which was measured by tactile step measurement. In order to calculate the signal
of the sensor, a 2D model of the cross-section at the intersection of the thermocouple
electrodes was used. The model is shown in Figure 6. At the bottom of the dielectric layer,
the heat flux from the cutting simulation was applied. While the tool was in contact with
the workpiece, heat was generated in the contact zone. A temperature wave from the
contact zone to the bottom part of the workpiece was induced. While the tool was not in
contact with the workpiece, which was the case the majority of the time, the heat dissipated
in the workpiece. Thus, during heat generation, there was a heat flux from the workpiece
to the thermocouple and, once the heat rapidly dissipated into the workpiece after contact,
there was a heat flux from the thermocouple to the workpiece.
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Figure 6. Setup of the simulation of the sensor signal from the heat flux in the workpiece.

The crucial parameter for the simulation of the sensor response is the thermal conductivity
of the materials. The thermal conductivity of each material can be found in Table 5.

Table 5. Thermal conductivity of 42CrMo4 steel, epoxy insulation layer, and thermocouple electrodes.

42CrMo4 Steel λT,Steel (W/m*K) 44

Uhu Endfest expoxy resin λT,Steel (W/m*K) 0.24
Gold λT,Steel (W/m*K) 314

3. Results
3.1. Measurement Results

Temperature measurement was affected by high noise levels from the machining
environment. Thus, all results have were digitally filtered using a 3rd order Bessel low-pass
filter with a cut-off frequency of 100 Hz, which does not falsify the temperature signal.
Low-frequency noise is still visible. Figure 7 shows the measured and filtered temperature
within the last 10 s before the destruction of the thermocouple for a feed f = 36 µm and a
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cutting speed of vc = 459 m/min. The temperature starts to rise slowly when the cutting
plane has reached a certain distance to the thermocouple. Shortly before the thermocouple
is destroyed, single peaks in temperature become visible.
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Figure 7. Measured temperature over the last 10 s before the destruction of the thermocouple for a
feed of f = 36 µm.

Figure 8 shows an enlarged view of the last 2 seconds before the destruction of the
thermocouple. The cutting speed of vc = 459 m/min is achieved at an approximately
1000 rpm rotational speed of the spindle. This translates to a cutting frequency of approxi-
mately 17 Hz. The temperature peaks are clearly visible for the last 10 cuts. The frequency
of the peaks corresponds to the cutting frequency and, therefore, the individual peaks can
be related to single cuts. For each cut, the temperature rises fast to a temperature maximum
and then drops back at a lower change rate almost to the temperature before the cut.
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Figure 8. Measured temperature over the last 2 seconds before the destruction of the thermocouple
for a feed of f = 36 µm.

The non-computed measurement data as recorded during the experiment as well as
spectral analysis data of Figures 7 and 8 are available as Supplementary Material S3 and S4,
respectively.

The average maximum temperature difference for different materials, feeds, and
cutting speeds (here expressed as rotational speeds n) are summarized in Figure 9. The
maximum temperature difference is mostly increasing with cutting speed and feed. The
standard deviation is low, indicating a good repeatability of the experiments and high
reliability of the data. However, against the expectations, the temperature decreases
noticeably for a feed of f = 36 µm when cutting the steel workpieces. The reason for the
decrease in temperature is yet to determined.
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1 

 

 

Figure 9. Average maximum temperature difference from room temperature for (a) steel, (b) alu-
minum, and (c) Cu-OF workpieces at different feeds and cutting speeds.

3.2. Simulation Results

Process simulations have been carried out for steel workpieces at a cutting speed
vc = 459 m/min and feeds f1 = 18 µm and f2 = 36 µm. Those parameters yielded the most
interesting results in temperature measurements showing the highest average temperature
and an unexpected drop in maximum temperature, respectively. The last five cuts before
the destruction of the thermocouple were simulated.

Figure 10 shows the temperature of one of the thermocouples (dashed blue line),
the simulated temperature at the workpiece surface below the thermocouple (dotted red
line), and the calculated temperature of the thermocouple (solid green line) for a feed of
f = 18 µm. Measured and simulated temperatures show a very good match qualitatively
and quantitatively. It is noticeable that the temperature at the workpiece surface is approxi-
mately 10 times higher than the temperature measured and simulated at the sensor. This is
likely resulting from the poor thermal conductivity of the dielectric layer.

Figure 11 shows the temperature of one of the thermocouples (dashed blue line), the
simulated temperature at the workpiece surface below the thermocoule (dotted red line), and
the calculated temperature of the thermocouple (solid green line) for a feed of f = 36 µm.
Again, the measured and simulated temperatures show a very good match, and the workpiece
temperature is approximately 10 times higher than the measured temperature. Even the less
distinct peak in temperature after the first three cuts can be seen in the measurement data.
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Figure 10. Temperature for the last five cuts before the destruction of the thermocouple for a feed of
f = 18 µm. Measured temperature (dashed blue line), simulated temperature at workpiece surface
(dotted red line), and calculated temperature of thermocouple (solid green line).
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Figure 11. Temperature for the last five cuts before the destruction of the thermocouple for a feed of
f = 36 µm. Measured temperature (dashed blue line), simulated temperature at workpiece surface
(dotted red line), and calculated temperature of thermocouple (solid green line).

4. Discussion

The temperature measurement with thermocouples, which consists of pure metal
electrodes, is very reliable. The impact of every single cut during machining can be seen
once the tool is close to the thermocouple. The spatial as well as the temporal resolution
of the resulting temperature measurements are high enough to accommodate the inves-
tigated highly dynamic process. However, a smaller time constant of the thermocouples
would be appreciated. The thermal insulation of the thermocouple from the workpiece,
which is caused by the dielectric insulation layer, is an issue. It might be an option in
future experiments to form the insulating layer from a material that has higher thermal
conductivity.

When compared to results from prior experiments in which a screen-printed silver
electrode and the workpiece formed the thermocouple, the results match fairly well. How-
ever, the use of the workpiece as the second electrode of the thermocouple was meant to
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eliminate the influence of a dielectric layer on the measured temperature. Yet, the tempera-
tures measured in both thermocouple setups are very similar. Since the use of a pure metal
thermocouple should result in a high reliability of the data, we believe that either the use of
screen-printed electrodes or the workpiece as an electrode is not suitable for temperature
measurement.

The simulated temperature at the surface of the workpiece is approximately 10 times
larger than the temperature, which is measured by the thermocouples. Taking into consid-
eration the thermal insulation due to the dielectric layer, the measurement and simulation
results match very well. The division of the simulation into two steps, namely cutting
process simulation and actual sensor signal simulation, might be a source for errors. How-
ever, each single simulation step itself is based on well-known and established simulation
methods. In future work, the simulation steps will be merged into one simulation that can
calculate both cutting process and sensor behavior at once.

5. Conclusions

The results from this work are very valuable in the overall scope of the SFB TRR,
which includes the determination of local material loads in machining processes and their
correlation with material modifications. As of now, finite element simulation is the only
way to determine local material loads, since these local loads are not measurable directly in
situ during a machining process. Yet, the simulation has to be validated by experimental
data whenever possible. The temperatures, which have been measured in this work,
validate our process model. Our results show that the currently used simulation methods
provide results that match the temperatures and therefore a material load in quantity and
quality. Thus, it can be stated that local material loads, which are determined by simulation,
match the loads that will occur in the cutting process. In further research within the SFB
TRR, the material model can be used to identify local material loads. The correlation of
those local loads with material modifications offer a great potential to solve the inverse
problem of manufacturing.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-822
0/21/4/1530/s1, Figure S1: Photograph of measurement setup in cutting machine, Video S2: Video
of cutting process, Measurement Data S3: Measurement data of Figures 7 and 8 as recorded, Figure
S4: Frequency spectra of Figures 7 and 8.
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