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ABSTRACT

The placing of novel or new-in-the-context proteins
on the market, appearing in genetically modified
foods, certain bio-pharmaceuticals and some house-
hold products leads to human exposure to proteins
that may elicit allergic responses. Accurate methods
to detect allergens are therefore necessary to
ensure consumer/patient safety. We demonstrate
that it is possible to reach a new level of accuracy
in computational detection of allergenic proteins
by presenting a novel detector, Detection based
on Filtered Length-adjusted Allergen Peptides
(DFLAP). The DFLAP algorithm extracts variable
length allergen sequence fragments and employs
modern machine learning techniques in the form
of a support vector machine. In particular, this
new detector shows hitherto unmatched specificity
when challenged to the Swiss-Prot repository
without appreciable loss of sensitivity. DFLAP is
also the first reported detector that successfully
discriminates between allergens and non-allergens
occurring in protein families known to hold both
categories. Allergenicity assessment for specific
protein sequences of interest using DFLAP is
possible via ulfh@slv.se.

INTRODUCTION

Allergic diseases are characterized by immunologic responses
against otherwise innocuous substances, typically proteins
(1–4). Allergy grows steadily and may now affect >20% of
the population in the Western hemisphere. The clinical mani-
festations can involve any one of various different symptoms
such as asthma, rhinitis, rhinoconjunctivitis, eczema, contact
dermatitis, angioedema, abdominal pain and anaphylaxis, the

latter being a potentially life-threatening condition (5,6).
An immediate allergic response (type I hypersensitivity, as
opposed to delayed-type, cell-mediated allergic reactions)
includes the preferential synthesis and secretion of immuno-
globulin E (IgE) molecules, which subsequently anchor
efficiently to high-affinity receptors on tissue mast cells
and basophilic granulocytes. Contact with proteins that can
simultaneously bind to at least two cell surface-attached
IgE-molecules triggers the secretion of inflammatory media-
tors and cytokines (3,4). It is essential to distinguish between
complete and incomplete protein allergens, i.e. those which
can educate the immune system (sensitization) to a full
response and those which only have the ability to trigger
release of mediators through cross-reactive IgE binding,
respectively (7–10). Many allergens appear to cluster into
relatively few protein families (7,11–13). Nonetheless, most
members of such protein families seem to be devoid of
allergenic properties (14).

A number of immunochemical, biochemical and immuno-
logical methods for the identification proteins with a potential
to cause of type-I hypersensitivity reactions have emerged
and evolved over time, notably IgE immunosorbent assays
using patient sera, human skin prick tests and basophil his-
tamine release as well as various animal models, the first
two assay methods also being commonly used clinical diag-
nostic modalities (15–17). In recent years, however, bioinfor-
matics tests for allergenicity have become increasingly
visible in the literature. Largely, this direction has emerged
in response to a need for a relatively expedient method to
screen for potential protein allergens owing to concern over
the possibility of unpremeditated introduction of allergen-
encoding transgenes into genetically modified (GM) food
crops (18,19). In 1996, the ILSI/IFBC presented a decision-
tree for safety assessment of GM foods, which encompasses
several principally dissimilar testing methods including an
introductory amino acid sequence comparison for xenopro-
teins, obtained from sources with known allergenic potential,
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to allergen sequences (20). Several years later, an FAO/WHO
consultation on allergenic foods presented a revised scheme,
in which partly similar bioinformatics testing is a mandatory
introductive step irrespective of transgene origin. This proto-
col prescribes a two-part procedure wherein a protein is
assigned as an allergen by either a match of six consecutive
amino acids or an identity of >35%, across an 80 amino acid
window, in both cases to any documented protein allergen
(21). Subsequently, the Codex Alimentarius summoned a
panel of regulatory experts to review the FAO/WHO recom-
mendations. The final guidance prescribes that the peptide
size in contiguous amino acid searches be based on a scien-
tifically justified rationale (22). There are several websites
that offer allergenicity testing of query amino acid sequences
according to the FAO/WHO in silico protocol alone or as part
of several interrogation formats: AllerPredict, (http://research.
i2r.a-star.edu.sg/Templar/DB/Allergen/Predict/Predict.html),
Structural Database of Allergenic Proteins (SDAP)
(23), (http://fermi.utmb.edu/SDAP/sdap_who.html), AllerMatch
(24), (http://www.allermatch.org/) and Allergen Database for
Food Safety (ADFS) (25), (http://allergen.nihs.go.jp/ADFS/).

Various additional bioinformatics testing procedures
founded on inter-allergen similarity have been published,
such as those relying on the FASTA algorithm and various
stretches of identical amino acid matches (26–31) or on
automated motif discovery, either as standalone methods or
in combination with conventional sequence similarity search
(32,33). A different course, which takes advantage of avail-
able data on IgE epitopes and amino acid descriptors, is
also described (23,34). Recently, we reported an in silico
detector of potential protein allergens based on a novel prin-
ciple wherein peptides enriched for allergenic features are
obtained through a special selection procedure, involving
sequence comparison between peptides of allergens and
non-allergens (35). The detection system is named Detection
based on Automated Selection of Allergen-Representative
Peptides (DASARP).

Although many promising computational methods for detec-
tion of protein allergens have been reported, none of them
allows successful discrimination between allergens and non-
allergens within particular protein families such as the tropo-
myosin family. Moreover, false alarm rates of methods
described, when tested on non-allergens, are much higher
than desired and expected. In this article we demonstrate for
the first time that new computational approaches and databases
enable a much higher level of performance. In particular, we
show that a computational course allowing extraction and
employment of variable length peptides, in conjunction with
modern machine learning techniques, offers a new level of
accuracy compared with earlier attempts. The resulting detec-
tor, denoted Detection based on Filtered Length-adjusted Aller-
gen Peptides (DFLAP), derives a flexible number of peptides of
variable lengths per allergen as controlled by an adjustable
threshold parameter. The obtained fragments are designated
Filtered Length-adjusted Allergen Peptides (FLAPs). In anal-
ogy with other allergenicity prediction methods based on
sequence similarity to known allergens, DFLAP is most suit-
able for detection of cross-reactive allergens, although other-
wise allergenic proteins may also be correctly detected.

DFLAP operates expediently enabling evaluation of
the method with the entire Swiss-Prot database (36). The

detection performance results are shown to be roughly
equal to that of ILSI/IFBC and DASARP mentioned above.
However, DFLAP assigns a much lower fraction of the
Swiss-Prot database as being allergens than any hitherto pub-
lished report of comparable detection rate, thus demonstrating
much higher specificity. DFLAP is also the first in silico
detector reported capable of distinguishing allergens from
non-allergens within protein families, which is most con-
spicuous in the case of tropomyosins.

MATERIALS AND METHODS

Outline of DFLAP method

FLAPs were extracted from an allergen database through a
specially designed comparison with a non-allergen dataset
and, when applicable, a subsequent concatenation procedure
(see below for details on data repositories). This procedure,
described in detail below, is designated Computerized
Peptide Filtration and Aggregation (CPFA). Downstream of
the CPFA step, the DFLAP algorithm may be summarized
as follows: Amino acid sequences of query proteins are
compared with the extracted FLAPs. Based on the resulting
list of similarity score values for each protein, a support
vector machine (SVM) is trained to decide whether there is
sufficient similarity to assign the query protein as an allergen.
A point-wise summary of the method is shown in Figure 1
and a detailed description of datasets and the different
sub-procedures of DFLAP can be found below.

Computerized peptide filtration and aggregation

First, each allergen was segmented into amino acids of length
lmin through a sliding window procedure. Each derived unit
was then aligned against the non-allergen dataset and the
top alignment score for each peptide was stored. Thus, for
each allergen a filter score vector VFS of length Li � lmin + 1
was stored, where Li is the length of allergen i. Each peptide
score in VFS was thereafter compared with a FLAP threshold
in order to transform VFS into a discrete binary-valued vector.
Whenever a peptide’s corresponding value in VFS was below
the FLAP threshold, the corresponding value in the binary
vector was set to one, i.e. the peptide was deemed dissimilar
enough to any known non-allergen. Two or more overlapping
peptides, defined as consecutive units in the binary VFS, were
concatenated into a single longer fragment. Since the
extracted peptides have variable length, depending on
whether they are non-modified or concatenated, they were
collectively referred to as FLAPs or simply the FLAP set.

Alignment of allergen peptides to the non-allergen data-
base was conducted by virtue of our own tailor-made
MATLAB toolbox that allows fast alignment between a
complete amino acid sequence and multiple shorter peptides.
The following parameter settings were applied: BLOSUM62
substitution matrix and �11/�1 gap penalties.

Generation and extraction of features

Amino acid sequences, either applied to design a classifier by
means of supervised learning or used as input queries, were
aligned against all peptides in the FLAP set. Each sequence
generated a characteristic assembly of alignment score
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values, one for each FLAP. Such sets of score values were
each refined and reduced, initially by sorting the score values
in descending order and subsequently by retaining only the
n largest values. Consequently, the final feature vector for a
given amino acid sequence consisted of its n top similarity
scores against the FLAP set, assorted in descending order.
The alignment of amino acid sequences to the FLAP set
was conducted by means of the aforementioned in-house
alignment algorithm.

Designing a classification algorithm using supervised
learning

A linear kernel SVM (37,38) classification algorithm was
trained using positive (allergen) and negative (non-allergen)
training samples, represented by their respective feature vec-
tors. Allergens were drawn from the same set as those used
to generate the FLAPs; non-allergen training samples were
obtained by randomly sampling proteins from Swiss-Prot

(followed by removal of possible allergens). To provide for
a reasonable coverage of protein diversity, the non-allergen
training samples were twice as many as the allergens.

Detection of potential allergenicity using the
DFLAP system

For any given query sequence, a feature vector was generated
using the already described alignment against the FLAP set
followed by sorting and selection of the top n features in
descending order. Each feature vector was then presented to
the trained SVM for an immediate decision.

Performance evaluation and comparison to other
computational methods

Three separate tests for evaluation of DFLAP performance
were conducted, as presented below and as outlined in
Table 1 (DFLAP detectors were built on the most promising

Figure 1. Outline of design and function of the DFLAP algorithm. (I) The allergen amino acid sequences are segmented into overlapping peptides and are
subsequently compared with all sequences in the non-allergen set. The rational is that peptides, with high similarity to any non-allergen sequence, are likely to be
structurally/functionally unrelated to allergenicity. Conversely, peptides lacking appreciable similarity with non-allergen sequences are potentially important to
allergic reactions, broadly defined. These peptides (after concatenation of directly overlapping peptides) are stored in a special catalogue designated Filtered
Length-adjusted Allergen Peptide (FLAP) set. Thus, the non-allergen amino acid sequence set can be regarded as a filter wherein only peptides dissimilar to non-
allergens are allowed to pass. (II) Feature vectors, based on the alignment scores between training amino acid sequences (both allergen and non-allergen) against
the FLAP set, are thereafter allowed to educate a supervised learning algorithm. This process trains the algorithm to determine, in a quantitative manner, the level
of similarity to the FLAP set, which is required for a protein to be assigned as an allergen. (III) The educated system allows for interrogation by any query amino
acid sequence with respect to allergen potential, essentially as described in step II. If sufficient similarity to the FLAPs is found, the query sequence is assigned as
an allergen. In this step, the trained detector quantifies what ‘sufficient similarity’ means.
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parameters, as identified in the 3-fold CV procedure for
parameter selection described further below):

� Assessment of sensitivity using external holdout test sets
with different degrees of homology: First, a holdout dataset
of 262 allergens was randomly selected from the total
allergen dataset (762 amino acid sequences) to enable
unbiased performance evaluation of the designed SVM
classifier. Thereafter, a DFLAP detector was built using a
training set of the remaining 500 allergens together with
1000 non-allergens. Finally, a performance estimate of
the designed DFLAP was obtained by presenting it to
samples in the external holdout test set. In order to study the
effect of a gradually decreasing sequence homology, the test
set was reduced step-wise so that none of the remaining
sequences shared more than a predefined degree of sequence
similarity, to each other as well as to the training set.
Sequence similarity levels of 95, 90, 85 and 80%, according
to FASTA3 (BLOSUM50, gap penalties �12/�2), resulted
in test datasets containing 168, 141, 116 and 99 allergens,
respectively. The full-sized (262 entities) set and the four
reduced test sets were each evaluated separately.

� Evaluation of DFLAP specificity using external test
examples from three protein families: A DFLAP designed
with all allergens available except for 70% of the
sequences from three protein families—parvalbumins,
profilins and tropomyosins—was built. Subsequently, its
specificity was estimated by means of an exclusive test
based on only the remaining allergens and plausible non-
allergens of these three protein families. The test datasets
contained 13 allergen and 121 vertebrate tropomyosins,
43 allergen and 39 animal profilins, as well as 9 allergen
and 33 mammalian parvalbumins, respectively, all being

presumptive non-allergens, whereas the training set con-
tained 762 � 13 � 43 � 9 ¼ 697 allergens and 2 · 697 ¼
1394 non-allergens.

� Estimation of the DFLAP specificity using the entire
Swiss-Prot database. First, a DFLAP design founded on all
762 allergens available and 762 · 2 ¼1534 non-allergens
was performed. All these allergens served to construct
a Filtered Allergen Peptide set that subsequently was
employed to extract features vectors for all the 762
allergens and 1534 non-allergens. Finally a SVM classifier
was designed using the feature vectors generated and then
applied to detect all allergens in the entire Swiss-Prot
database.

For comparison the bioinformatics schemes ILSI/IFBC
(20), FAO/WHO (21) and DASARP (35) were also evaluated
in the three above listed experiments. As already mentioned,
the FAO/WHO procedure assigns an amino acid sequence as
potentially allergenic either if a local sequence alignment
returns 35% similarity over any segment of 80 residues to a
known allergen or if there is an exact match to a peptide of
length six in an allergen. In benchmarks conducted here
the FAO/WHO-prescribed alignment procedure was applied
to both test schemes. The ILSI/IFBC scheme involves a
more vaguely defined alignment-type comparison as well as
a search for an identical peptide match, but of length eight
residues replacing six. Notably, the selection of a criterion
based on eight residues partly agrees with the aforementioned
suggestion by Codex Alimentarius to consider matching
lengths between 6 and 8 residues.

The tested DASARP system was created using the same
peptide length (24), number of peptides per allergen (5)
and scoring scheme (sum of the two highest scores using

Table 1. Outline of tests conducted

Test type Detection system Sequences used for
generation of FLAPs
(Allergens/non-allergens)*

Training sequences
(Allergens/non-allergens)*

Test sequences
(Allergens/non-allergens)*

Parameter selection (3-fold CV) DFLAP 333a/52081b 333a/666c 167d/339 (334c+5e)
Assessment of sensitivity (holdout) FAO/WHO — 500a 262d (168, 141, 116, 99)f

ILSI/IFBC — 500a 262d (168, 141, 116, 99)f

DASARP — 500a 262d (168, 141, 116, 99)f

DFLAP** 500a/52081b 500a/1000c 262d (168, 141, 116, 99)f

Assessment of intra-family
discrimination (holdout)

FAO/WHO — 697a 65d/193g

ILSI/IFBC — 697a 65d/193g

DASARP — 697a 65d/193g

DFLAP** 697a/52081b 697a/1394c 65d/193g

Assessment of specificity (holdout) FAO/WHO — 762 164970h

ILSI/IFBC — 762 164970h

DASARP — 762 164970h

DFLAP** 762/52081b 762/1524 164970h

*All datasets are publicly available on http://www.slv.se/templates/SLV_Page.aspx?id¼14772.
**The parameter setting was lmin ¼ 22, FLAP threshold ¼ 48, n ¼ 4 and C ¼ 100.
aSubsets of the total amount (762) of allergens used to train each test method in the different evaluation procedures. In the case of DFLAP these subsets were initially
also used to generate of FLAPs.
bNon-allergen filter set used in the Computerized Peptide Filtration and Aggregation (CPFA).
cSubsets of the total amount (1524) of the sequences referred to as Swiss-Prot non-allergens in Materials and Methods, used for SVM training (and testing in the
parameter selection procedure) in the DFLAP method.
dSubsets of the total amount (762) of allergens used to test each test method in the different evaluation procedures.
eFive tropomyosins used to measure specificity in the evaluation of DFLAP parameters.
fThe four numbers corresponds to different levels of maximal sequence identity between training and test set (95, 90, 85 and 80%), respectively.
gPresumed non-allergens from tropomyosins, profilins and parvalbumins.
hSwiss-Prot, release 45.3.
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an allergenicity threshold at 5.51) as reported earlier (35).
For computational reasons the generation of Allergen-
Representative Peptides (ARPs) was, however, slightly
modified. As an alternative to comparing each allergen pep-
tide to each sliding-window peptide of the non-allergens
used for filtration, they were aligned to the entire amino
acid sequences in the non-allergen dataset. Apart from
being computationally much faster relative to individual
peptide–peptide comparisons, the use of alignment permits
inclusion of gaps as opposed to the comparison algorithm
proposed earlier.

Parameter selection using a 3-fold CV loop

An outline of parameter selection is presented in Table 1. The
500 allergens and 1000 presumed non-allergens used to train
the DFLAP in the sensitivity evaluation procedure were first
allocated together with five vertebrate (and thereby presum-
ably non-allergenic) tropomyosins for parameter selection.
The former two separate sets of amino acid sequences, res-
pectively, were randomly split into three subsets (of roughly
equal size) used in a 3-fold cross validation (CV). In each CV
iteration, 166/167 allergens and 333/334 non-allergens were
set aside for test together with five vertebrate tropomyosins
(regarded as non-allergens). The remaining allergens were
first used to create FLAPs based on the algorithm for compu-
tational filtration. Subsequently, together with the remaining
non-allergens, the created FLAPs were employed in the gen-
eration of features for the training procedure of the SVM
algorithm (see above). Each parameter setting resulted in a
unique classifier evaluated with the remaining 167 allergen
and 334 non-allergen test sequences. The fraction of correctly
detected allergens and the fraction of erroneously detected
non-allergens in general (false alarms) and non-allergen tro-
pomyosins (tropomyosin false alarms) were recorded for
each classifier in each CV iteration. The estimated detection
rate and false alarm rates were, for each parameter setting,
finally obtained as averages over the three CV iterations.
Datasets used in each of the CV iterations are publicly
available on http://www.slv.se/templates/SLV_Page.aspx?
id¼14772.

The four different parameters in the parameter selection
procedure can be divided into two sub-categories, as outlined
below: three of them specify generation and selection of
feature parameters, whereas the fourth specifies the SVM
algorithm.

Feature parameters.

� Minimal peptide length (lmin): The segment (peptide)
length of each allergen prior to filtration. Lengths of 10–24,
with incremental steps of two amino acid residues, were
tested.

� Retention level (degree of filtration): The fraction of over-
lapping sliding-window peptides discarded in the filtra-
tion process. The FLAP threshold, to which an allergen
peptide’s maximum alignment score in the non-allergen
sequence database is compared, dictates the retention
level. A maximum score below this threshold means
that the peptide is sufficiently dissimilar to the non-
allergens to qualify as a FLAP. FLAP thresholds were
varied step-wise to accomplish average retention levels for

the allergens of roughly 45, 55, 65 and 75% (four
thresholds for each lmin).

� Number of alignment scores (n): Query amino acid
sequences were aligned against all peptides in the FLAP
set, thus generating a fingerprint of alignment scores for
each sequence; one alignment value for each FLAP. Such
data were sorted to obtain gradually declining scores. A
simple decision was then performed in which the top
n alignment scores (best matches) were extracted as
features. Thus, a feature vector for a given amino acid
sequence consists of its top similarity scores against the
FLAP set. Tested values of n were 1, 2, 3, 4 and 5.

SVM algorithm parameter.

� Value of cost parameter (C): In conformity with other
commonly used supervised classifiers (k-nearest neighbour,
multilayer perceptron artificial neural networks, decision
trees etc), the SVM classifier employed here consists of
two integrated parts.

The first part comprises an algorithm (computer
program) that can accommodate sets of numerical values
as an input and, in response to this feeding, provide outputs
in the form of discrete decisions, which assigns each such
input as belonging to one among several classes. This
process always relies on several adjustable parameters that
influence the output decision. To simplify illustration of the
discriminating part of an SVM, let us consider the special
case where each input list (x1, x2) consists of only two score
values x1 and x2. In this case, an observation (x1, x2) may be
interpreted as a point in a two-dimensional (2D)
representation. The decision made by the SVM simply
involves the determination of which side of a pre-defined
discrimination line the observation point (x1, x2) is situated
and a phrasing of this judgment as a succinct output.

The second part of a supervised classifier encompasses a
tailor-made algorithm that tunes the adjustable parameters
of the discriminating part in order to achieve good
performance. A standard objective is to perform well on
a set of pre-labelled training examples available from a
human supervisor. In the special 2D case considered here
for illustrative purposes, this corresponds to an adjustment
of the slope and position of the pre-defined discrimination
line. The characteristic feature of SVM tuning, relative to
other linear classifiers, is the explicit aim to obtain a large
‘margin’ (geometric distance) between the decision line
and the most difficult training examples. In practice, SVM
aims at placing the discriminating line in the centre of a
training dataset, thereby separating all the examples from
the two classes. The basic rationale for this choice is to
obtain a robust tuning procedure, involving little influence
of noise and errors in the training examples on the final
discriminating line.

The SVM tuning procedure discussed above, aiming at a
large ‘margin’, is intuitive but unfortunately not applicable
to the common situation where no discriminating line that
perfectly separates the training examples exists. In real
applications, this hurdle is confronted by means of an
additional tuning parameter C that allows adjustment of the
discrimination line with the explicit aim to obtain a
compromise with relatively few errors among the training
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examples, while still retaining large margins to those
classified correctly. Formally, this parameter specifies the
penalty assigned to misclassified training examples. By
selection from a range of different values of C it is possible
to find a discrimination line that has large ‘margins’ to the
most difficult but correctly classified examples while, at
the same time, makes few misclassification errors. More
formally, a larger value of C increases the penalty for
misclassification errors. A suitable value of C can be found
from CV or from tests using external test examples.

In summary, a key issue in SVM tuning is to find a
balance between good performance on the particular
dataset available and the risk of over fit to misleading
chance correlations in that particular dataset. An over fit
usually results in an over-optimistic performance on the
training examples and, consequently, relatively poor
performance on completely new examples. Notably,
owing to the particular penalty function used in SVM
tuning, a successfully tuned SVM classifier may range
from few but large training/test errors to many but
relatively small training/test errors. Owing to computa-
tional limitations, in our work the following five different
values of C were evaluated: 0.1, 1, 10, 100 and 1000.

Implementation

All computations were performed in the MATLABTM pro-
gramming environment (The MathWorks Inc., Natick, MA),
except for those procedures involving alignment between
complete amino acid sequences, which were performed
using the FASTA3 program (39). Apart from the core pro-
gram, the MathWorks Statistics toolbox was used, as well
as the OSU SVM Classifier Matlab Toolbox by J. Ma,
Y. Zhao and S. Anhalt, which is based on LIBSVM version
2.33 [C.-C. Changand and C.-J. Lin (2001) LIBSVM:
a library for SVMs]. Moreover, a tailor made toolbox was
created that allows a BLAST-like alignment algorithm for
fast alignment between a complete amino acid sequence
and multiple shorter peptides (e.g. FLAPs).

Bayesian confidence intervals

A 95% Bayesian confidence (BC) or credibility interval [a,b]
for an unknown misclassification rate q is any interval for the
value of q which contains 95% of the probability mass of
the conditional posterior probability density distribution
p(q j kt,Nt) where kt is the number of errors made using Nt

test examples. The posterior p(q j kt,Nt) is calculated using
Bayes theorem as p(q j kt,Nt) ¼ P(kt j q,Nt)p(q)/P(kt jNt) using
a uniform prior p(q) ¼ 1 on the interval [0,1] (37). Usually the
highest posterior density interval is employed which is the
shortest among all the possible BC intervals. A BC interval
relies on Bayesian inference viewed as extended logic and is
therefore not identical to a classical confidence interval that
relies on a frequentistic definition of probabilities (40). A
BC interval reflects our current knowledge about the unknown
performance q and equals a classical confidence interval in
cases where the distribution p(q) of true performances is uni-
formly distributed on the unit interval [0,1]. As a consequence,
a Bayesian 95% confidence interval may be interpreted as a
conservative form of a 95% classical confidence interval
that covers the true value with a probability >95%.

Datasets

Allergen database. The in-house allergen database contained
762 amino acid sequences. The sequences were mined from
the following six publicly available databases: Allergen list
maintained by IUIS Allergen Nomenclature Sub-Committee
(41) (http://www.allergen.org/List.htm), Farrp (29) (http://
www.allergenonline.com), The Allergen Database (http://
allergen.csl.gov.uk), The Allergen Sequence Database (42)
(http://www.iit.edu/~sgendel/fa.htm), The Protall Database
(http://www.ifr.bbsrc.ac.uk/protall) and Allergome (http://
www.allergome.org). Prior to deposit into our in-house
repository the records were manually inspected for docu-
mentation on allergenicity (preferably published reports).
Records without or with poor such documentation were dis-
missed. In addition, sequences occurring as fragments shorter
than 100 amino acids were discarded to reduce the risk of
incorporating truncated protein allergens without sensitizing
or cross-reactive regions. The total dataset and the different
subsets hereof (used for SVM training/testing in procedures
for both parameter selection and performance evaluation)
are publicly available on http://www.slv.se/templates/SLV_
Page.aspx?id¼14772.

Non-allergen dataset for FLAP extraction. Corner stones of
DFLAP are extraction and application of allergen representa-
tive FLAPs, i.e. peptides of different lengths that rarely occur
in non-allergens. The computerized filtration and aggregation
algorithm designed for this purpose employs two databases,
one holding allergen sequences only (as described above)
and another constructed to exclusively contain non-allergens.
Clearly, presence of allergens in the latter set may cause
elimination of many important allergen representative pep-
tides, thereby reducing detection performance. Accordingly,
dedicated data resources were targeted to ensure a minimum
of contamination in this non-allergen repository. Two main
sources were used:

� The human proteome. This proteome is large and should,
for obvious reasons, contain a minimum of allergens.

� Skin prick preparations. These formulations are used in
clinical settings for the specific diagnosis allergic responses
in atopic patients. Their established usage in skin prick
tests as whole extracts provides the rational for their
inclusion in the non-allergen database after removal of
reported allergens.

In those cases where a non-fractioned offending organism
is included in the skin prick solution (as opposed to just parts
such as fur), it follows that the entire organism’s proteome
has been subjected to the patient. The entire part of the
organism’s proteome, available as characterized amino acid
sequences, was downloaded. Subsequent to depleting them
of all known allergens and their respective isoallergens the
remaining respective fractions, with a history of exposure
to many atopics, were assumed pure of contaminants and
thereby judged suitable for inclusion in the non-allergen data-
base. For these sources, the following criteria were applied
to all sequences entering the database:

� The textual description of the protein must not contain the
word ‘allergen’. For the human proteome, an annotation as
‘antigen’ was neither allowed to pass.
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� The protein must have no higher sequence identity than
67% with any of the allergens (the definition of isoaller-
genicity). Because we assume the risk for contamination of
human allergens be appreciably lower than that of other
proteomes, the requirement for disparity was relaxed to
80% sequence identity.

� The length of the protein must be longer than or equal to
50. This filters out a large number of redundant protein
fragments that are already present in the database in the
form of complete proteins.

The final dataset of totally 52 081 sequences, which was
used to generate FLAPs (Figure 1) in the evaluation proce-
dures outlined in Table 1, consisted of sequences from the
following organisms and is available upon request:

� Homo sapiens (human), 50 957 sequences
� Aspergillus fumigatus (fungus from mold), 503 sequences
� Candida albicans (fungus), 619 sequences
� Dermatophagoides pteronyssinus (house dust mite),

2 sequences

Swiss-Prot database. The Swiss-Prot database served as
a resource for validation of specificity. For this project the
UniProt FASTA release 3.3, which corresponds to Swiss-
Prot release 45.3, was used. This database, containing
164 970 sequences, was obtained at http://www.ebi.ac.
uk/FTP/.

Swiss-Prot non-allergens for DFLAP training. Apart from the
allergens, a ‘non-allergen’ dataset was created by random
sampling from Swiss-Prot to be used for training of the
SVM algorithm in DFLAP. In order to minimize contamina-
tion, the amino acid sequences had to be at least 50 amino
acid residues long and were not allowed to be identical or
share high sequence similarity to any of the allergens. The
last criterion was controlled by performing simple alignments
between the allergens and the sampled excerpt, using
FASTA3 (BLOSUM50 and �12/�2 gap penalties). If the
Smith–Waterman score used surpassed the limit of 100 the
sequence was assigned as too uncertain to be kept as a non-
allergen. The resulting dataset, was twice the size of the total
number of allergens, i.e. 762 · 2 ¼ 1524, and different subsets
of this were used for SVM training in the parameter selection
procedure as well as in the three different performance evalu-
ation tests (Table 1). The total set of 1524 sequences as well
as the different subsets are publicly available on http://www.
slv.se/templates/SLV_Page.aspx?id¼14772.

Allergen and presumably non-allergen members in different
protein families. In order to further evaluate specificity of the
algorithm, a DFLAP was built using all allergens except for
70% of those that belongs to the following protein families:
parvalbumins, profilins and tropomyosins. Moreover, proba-
ble non-allergens from these protein families were also
collected and tested for potential allergenicity and consisted
of the following datasets: 121 vertebrate tropomyosins,
39 animal profilins and 33 mammalian parvalbumins. The held-
out allergens, as well as the presumed non-allergen proteins
are publicly available on http://www.slv.se/templates/SLV_
Page.aspx?id¼14772.

RESULTS

Parameter selection

As detailed in the Materials and Methods, a holdout dataset
was selected from the total allergen set to enable unbiased
performance evaluation of the designed DFLAP system,
whereas the remaining part was used for parameter selection
in a 3-fold CV loop. In brief, eight values of the minimal
peptide length lmin, four retention levels (degree of filtration,
the percentage of discarded allergen peptides), five values
of the number of alignment scores n and five values of the
SVM cost parameter C were tested in the CV loop. Thus,
in total 800 (8 · 4 · 5 · 5) different parameter settings
were evaluated in the 3-fold CV.

The CV false alarm estimates were uniformly low for all
different parameter settings (data not shown) suggesting that
the general specificity of the DFLAP is quite robust. There-
fore, parameter selection regarding specificity was focussed
on returning parameter settings corresponding to few false
alarms, also within particularly challenging protein families.
Among tropomyosins, those of invertebrates are typically
major allergens, whereas no vertebrate equivalent has hitherto
been associated with hypersensitivity reactions (43). Nonethe-
less, this family shows high sequence similarity across several
phylogenetic kingdoms. Consequently, the tropomyosins pose
a serious challenge to bioinformatics protein allergen detec-
tion systems. Hence, we chose to obtain measures of specifi-
city by taking advantage of the allergenicity dichotomy of
tropomyosins. To obtain high performance on examples
from this family, parameter settings were only considered use-
ful if they resulted in false alarms CV estimates <10%, as
regards to the five vertebrate tropomyosins placed in the
non-allergen test set. Notably, this constraint allows only 1
of the 15 (five in each of three CV iterations) vertebrate tro-
pomyosins to be erroneously assigned as an allergen. Amongst
settings fulfilling this tropomyosin false alarm criterion,
the setting yielding the highest CV estimate of the allergen
detection rate was selected for the final detector design.

Frequencies of the four different parameters, occurring in
the 80 best-ranked parameter settings that yielded the best
detections at tropomyosin false alarms levels <10% are
shown in Table 2 (column a). In order to identify parameters
with the strongest impact on detection, the occurrence
frequencies of the 80 best parameter settings—regardless of
tropomyosins false alarms level—are also listed in Table 2
(column b). Analogously, to reveal the parameters important
for correct assignment of tropomyosins, the occurrence fre-
quencies among all the settings returning a tropomyosin
false alarm level <10% were also calculated and are listed
in Table 2 (column c).

Results in Table 2 clearly indicate that short peptides
(low values of lmin), aligned against the non-allergen data-
base, correlate with low DFLAP performance regarding dis-
criminations among tropomyosins. Actually, only few
detectors based on peptide lengths below 16 residues could
support assignment of the tropomyosins as non-allergens
(Table 2, columns a and c). Moreover, there seems to be a
negative correlation between decreased peptide lengths and
DFLAP’s overall detection capacity (Table 2, column b). In
Table 2 (columns a and b) there are also indications on low
values of the SVM cost parameter C accompanying poor
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detection estimates, whereas C does not seem to notably
influence the assignment of vertebrate tropomyosins correctly
as non-allergens (column c).

Another indication deduced from Table 2 is that a modest
retention level is critical for obtaining good detection
performance. For example, among the top (highest detection
rates regardless of false alarm rate) 80 parameter settings,
only 13% had retention level of 65% or higher (column b).
The indication on a preference for low retention levels,
with regard to successful detection, became strengthened by
findings with settings that restricted the false alarm to low
rates: The same degree of retention (65% or more) held for
only 16% of the 80 best settings constrained to return low
false alarm rate (Table 2, column a). On the opposite side
of the performance spectrum, i.e. among the parameter set-
tings providing tropomyosin false alarm estimates <10%
regardless of the detection performance (column c), high
retention levels seems to be preferred.

Finally, Table 2 also shows that the number n of matches
(alignment scores) does not appear to markedly influence
either the detection rate or the tropomyosins false alarms.
Still, the optimum overall setting (i.e. the final detector
design) includes the four best matches, indicating a predilec-
tion for several alignment scores. While parameter occur-
rence frequency is important to revealing the impact of
the various parameters on performance, in practice only

the overall top-ranked parameter setting was selected for
final evaluation. Parameter values providing the highest
detection estimate, on the provision that tropomyosin false
alarm rates are <10% as assessed by a 3-fold CV, are as
follows: lmin ¼ 22, FLAP threshold ¼ 48 (corresponding to
a retention level at 45%), n ¼ 4 and C ¼ 100.

Filtration and subsequent concatenation (when applicable)
of all 762 allergens, applying the optimal values lmin ¼ 22
and a FLAP threshold ¼ 48, resulted in 7196 FLAPs,
equivalent to an average of almost 10 FLAPs for each aller-
gen. The length distribution of the resulting FLAPs is
depicted in Figure 2. The longest FLAPs encompass �100
residues but only �20% of them hold >40 residues. Roughly
50% of the FLAPs lie within the range of 22–28 residues.
Notably, the shortest possible FLAP consists of a single,
non-concatenated peptide of length lmin ¼ 22.

Performance comparison of DFLAP to other methods

As already presented, DFLAP performance was assessed in
three separate test procedures: a holdout test of 262 allergens
for sensitivity, a holdout test of 65 allergens and 193 non-
allergens for intra-family discrimination ability and, finally,
allergen detection in the entire Swiss-Prot database for speci-
ficity. For comparison purposes, these three experiments also
served to evaluate the ILSI/IFBC, FAO/WHO and DASARP
bioinformatics test schemes (see Table 1 and Materials and
Methods for more details.)

Sensitivity for DFLAP and the three other tested proce-
dures, indicating allergen detection, are presented as BC
intervals for the different levels of sequence homology (maxi-
mal sequence similarity equal to 100, 95, 90, 85 and 80%,
respectively) allowed in the test set (Figure 3). In addition,
an overall measure of specificity was derived from tests
based on the entire Swiss-Prot database as a query set
(Table 3). With regard to the former benchmark type, the
bioinformatics part of allergen identification, as prescribed
by the FAO/WHO guidelines, significantly outperformed
the methods included here. As evident from data presented
in Table 3, however, the FAO/WHO approach is practically
useless, owing to its high false alarms rate. Whereas the
detection intervals of DFLAP seem slightly lower relative
to that of ILSI/IFBC and higher to that of DASARP, the dif-
ference is quite small. Notably, though, the ILSI/IFBC coun-
terpart features appreciably higher false alarm rates relative
to that of DFLAP (Table 3).

In fact, DFLAP returned a remarkably small proportion of
amino acid sequences assigned as allergens, outperforming
corresponding readouts of the ILSI/IFBC- or FAO/WHO-
proposed testing methods by a factor of at least 4, indicating
a very low false-alarm level. The DFLAP benchmark result
on specificity also outperformed that of DASARP
(Table 3). Clearly, DFLAP is the most specific classifier, as
demonstrated by an unmatched low allergen-assignment
rate in the Swiss-Prot database.

DFLAP specificity and that of the three other methods,
referred to above, were evaluated in an additional assessment
procedure. This test involved challenge to allergens and pre-
sumable non-allergens from three distinct protein families.
All methods were able to correctly assign the held-out aller-
gens (data not shown), but as demonstrated for tropomyosins

Table 2. Occurrence frequencies among the different parameters for the best

detectors found according to a 3-fold CV

Occurrence frequencies among the different parameters (%)
a b c

Cost parameter
C ¼ 0,1 0 0 24
C ¼ 1 0 0 22
C ¼ 10 25 10 20
C ¼ 100* 41 46 18
C ¼ 1000 34 44 16

Peptide length
lmin ¼ 10 0 0 0
lmin ¼ 12 0 11 0
lmin ¼ 14 0 4 2
lmin ¼ 16 4 13 17
lmin ¼ 18 3 6 17
lmin ¼ 20 21 18 21
lmin ¼ 22* 31 25 21
lmin ¼ 24 41 24 22

Retention level (filtration degree)
75% retention 1 0 26
65% retention 15 13 27
55% retention 36 25 26
45% retention* 48 63 21

Number of matches
n ¼ 1 19 21 20
n ¼ 2 23 20 20
n ¼ 3 19 25 20
n ¼ 4* 20 16 20
n ¼ 5 20 18 20

*Preferred parameter setting in the finally selected detector.
(a) Summary of parameter settings returning the 80 highest detection
rates, while at the same time showing tropomyosin false alarm estimates
below 10%; (b) Summary of parameter settings producing the 80 highest
detection levels, regardless of associated tropomyosin false alarm estimates;
(c) Summary of parameter settings providing tropomyosin false alarm
estimates below 10%, regardless of the associated detection performances.
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and parvalbumins DFLAP was the only method to predict
non-allergen protein family members outstandingly well
(Figure 4). Also for profilins DFLAP performed reasonably
well. In contrast, none of the comparator methods for

allergenicity detection, except for ILSI/IFBC and DASARP
in the case of profilins only, managed to qualify decently in
this test (Figure 4). Thus, DFLAP represents a significant
advancement as being the first in silico detector reported
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Figure 2. Length distribution of the final FLAP set based on 762 allergens (minimal peptide length, lmin ¼ 22 and FLAP threshold ¼ 48). Of all FLAPs 50% are
of length 28 or shorter (left part of dotted line) and 80% of length 41 or shorter (left part of dashed line).

Figure 3. BC intervals (95%) of the unknown detection performance of the four tested methods using different levels of maximal sequence identity between
training and test set. Clearly, the detection performance of the FAO/WHO method is much better than the other three but as shown in Figure 4, the corresponding
false alarm rates make this approach useless. The DFLAP parameter setting was lmin ¼ 22, FLAP threshold ¼ 48, n ¼ 4 and C ¼ 100.
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capable of accurate discrimination between allergens and
non-allergens within several protein families.

DISCUSSION

Protein structural similarity (and difference) is an established
fundament to understanding sensitization and cross-reactivity
in allergy. In recent years, comparative scrutiny of plant
food allergens has indicated that a predominant part of
them fall within relatively few protein superfamilies (12,14).
A highly biased distribution of plant food allergens across
the protein structure universe is reported: about two-thirds
of such molecules were found to occur in only four protein
families (13). Analogously, pollen allergens are also confined
to a small fraction of all known plant protein families (44).
With a view to these findings a decent overall performance
of allergen detectors is not unexpected for methods founded
solely on similarity search over rather extended amino acid
sequence segments, as typified by the FAO/WHO alignment
procedure. Although many major allergens, such as the birch
pollen allergen Bet v 1 showing high amino acid sequence

similarity to some fruit proteins (e.g. Mal d 1 in apple and
Api g 1 in celery) associated with IgE cross-reactive proper-
ties, there is, however, no universal correlation between
sequence similarity of a protein to an allergen and its ability
to trigger hypersensitivity type I-responses in atopic individu-
als. Hence, a major predicament in detection of allergenic
potential in amino acid sequences is that many members of
protein families known to hold a large proportion of allergens
appear innocuous. This is particularly apparent for certain
protein families holding members of high sequence similar-
ity, but lacking allergenicity conservation, the tropomyosins
being key examples thereof. Conversely, many members of
the cupin superfamily display appreciable conservation of
allergy but are poorly similar at the sequence level (12,45).
In conclusion, algorithms developed to solely recognize
common inter-allergen motifs will, in many instances, target
protein motifs of little or no relevance to allergenicity.
To confront constraints inherently connected with motif
identification, regardless of scan window-size and approaches
for recognition, within allergens only we have developed
a profoundly different course focused on dissimilarities
between allergens and non-offending proteins. We have
earlier reported a prediction system founded on this general
concept (35), but as clearly shown by the performance results,
its full potential requires the several major novel features
presented here.

To accomplish a selective enrichment of motifs, in the
context of protein primary structure, that entail to allergen
property the human proteome served as a vastly predominant
source of amino acid sequences to help constructing the
non-allergen database. Except for certain autoimmune
disorders, typified by multiple sclerosis and systemic lupus

Figure 4. BC intervals (95%) of the false alarms for the four tested methods using (presumed) non-allergens belonging to three different protein families. Clearly,
DFLAP is the only method that is able to discriminate successfully between allergens and non-allergens within the same protein family. The DFLAP parameter
setting was lmin ¼ 22, FLAP threshold ¼ 48, n ¼ 4 and C ¼ 100.

Table 3. Estimated fractions of allergens in the Swiss-Prot database

Method Swiss-Prot (1 64 970 samples) (%)

FAO/WHO 75.4
ILSI/IFBC 6.2
DASARP 3.1
DFLAP* 1.5

*The parameter setting was lmin ¼ 22, FLAP threshold ¼ 48, n ¼ 4 and
C ¼ 100.
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erythematosis, the immune system is generally tolerant to
endogenous proteins. Therefore, we believe the non-allergen
dataset being a conceptually apt target for removal of non-
specific motifs in allergen amino acid sequences, as accomp-
lished by the CPFA procedure. The principle suggesting that
recognized epitopes generally share low similarity to the
host’s proteome has been applied in other areas as well.
For example, Dummer et al. (46) has reported a computa-
tional scanning (using a non-self discrimination principle)
of peptides derived from a melanoma antigen with the pur-
pose of identifying epitopes. Certain allergens are highly dis-
similar from any part of the human proteome. Consequently,
the aforementioned CPFA step will not be able to generate
any appreciable peptide reduction of those amino acid
sequences. To address this problem we have included
amino acid sequences from three additional species within
two separate kingdoms, thereby providing a highly diverse
set of complimentary sequences. Notably, any retrieved entity
tagged with allergy, allergy-related features and proteins
highly similar to them, was discarded prior to deposit in the
non-allergen database. The additional sources are A.fumigatus
(fungus), C.albicans (fungus) and D.pteronyssinus (dust
mite). Their established usage in skin prick tests as whole
extracts provides the rational for their inclusion in the non-
allergen database after removal of reported allergens. Still,
these proteomes are at somewhat higher risk of harboring
non-documented immunogens, relative to the human counter-
part, since only cross-reaction in already sensitized individu-
als can be clinically manifested in skin prick tests. We
believe, however, the risk of contamination of the non-
allergen database, as a consequence of unknown allergens/
immunogens in these proteomes, being marginal. Detection
rates, similar to those of ILSI/IFBC, support this conjecture
(Figure 3). Although sequences from the three additional pro-
teomes represent a very small fraction relative to the human
counterpart their presence markedly affected the FLAP
extraction procedure. For example, the filtration degree (per-
centage of peptides denied to entering the FLAP set) of fungi
allergens increased with 9% when these sequences were
included, as compared to a set based on the human proteome
only (data not shown).

Performance: DFLAP compared with other
bioinformatics methods

DFLAP’s performance, in terms of sensitivity (detection of
allergens), was evaluated with holdout validation as well as
compared with results obtained by bioinformatics test for
allergenicity according to guidelines proposed by FAO/WHO
and ILSI/IFBC as well as to our recently reported DASARP
algorithm. While the point estimates of DFLAP detection
performances are in between those of ILSI/IFBC and
DASARP (20,35) the BC intervals are almost totally overlap-
ping (Figure 3). The BC intervals of FAO/WHO detections
are, however, not overlapping with any of the other two pro-
cedures of comparison. The latter procedure has, however,
attracted much criticism in recent years, from us and other
researches, for being practically useless in testing for poten-
tial allergenicity (27,30,32,35,47), since too many false
alarms are found with this method. This conclusion is further
supported by findings in this study, revealing that >75% of all

proteins occurring in Swiss-Prot were assigned as potential
allergens by the FAO/WHO test procedure (Table 3). Regard-
ing the relative assignment of allergens in Swiss-Prot,
DFLAP showed a markedly lower estimate than any other
method included in the comparative test. The DFLAP esti-
mate (1.49%) is in fact the lowest number yet reported
on this sort of performance test, using Swiss-Prot as an inter-
rogator (32,33).

As outlined above, correct assignment of allergens within
protein families poses an important and difficult challenge
to detectors of potential allergenicity. It is generally accepted
that tropomyosins from invertebrates, such as mites, shellfish
and cockroaches, have the ability to elicit allergic reactions,
whereas those originating from vertebrates are devoid of
this characteristic (43). Actually, a recent report describes
reduced IgE binding of the major shrimp allergen Pen a 1
(tropomyosin) in parallel with the gradual conversion
to vertebrate tropomyosins by targeted substitution of key
amino acid positions (48). In tests for specificity the
DFLAP algorithm clearly outperformed the bioinformatics
methods used here for comparison. Notably, DFLAP cor-
rectly assigned the 121 vertebrate tropomyosins as non-
allergenic, whereas the other procedures produced false
alarm rates of at least �80% (Figure 4). In fact, DFLAP is
the first prediction method proven to be able to classify ver-
tebrate tropomyosins as non-allergens. In the motif-based
prediction algorithm proposed by Li et al. (33), for example,
it is stated that the motifs generated from allergenic tropo-
myosins are specific to family itself rather than the allergen
counterpart. The mammalian parvalbumins and animal profil-
ins included in our tests are not equally well documented on
absence of hypersensitivity reactions in humans, but there is,
however, reason to assign them as highly presumptive non-
allergens. As far as we know there are no recognized aller-
gens in any of these two data subsets. This indicates that
they are suitable for testing the specificity of allergen detec-
tors. In the case of mammalian parvalbumins almost all the
33 samples were classified as allergens, according to either
of the FAO/WHO or ILSI/IFBC in silico protocol, whereas
DASARP showed a false alarm rate near 50% (Figure 4).
In contrast, DFLAP did not assign any of these sequences
erroneously. Regarding the 39 animal profilins, only the
FAO/WHO procedure assigned the vast majority of these pre-
sumed non-allergens as potential allergens, whereas the other
three algorithms had overlapping BC intervals ranging from
5 to 45%. In brief, DFLAP features roughly the same sensi-
tivity as that of either the ILSI/IFBC or DASARP but shows
far better specificity, which is supported by the low estimate
of the allergen frequency in Swiss-Prot. In addition, DFLAP
can distinguish non-allergenic members from protein families
known to hold allergens.

Notably, the method using either 35% sequence identity
or an identical peptide match of eight contiguous amino
acids (in this work referred to as ILSI/IFBC) as criteria for
allergenicity, shows better overall performance than that
based on a similar alignment procedure but an identical
match motif of six amino acids, as recommended by FAO/
WHO. Although the latter shows better sensitivity, it is has
an unrealistic high detection rate (75%) of potential allergens
in the Swiss-Prot database. Even though the DFLAP algo-
rithm presented here and DASARP are founded on motif
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generation by comparison peptides of allergens to non-
allergens rather than to other allergens, it clearly outperforms
the latter procedure in all of the performed tests. We believe
the improvements being partly owing to the introduction
of a supervised learning machine, but the major advance-
ment is likely to stem from the use of a more flexible peptide
set, as compared to DASARP, regarding both peptide
length and number of peptides per allergen. Future work is
required to evaluate the relative influences of the different
factors.

Addressing the issue of homology bias

Dedicated and publicly available repositories of protein
allergens have proven indispensable for the development of
computational methods for detecting allergen potential (49).
In this work, data was mined from several such repositories
and, subsequently to additional scrutiny, deposited in our
in-house catalogue encompassing 762 protein allergen
amino acid sequences. An appreciable part of the publicly
listed allergens, though, occur as isoallergens, i.e. isoforms
of the same allergenic protein. Relatively few allergens asso-
ciate with many reported iso-forms, a considerably larger
number have a few variants, whereas the majority of aller-
gens occur as non-redundant forms. This representation
may not, though, reflect the actual occurrence of allergen
isoforms, because certain widely known sources of allergy
are likely to have spewed targeted investigations on their res-
pective proteins. In our allergen sequence archive there are,
for example, more than 40 reported variants of the Bet v 1
birch pollen allergen; these variants may spread randomly
into the design and validation sets. This sort of similarity
also occurs across species boundaries. It is thus evident that
this situation may substantially influence estimates of aller-
gen detector performance. For example, an allergen amino
acid sequence used for detector design, in conjunction with
another isoform occurring in a performance evaluation set
of examples, will inevitably facilitate the accurate identifi-
cation of the latter. Thus, if redundant datasets are used in
the design and validation of a detector, there is ample risk
of obtaining overly optimistic performance estimates. This
potential bias is well-known in most protein function pre-
diction fields and removal of redundancy in datasets is
commonly a standard operation prior to evaluation of per-
formance. This issue has, however, not been extensively dis-
cussed in the literature in the context of allergen prediction
and, as reported by Aalberse (50), many such studies have
not taken this potential source of bias into consideration. In
one of our earlier work (51), outlining a different allergen
prediction approach (31) from that described here, a global
sequence identity limit at 67% was employed to obtain non-
redundant datasets. This limit can be regarded as an extension
of one of the criteria for isoallergenicity, as proposed by
WHO/IUIS Allergen Nomenclature Subcommittee (41).

In this work we have tackled the aforementioned iso-
allergen dilemma by a step-wise reduction of sequence homo-
logy allowed. As illustrated in Figure 3, it is evident that
detection rate estimations decline with decreasing redun-
dancy in the dataset. Thus, current computational algorithms
(including DFLAP), which are directed at searching for
resemblance in sequence/structure to known allergens, are

appropriate for predicting IgE-binding, but may less effi-
ciently identify protein allergens that are highly dissimilar
to those already known. It should be noted, however, that
in contrast to many other protein function/structure problems,
moderately high sequence identity to an allergen does not
directly implicate allergenicity of the query protein. This is
most conspicuous in the case of tropomyosins, showing high
sequence similarity between allergens and non-allergens.
With a too low sequence identity redundancy threshold, the
performance validation may result in overly poor detection
estimates. Accordingly, as it presently stands there is no gen-
eral rational to help identifying an exact sequence identity
redundancy threshold for validation of detectors of allergenic
potential.

Parameter evaluation and the resulting FLAP set

We have recently described a source of bias that sometimes
is overlooked in performance evaluation of computational
algorithms for protein function/structure prediction (51).
The problem arises when parameter tuning is not kept apart
from performance evaluation in the validation process,
which results in a biased performance estimate of the finally
selected classifier. In the above mentioned study we proposed
a double CV loop procedure wherein the internal one is used
for parameter selection and the external for performance
evaluation. The finally obtained external CV estimate(s)
shows the robustness (or lack of robustness) of the total
design procedure when tested on different datasets. While
we in this work are interested in the accuracy of a single
final detector, designed with settings as selected from the
CV procedure, we have used holdout validation for per-
formance evaluation rather than an external CV loop. This
approach, which does not principally deviate from that
referred to above (51), made it easier to compare the per-
formance of DFLAP with those of some earlier reported
bioinformatics algorithms.

As revealed by results listed in Table 2, the lowest limit for
FLAP length lies in a narrow (four amino acids) range of
�20 amino acid residues. A detrimental impact of shorter
lengths on accuracy regarding both classification of allergens
(Table 2, column b) and non-allergenic tropomyosins
(Table 2, column c) is evident. For a short minimal peptide
length, e.g. five amino acids, almost all sliding-window
penta-peptides will find a perfect match against the non-
allergen database. If all peptides, either truly specific for
allergy or truly not, would obtain roughly the same score it
would be extremely difficult to identify peptides suitable
for selection to the FLAP set. Some peptides truly specific
for allergy would be rejected, whereas several of those
unspecific in this context would be selected, resulting in a
low-quality FLAP set. The low occurrence frequencies
regarding shorter peptide lengths, listed in Table 2, supports
this assumption. On the other hand, too extended lengths may
imply high risk of relatively short segments, such as T-cell
epitopes or linear IgE-epitopes, to escape detection. The
reported length of such motifs range from 6 to �20 amino
acid residues, commonly 6–10 for linear segments of IgE-
motifs and 9–20 for T-cell epitopes (7,52–56), the upper
limit extending to the minimum FLAP lengths considered
here. Potential future experiments to assess the potential
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role in allergenicity of specific FLAPs, could include in vitro
testing, such as IgE-binding assays of FLAPs against sera
from patients sensitized to the corresponding allergen,
or comparison to experimentally verified epitopes. The
work described in this article, however, is focused on
the development and validation of a practical detector for
protein allergens, rather than on structural modeling and/or
functional identification of protein segments. Therefore, we
have refrained from exhaustive testing of the nature of
FLAPs, in terms of epitope or otherwise functional motifs.
Moreover, we believe that a purpose oriented towards identi-
fication of allergen epitopes, in preference of high perfor-
mance detection of allergens, should involve tuning of
CPFA parameters based on different selection criteria, rather
than those described and used in this work.

The alignment scores, derived from comparison to the
non-allergen database and which are to be balanced to the
FLAP threshold, are length-dependent. Hence, different
FLAP thresholds were needed to compensate for peptide
length variation and, accordingly, the threshold was adjusted
to confine the proportion of discarded overlapping sliding-
window peptides (percent retention) to roughly 45, 55, 65,
or 75%. Intuitively, extensive filtration should increase the
risk of rejecting peptides important for allergy. As demon-
strated by comprehensive testing of parameters dictating
high/low detector performance, a high filtration degree did
not comply with good accuracy (Table 2, columns a and b).
On the other hand, relaxed filtration would also make it
harder to assign non-allergens correctly, since it imparts
higher risk of incorporating peptides unrelated to allergy
into the FLAP set. The occurrence frequency of the lowest
retention level (45%) seems to be slightly lower than the
others (Table 2, column c), although the differences are rather
small (21% as compared with 26 and 27% frequency). The
lower relative occurrence (48% as compared with 63% fre-
quency) at a retention level of 45% amongst the 80 top-
ranked settings fulfilling the tropomyosins false alarm level
criterion (Table 2, column a), compared with the best 80
settings regardless of this criterion (Table 2, column b),
further support association between low filtration degree
and poor DFLAP ability to discriminate among allergen/
non-allergen tropomyosins.

The parameter selection process revealed an appreciable
influence of the SVM cost (or regularization) parameter C
on detection performance (Table 2, columns a and b). How-
ever, the level of false alarm among non-allergenic vertebrate
tropomyosins appeared to be quite insensitive to changes of C
(column c). Whereas the sampling of values for C were rather
sparse (step-wise increments by a factor of 10), a more
refined search was employed around the value of C occurring
in the best parameter setting, while other optimized parame-
ters were kept constant. We found, however, no divergence at
all between results from the SVMs based on different values
of C (data not shown). Whether we will get relatively few
or many training errors for a given value of the parameter
C cannot be predicted; it will depend on the particular
dataset used. Moreover, this kind of SVM design only
involves a penalty associated with misclassification regard-
less of whether it represents escaped detection or false
alarm. Thus, the SVM design procedure itself is not explicitly
designed to minimize the number of misclassifications or

to balance the two plausible types of misclassifications.
Therefore, the fact that detection performance but not
false alarm rate seems to be sensitive to the parameter C
in Table 3 indicates that the actual SVM learning algorithm
used is biased towards minimization of missed detections,
rather than on minimization of false alarm in this particular
application of allergen detection. Adapting the SVM learning
algorithm to high susceptibility to false alarm rate is certainly
interesting, but not further elaborated on in this article.

Seemingly, (Table 2) the number of best matches (align-
ment scores), n, of a query sequence against the FLAP is a
parameter with low influence on detection and false alarm.
While allergens have multiple epitopes, the appearance of
roughly equal relative frequencies of the single best match
(n ¼ 1) and other settings (n ¼ 2, 3, 4, 5) for optimal classi-
fication may appear unexpected. A minimal-length FLAP,
though, holds 22 amino acid residues and, as illustrated in
Figure 2, 50% of all FLAPs encompass 29 residues or
more, i.e. a single FLAP could principally embrace multiple
epitopes. In addition, we do not claim the FLAPs to be truly
defined epitopes; they may also hold other kinds of structural
motifs indirectly important to allergenicity. The use of a
supervised machine learning algorithm may seem to be super-
fluous in the special case when only one score value (n ¼ 1)
against the FLAP set is used to represent a protein’s feature
vector, since the resulting decision surface will only corre-
spond to a simple point threshold. Nonetheless, the ultimately
selected—thereby highest ranked—detector is founded on
four score values. Moreover, consistency in the design proce-
dure during parameter evaluation is maintained by taking
advantage of the SVM for all values of n.

CONCLUSIONS

A large body of computational methods for in silico detection
of allergens has been reported. Until now, however, none of
them have been successful with respect to overall specificity
as well as discrimination between allergens and non-allergens
in particularly challenging homologous protein families, such
as the tropomyosins. For the first time, this work shows that
it is possible to design new computational detectors that
successfully confront both these problems. In particular, one
such detector, designated DFLAP, has been presented that
extracts and employs allergen representative peptides with
variable lengths for sequence feature extraction and uses
modern machine learning techniques for detector design.

The significant improvements of DFLAP may be illustrated
by a careful methodological comparison with DASARP, a
detector that has been reevaluated in this article and relies
on extraction and employment of fixed length peptides for
feature extraction and a simple decision procedure. The
results of this comparison indicate that the significant
improvements rely on a combination of biologically more
relevant features owing to flexible peptides and improved
fine-tuning of the computational decision process, as accomp-
lished by the modern machine learning employed.
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