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Abstract: Parkinson’s disease (PD) is neuropathologically characterized by the loss of dopaminergic
neurons and the deposition of aggregated alpha synuclein (aSyn). Mounting evidence suggests that
neuritic degeneration precedes neuronal loss in PD. A possible underlying mechanism could be
the interference of aSyn with microtubule organization in the neuritic development, as implied by
several studies using cell-free model systems. In this study, we investigate the impact of aSyn on
microtubule organization in aSyn overexpressing H4 neuroglioma cells and midbrain dopaminergic
neuronal cells (mDANs) generated from PD patient-derived human induced pluripotent stem cells
(hiPSCs) carrying an aSyn gene duplication (SNCADupl). An unbiased mass spectrometric analysis
reveals a preferential binding of aggregated aSyn conformers to a number of microtubule elements.
We confirm the interaction of aSyn with beta tubulin III in H4 and hiPSC-derived mDAN cell
model systems, and demonstrate a remarkable redistribution of tubulin isoforms from the soluble
to insoluble fraction, accompanied by a significantly increased insoluble aSyn level. Concordantly,
SNCADupl mDANs show impaired neuritic phenotypes characterized by perturbations in neurite
initiation and outgrowth. In summary, our findings suggest a mechanistic pathway, through which
aSyn aggregation interferes with microtubule organization and induces neurite impairments.

Keywords: alpha-synuclein; SNCA duplication; Parkinson’s disease; microtubule; neurite; iPSC;
neurodegeneration

1. Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder
worldwide, clinically hallmarked by motor symptoms, such as bradykinesia, rigidity,
and resting tremor. Neuropathologically, PD is characterized by the progressive loss of
dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain and the
deposition of intracellular inclusions, referred to as Lewy bodies and Lewy neurites within
neuronal cell bodies and processes, respectively [1]. The characterization of Lewy pathology
revealed that the protein alpha synuclein (aSyn), in conjunction with other deposited
proteins, lipids and organelles, is one of the main components of Lewy inclusions [2,3].
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aSyn is a small intracellular protein with a molecular weight of 14 kDa. The protein is
abundantly expressed in neurons and localized in the cytoplasm, presynaptic terminals, and
nucleus [4]. Initial genetic evidence unequivocally linked aSyn point mutations in the aSyn
gene (SNCA, former Park 1 and Park 4) or multiplications (duplication or triplication) of
the SNCA gene locus to monogenic PD [5]. The involvement of aSyn in the pathogenesis of
PD was further substantiated by the finding of aSyn deposition in the brain of patients with
sporadic PD [3]. Intensive research in recent decades provided the evidence that aSyn exists
in aggregated forms in Lewy inclusions, and abnormal aSyn aggregation in conjunction
with its deleterious effects plays a pivotal role in both PD pathogenesis and progression.

Given the unique function and shape of neurons, axonal homeostasis and transport are
important in maintaining neuronal function and connectivity. Axonal activity is particularly
essential for neurons with long-range projections, such as dopaminergic neurons within the
nigrostriatal pathway. Mounting evidence suggests that axonal degeneration temporally
precedes perikaryon loss and, thus, reflects an early cellular pathological event in PD [6,7].
Moreover, aSyn was shown to be involved in axonal degeneration associated with PD.
For example, Koch et al. reported affected neurite morphology and axonal transport
in rat primary midbrain neurons overexpressing wild type and mutant aSyn induced
by viral transduction [8]. In agreement with these findings in rodent-derived neurons,
we observed a severely impaired axonal transport in human cortical projection neurons
(CPNs), differentiated from human induced pluripotent stem cells (hiPSC) derived from a
PD patient carrying a duplication of the SNCA gene locus (SNCADupl) [9]. Moreover, we
demonstrated a deleterious effect of aSyn oligomers in triggering axonal transport deficits
via the overexpression of oligomer-prone aSyn mutants in hiPSC-neurons.

The microtubule, a polymer of beta tubulin (bTub) and alpha tubulin (aTub), is one
of the core elements of the eukaryotic cytoskeleton [10]. The dynamic assembly of mi-
crotubules from heterodimers of aTub and bTub plays the central role in neuritogenesis
and neurite function [10]. One possible explanation for aSyn-mediated neuritic deficits,
as we observed in PD patient-derived neurons [9], could be the interference of aSyn with
microtubule dynamics. Indeed, several studies, mostly based on cell-free experiments,
have provided hints about the interaction of aSyn and microtubule dynamics [11,12]. Re-
cently, we characterized hiPSC-derived neurons from SNCADupl patients and compared the
phenotypes of SNCADupl carrying midbrain dopaminergic neuronal cells (mDANs) and
CPNs with those from control mDANs and CPNs [13]. We showed that increased SNCA
dosage is linked to elevated levels of aggregated aSyn and reduced viability, specifically
in SNCADupl mDANs, recapitulating therefore PD pathology in patient-derived mDANs.
Interestingly, we observed a remarkable reduction in beta tubulin III (bTubIII), a neuronal
beta tubulin isoform, in SNCADupl mDANs. According to these converging findings, we
postulate that aSyn aggregation impacts microtubule dynamics and neurite homeostasis,
contributing furthermore to neuritic deficits associated with PD.

In this study, we made use of aSyn overexpressing H4 neuroglioma cells and neural
cell models generated from hiPSCs derived from a PD patient carrying SNCADupl to ad-
dress the interference of aSyn with the microtubule network. Our results reveal a direct
interaction of aSyn, in particular its aggregated forms, with microtubule elements. We
further described a link between elevated aSyn levels and aggregation, disturbed tubulin
distribution, and impaired neurite morphology. These findings provide an insight into
the molecular mechanism, through which degeneration of PD patient-derived neurons
might occur.

2. Results
2.1. aSyn Overexpression Leads to Its Aggregation and Promotes Its Interaction with
Microtubule Elements

In order to investigate the interference of aSyn, in particular its aggregated forms,
with the microtubule network, we employed two different H4 neuroglioma cell lines
overexpressing aSyn, H4-aSyn cells and H4-aSyn tet-off cells, and their low aSyn expressing
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counterparts, naïve H4 cells and H4-aSyn tet-off cells treated with doxycycline (H4-aSyn
tet-off+Dox), respectively. Both H4-aSyn and H4-aSyn tet-off cells are characterized by an
overall high total aSyn level when compared to naïve H4 and H4-aSyn tet-off+Dox cells,
respectively (H4-aSyn vs. naïve H4, fold change: 10.1 ± 2.5, * p < 0.05; H4-aSyn tet-off
vs. H4-aSyn tet-off+Dox, 2.2 ± 0.6 * p < 0.05) (Figure 1A). aSyn overexpression is a well-
known risk factor for abnormal aggregation of aSyn, initiated by its conformational changes
during the aggregation process. Using non-denaturing dot blot analysis combined with
a conformation-specific antibody MJFR-14-6-4-2 with a strong immunoreactivity toward
aggregated aSyn [14], we observed a remarkably elevated aSyn aggregation in H4-aSyn
cells. In contrast, aggregated conformers were almost not detectable in naïve H4 cells.
Concordantly, the high aSyn H4 tet-off cell line also showed a higher level of the aggregated
aSyn conformers, which was decreased by doxycycline-dependent aSyn downreguation
(H4-aSyn tet-off vs. H4-aSyn tet-off+Dox: 2.4± 0.4, * p < 0.05). In total, both H4 cell systems
revealed a propotional increase in aggregated aSyn linked to aSyn overexpression.

Previous studies have shown that aSyn is capable of directly binding to microtubules
and tubulins [15]. To confirm this interaction, we performed an immunoprecipitation of
aSyn from H4-aSyn cells with an aSyn antibody (Syn1), whereby the co-precipitation of
bTubIII and aSyn was observed (Figure 1B). The binding affinity was assessed via immuno-
precipitation using detergents of different strengths (Figure 1B). The co-precipitation of
aSyn and bTubIII was observed, even when using RIPA buffer, containing harsh detergents,
indicating a strong binding between aSyn and bTubIII. Furthermore, Tau, a microtubule
associated protein, was also co-precipitated with aSyn, further indicating the interaction of
aSyn with microtubules.

We next questioned whether aSyn conformers differentially bind microtubule elements.
We carried out immunoprecipitation of aSyn by using a pan-aSyn antibody (Syn211), and a
conformation-specific antibody (MJFR-14-6-4-2), followed by the liquid chromatography
coupled mass spectrometric (LC-MS) analysis of co-precipitated, aSyn interaction proteins.
A comparison of total aSyn (Syn211) and aggregated aSyn (MJFR-14-6-4-2) interaction
partners identified various bTub isoforms, including bTubIII, as well as several microtubule
factors, preferentially interacting with the aggregated aSyn conformers (Figure 1C). The LC-
MS analysis substantiated the existence of an aSyn-microtubule interaction. Importantly, it
is aggregated aSyn that interacts preferentially with tubulins and other microtubule factors.

2.2. Insoluble aSyn Is Associated with the Redistribution of Microtubule Elements

Several cell-free studies have provided the hint that aSyn is involved in microtubule
nucleation and dynamics [11,12]. We next explored if aSyn overexpression interferes with
microtubule organization. We performed an in-cell fractionation approach as described
by Katsetos et al. [16], by which insoluble, microtubule-associated elements were enriched
and separated from the soluble, microtubule-unbound cell fraction (Figure 2A). Cell frac-
tionation revealed a redistribution of aSyn from soluble fractions to insoluble fractions
in H4-aSyn cells compared to naïve H4 cells (Figure 2B), verifying an increased aSyn
aggregation under aSyn overexpressing conditions.

In both naïve H4 and H4-aSyn cells, we detected a substantial amount of bTubIII in the
soluble (microtubule-free) and insoluble (microtubule-associated) pools. A redistribution
of bTubIII between soluble and insoluble fractions was not clearly detected in aSyn overex-
pressing H4-aSyn cells (Figure 2C). However, the level of acetylated aTub, which is essential
for stabilizing assembled microtubules, in insoluble fractions, was significantly enhanced.
Collectively, our results from the H4 cell models suggest that aSyn overexpression induces
its aggregation and increases the interaction of its aggregated conformers with microtubule
elements and organization.



Int. J. Mol. Sci. 2022, 23, 1812 4 of 21

Int. J. Mol. Sci. 2022, 23, 1812 3 of 21 
 

 

2. Results 
2.1. aSyn Overexpression Leads to Its Aggregation and Promotes Its Interaction with 
Microtubule Elements  

In order to investigate the interference of aSyn, in particular its aggregated forms, 
with the microtubule network, we employed two different H4 neuroglioma cell lines 
overexpressing aSyn, H4-aSyn cells and H4-aSyn tet-off cells, and their low aSyn 
expressing counterparts, naïve H4 cells and H4-aSyn tet-off cells treated with doxycycline 
(H4-aSyn tet-off+Dox), respectively. Both H4-aSyn and H4-aSyn tet-off cells are 
characterized by an overall high total aSyn level when compared to naïve H4 and H4-
aSyn tet-off+Dox cells, respectively (H4-aSyn vs. naïve H4, fold change: 10.1 ± 2.5, * p < 
0.05; H4-aSyn tet-off vs. H4-aSyn tet-off+Dox, 2.2 ± 0.6 * p < 0.05) (Figure 1A). aSyn 
overexpression is a well-known risk factor for abnormal aggregation of aSyn, initiated by 
its conformational changes during the aggregation process. Using non-denaturing dot 
blot analysis combined with a conformation-specific antibody MJFR-14-6-4-2 with a 
strong immunoreactivity toward aggregated aSyn [14], we observed a remarkably 
elevated aSyn aggregation in H4-aSyn cells. In contrast, aggregated conformers were 
almost not detectable in naïve H4 cells. Concordantly, the high aSyn H4 tet-off cell line 
also showed a higher level of the aggregated aSyn conformers, which was decreased by 
doxycycline-dependent aSyn downreguation (H4-aSyn tet-off vs. H4-aSyn tet-off+Dox: 
2.4 ± 0.4, * p < 0.05). In total, both H4 cell systems revealed a propotional increase in 
aggregated aSyn linked to aSyn overexpression.  

 
Figure 1. Interaction of aSyn and tubulin in aSyn overexpressing H4 cells. (A) Dot blot analysis of 
total aSyn and aggregated aSyn in aSyn overexpressing H4 cell models (high aSyn: H4-aSyn and 
H4-aSyn tet-off cells) and their respective low aSyn expressing cell lines (low aSyn, naïve H4 cells 

Figure 1. Interaction of aSyn and tubulin in aSyn overexpressing H4 cells. (A) Dot blot analysis
of total aSyn and aggregated aSyn in aSyn overexpressing H4 cell models (high aSyn: H4-aSyn
and H4-aSyn tet-off cells) and their respective low aSyn expressing cell lines (low aSyn, naïve H4
cells and H4-aSyn tet-off+Dox). Total aSyn levels were determined by using a pan aSyn antibody
Syn 1, while the levels of aggregated aSyn conformers (aggr. conformer) were assessed by using
a conformation-specific antibody MJFR-14-6-4-2. Both aSyn overexpressing cell lines (high aSyn)
exhibit higher levels of aSyn aggregates when comparted to their respective low aSyn counterparts.
Total protein loaded was controlled by direct blue staining (shown in Supplementary Figure S1). For
quantification, the fold change in aSyn level in a high aSyn cell line was calculated by normalization
against total protein (direct blue) and the average level in the corresponding low aSyn cells (n = 4).
Statistics: Mann–Whitney test; * p < 0.05. (B) Immunoprecipitation of aSyn from H4-aSyn cells using
a pan aSyn antibody Syn1. bTubIII and Tau are co-precipitated. For immunoprecipitation, a buffer
without detergents (TBS, a), buffers containing non-ionic milder detergents (TBS + 1% Triton X 100, b
or TBS + 1% NP40, c), or a buffer containing stronger detergents (RIPA, d) were used. bTubIII and
Tau are detectable in all conditions. (C) Mass spectrometric identification of proteins co-precipitated
with aSyn in H4-aSyn tet-off cells. Co-immunoprecipitation was performed by using the pan aSyn
antibody Syn211 or the conformation-specific anti-aSyn antibody MJFR-14-6-4-2. Volcano plots of
co-precipitated proteins identified by mass spectrometry are shown (left: proteins co-precipitated
with Syn211, right: proteins co-precipitated with MJFR-14-6-4-2). Significant proteins from two
independent experiments are over the solid lines. Identified microtubule-associated proteins are
highlighted by their gene ID and listed in the table. A two-tailed t-test was performed in Perseus
(1.6.10.43) using a permutation-based FDR to account for the multiple testing hypothesis (technical
injection replicates were preserved during randomization). Candidates were filtered using an FDR of
1% and a fold change (s0) of 2.
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Figure 2. Impact of aSyn overexpression on microtubule organization. (A) Scheme of in-cell fraction-
ation approach for separation of soluble (S) and insoluble, microtubule-associated fraction (IS-MT).
(B,C,E) WB images (left) and quantification (right) of aSyn (B), bTubIII (C), and acetylated aTub (Acet.
aTub, E) in S and IS-MT fractions extracted from H4 naïve and H4-aSyn cells. For quantification, the
ratio of aSyn, bTubIII or acetylated aTub in the IS-MT versus the S fraction was calculated and values
from three experiments were used (n = 3). aSyn overexpression in H4 cells leads to a shift of aSyn
and acetylated aTub into IS-MT pools. Statistics: unpaired t-test; * p < 0.05. (D,F) WB analysis of
total bTubIII (D) and acetylated aTub levels (F) in H4 naïve and H4-aSyn cells. Fold changes were
calculated by normalization against Ponceau intensity (shown in Supplementary Figure S2) and the
average level of H4 naïve cells (n = 4). The values are shown as mean± SD. Statistics: Mann–Whitney
test; * p < 0.05.

We next sought to explore whether the redistribution of acetylated aTub is associated
with a changed protein level. We analyzed total protein levels of bTubIII and acetylated
aTub by WB analysis (Figure 2D,F). The acetylated aTub levels were unchanged in H4-
aSyn compared to naïve H4 cells (Figure 2F). In contrast, bTubIII levels were significantly
increased in aSyn overexpressing H4-aSyn cells (Figure 2D). Thus, our result does not
support a clear association between the levels of these tubulins and their redistribution.
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2.3. SNCA Duplication Leads to an Increased aSyn Protein Level in hiPSC-Derived NPCs and
Neuronal Cells

We next asked whether the observed interaction between aggregated aSyn and micro-
tubule elements and organization in H4 cell models is also relevant to PD. For this, we made
use of hiPSC-lines derived from a PD patient with a heterozygous SNCADupl, and compared
the phenotypes in SNCADupl neural cells with those in hiPSC-derived cells from two healthy
donors. To generate mDANs from hiPSC, we applied a small molecule-based protocol
developed by Reinhardt et al. [17] that is well established in our previous studies [13,18,19].
hiPSC differentiation involved the derivation of hiPSCs to the formation of embryoid
bodies (EBs), the expansion and differentiation of NPCs, and the maturation of mDANs
(Supplementary Figure S3A,B). Immunocytochemical (ICC) analysis revealed expression of
the neural progenitor markers nestin and Sox2 in NPCs (Supplementary Figure S3C). In
mDANs, the neuron-associated bTub isoform bTubIII, the presynaptic marker synapsin I,
and the markers for dopamine synthesis, such as tyrosine hydroxylase (TH) and DOPA
decarboxylase (DDC), showed a maturation-dependent increase, as determined either by
ICC or Western blot (WB) (Supplementary Figure S3D–G), indicating an expression of
characteristic markers for mDANs. In line with our early findings in other SNCADupl hiPSC-
derived neuronal cells [9,13], we detected a significantly higher aSyn level in SNCADupl

-derived cells, either in NPCs or in mDANs differentiated for 10 days, when compared to
control donor-derived cells (Figure 3, NPCs: average 2.3-fold increase, ** p < 0.01; mDANs:
average 1.9-fold increase, * p < 0.05), confirming thereby SNCADupl-mediated aSyn overload
in SNCADupl patient-derived neural cells.
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derived mDANs from another SNCADupl patient [13], therefore we also analyzed bTubIII 
levels in NPCs and mDANs derived from SNCADupl hiPSC lines enrolled in this study by 
WB. By using the same neuronal differentiation protocol, we again detected a significant 
decrease in bTubIII levels in SNCADupl mDANs differentiated for 10 days compared to 
control mDANs (Figure 4A,B, average 0.8 fold decrease, * p < 0.05, Supplementary Figure 
S4A). This effect was remarkably stronger in mDANs at a more advanced differentiation 
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p < 0.05). Notably, bTubIII downregulation was only observed in mDANs. No significant 
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Figure 3. aSyn levels in SNCADupl patient-derived cells. Representative WB images (left) and the
quantification (right) of aSyn levels in NPCs as well as in mDANs differentiated for 10 days, which
were generated from healthy controls (Ctrl) and the duplication patient (Dupl), respectively. aSyn
levels are significantly higher in SNCADupl NPCs and mDANs compared to control cells. Relative
levels were calculated by normalization against Ponceau intensity and the level of a control line in
each differentiation round. The values are shown as mean ± SD. Values from two control lines as
well as two SNCADupl lines and three independent differentiation rounds per line were used for the
quantification (n = 3/line). Statistics: Mann–Whitney test; * p < 0.05, ** p < 0.01.

2.4. The Level of Tubulins Is Decreased in mDANs Carrying SNCADupl

In our previous study, we demonstrated a significant reduction in bTubIII in hiPSC-
derived mDANs from another SNCADupl patient [13], therefore we also analyzed bTubIII
levels in NPCs and mDANs derived from SNCADupl hiPSC lines enrolled in this study by
WB. By using the same neuronal differentiation protocol, we again detected a significant
decrease in bTubIII levels in SNCADupl mDANs differentiated for 10 days compared to con-
trol mDANs (Figure 4A,B, average 0.8 fold decrease, * p < 0.05, Supplementary Figure S4A).
This effect was remarkably stronger in mDANs at a more advanced differentiation stage
(differentiated for 24 days, Supplementary Figure S4B, average 0.6-fold decrease, * p < 0.05).
Notably, bTubIII downregulation was only observed in mDANs. No significant differences
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in bTubIII levels were present between control and SNCADupl NPCs (Figure 4A,B). Analysis
of bTubIII mRNA levels via reverse transcription polymerase chain reaction (RT-PCR) did
not significantly differ between control and SNCADupl cells at any differentiation stage
(Supplementary Figure S4C), suggesting that the loss of bTubIII occurs at the protein level.
In addition to bTubIII, we also detected a significant reduction in the acetylated aTub
level in mDANs (Figure 4C,D). Furthermore, a significant increase in beta actin (bActin),
a further essential molecular component of the cytoskeleton, was detected in SNCADupl

mDANs (Figure 4E,F). In summary, diminished levels of microtubule building elements
and elevated levels of bActin suggest a specific dynamic rearrangement pattern of the
cytoskeleton during PD-related neuronal differentiation.
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Figure 4. Expression levels of cytoskeletal proteins in SNCADupl patient-derived cells. Representative
WB images and the quantification of bTubIII (A,B), acetylated aTub (acet. aTub) (C,D) and bActin
(E,F) levels in NPCs as well as mDANs after differentiation for 10 days, generated from healthy
controls (Ctrl) and the SNCADupl patient (Dupl), respectively. bTubIII and acetylated aTub levels are
significantly reduced in mDANs carrying SNCADupl as compared to control mDANs from healthy
individuals, while bActin levels are significantly increased in SNCADupl mDANs. Relative levels
were calculated by normalization against Ponceau intensity and the level of a control line in each
differentiation round. The protein loading control with Ponceau staining for bTubIII is shown in this
figure. Ponceau staining for acetylated aTub and bActin is provided in Supplementary Figure S4A.
The values are shown as mean ± SD. Values from two control lines as well as two SNCADupl lines and
three independent differentiation rounds per cell line were used for the quantification (n = 3/line).
Statistics: Mann–Whitney test; * p < 0.05.

2.5. bTubIII Is Redistributed in SNCADupl mDANs

In mDANs, we also performed immunoprecipitation of aSyn and were able to de-
tect bTubIII in immunoprecipitated produces, thereby confirming the interaction of aSyn
with bTubIII in the hiPSC-derived neuronal cell system (Figure 5A). After having con-
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firmed elevated aSyn levels and aSyn-bTubIII interaction in SNCADupl patient-derived
cells, we next asked whether the effect of aSyn overload on redistribution of aSyn and
microtubule elements observed in the H4-aSyn cell model (Figure 2) can be recapitulated
in patient-derived mDANs. Applying in-cell fractionation as depicted in Figure 2A, we
again observed elevated aSyn levels in insoluble, microtubule-associated fractions from
SNCADupl mDANs compared to the levels of control mDANs (Figure 5B,C), indicating an
increased aggregation of aSyn. To further corroborate the association of aSyn overload with
its aggregation, we analyzed aSyn aggregation in NPCs by a solubility assay, in which solu-
ble and insoluble aSyn were separated by centrifugation at 100,000× g for 1 h. We observed
an increase in insoluble aSyn in SNCAdupl NPCs compared to control NPCs (Supplementary
Figure S5), suggesting that aSyn aggregation already occurs at the NPC stage.
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Figure 5. Interaction of aSyn and bTubIII and their reorganization in SNCADupl mDANs. (A) WB
analysis of immunoprecipitation of aSyn from hiPSC-derived mDANs differentiated for 10 days by
using an anti-aSyn antibody (Syn1). bTubIII is co-precipitated with aSyn. (B) In-cell fractionation
of control and SNCADupl mDANs and WB analysis of aSyn and bTubIII in soluble (S) and insoluble,
microtubule-associated (IS-MT) fractions. Representative WB images of three experiments (#1, #2, #3)
with mDANs from one control and one SNCADupl hiPSC cell line are shown. Note, due to a strong
dilution effect after immunoprecipitation and in-cell fractionation, transferred aSyn on the blots
shown in (A,B) was only visible by loading the maximum volume onto SDS-PAGE gels and using
the SuperSignal™ West Femto Maximum Sensitivity Substrate kit (Thermo Fisher Scientific). (C) For
quantification, the ratio of bTubIII or aSyn in the IS-MT versus the S fraction was calculated. Values
from one control line as well as one SNCADupl line and three independent differentiation rounds per
cell line were used for the quantification (n = 3/line). aSyn overexpression in hiPSC-neurons leads to
a shift of aSyn and bTubIII into the IS-MT pool. Statistics: unpaired t-test; * p < 0.05; ** p < 0.01.

Most importantly, in-cell fractionation revealed a proportional increase in the mi-
crotubule element, bTubIII, in the insoluble fraction extracted from SNCADupl mDANs
compared to control mDANs (Figure 5B,C). Again, these data support a reorganization of
the microtubule elements in patient-derived neuronal cells with an abnormal increase in
aSyn levels.

2.6. Increased aSyn Perturbs Neurite Morphology Already in an Early Differentiation Stage

In primary rat midbrain neurons, forced aSyn overexpression via viral transduction
has been shown to affect neurite morphology and axonal transport activity [8]. Here,
we questioned whether patient-derived SNCADupl mDANs, with a clinically relevant
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aSyn overload, also display a neuritic phenotype. We focused on mDANs differentiated
for 10 days, an early differentiation stage, as significantly greater differences in aSyn
(Figure 3) and tubulin (Figure 4) levels in control and SNCADupl mDANs, as well as a
redistribution of aSyn and bTubIII in SNCADupl mDANs (Figure 5) were already observed
at this stage. Analysis of the number of primary neurites, projections emanating directly
from the cell body, showed a significant increase in primary neurites in SNCADupl carrying
neurons (Figure 6A). Thickness measurements revealed an increase in neurites with a
diameter < 1 µm in neurons carrying the SNCADupl, indicating a reduction in neurite
thickness in such neurons (Figure 6B). Furthermore, the analysis of neurite outgrowth and
length via Sholl analysis (Figure 6C,D) showed a significant increase in the number of
neurite intersections in the near proximity of the soma (distance to the soma ranging from
10–30 µm) (Figure 6C,E,F left), supporting the conjecture that SNCADupl neurons exhibit a
greater number of short neurites when compared with control neurons. By contrast, the
number of neurite intersections within the long-distance range (30 to 120 µm from the soma)
decreased in SNCADupl neurons (Figure 6C,E,F right). In summary, neurites developed from
SNCADupl mDANs exhibit an increased neurite initiation. However, neurite outgrowth
appears to be hampered in SNCADupl neurons, characterized by diminished length and
thickness in contrast to those of control neurons.
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positive neurons were counted using the “Cell counter” plugin within ImageJ software. The SNCADupl
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neurons show more primary neurites per cell than the control neurons. Total n > 800 neurons in
twelve images per condition were examined. (B) Representative images of bTubIII+ neurons (red)
derived from the control and SNCADupl hiPSC. Neurite diameter was examined by measuring the
diameter of each neurite, where it leaves the cell body using “Straight Line” tool within ImageJ.
Quantification shows an increase in thin neurites with a diameter <1 µm in SNCADupl neurons
compared to control neurons. Microscope images with at least 800 neurites per condition were
examined. For the quantification shown in A and B, average values from two control lines as well as
two SNCADupl lines and three independent differentiation rounds per line were used and are shown
in mean ± SD (n = 3/line). Statistics: Mann–Whitney test; ** p < 0.01. (C–F) Sholl analysis of control
and SNCADupl neurons. (C) Representative micrographs of skeletonized neurons from a control
and SNCADupl neuron, respectively. The nuclei are highlighted by red solid circles and resemble
the center for Sholl analysis on a single cell level. (D) Scheme of Sholl analysis of a skeletonized
neuron with neurites (white) and superimposed centric circles (green). The radius interval between
circles was 3.3 µm per step, ranging from 10 to 250 µm from the center of the neuronal nuclei (red).
(E) The numbers of neurite intersections show a significantly stronger decrease in SNCADupl neurites
compared to the control neurons. For quantification, the number of intersections per neuron was
counted. Mean ± SEM from n = 120 control and SNCADupl neurons, respectively, are shown. For
statistics, the decrease in intersections per cell was determined by the slope decrease in intersections
per cell ranging from 10–250 µm (grey) and the average slope difference between control and PD
neurons (120 neurons, respectively) were evaluated using unpaired t-test (** p < 0.01). (F) Left: In the
near proximity of the soma (distance range 10 to 30 µm, grey), the number of neurite intersections
in SNCADupl neurons is significantly higher than in the control neurons, indicating an increase in
short neurites in SNCADupl neurons. Statistics: two-way ANOVA; * p < 0.05, **** p < 0.0001. Right: at
the long distance range from the soma (30 to 120 µm, grey), the number of neurite intersections in
SNCADupl neurons is lower as compared to control neurons, indicating a decrease in long neurites in
SNCADupl neurons. For statistics, the decrease in intersections per cell was determined by the slope
decrease in intersections per cell ranging from 30 to 120 µm and the average slope difference between
control and PD neurons (120 neurons) was evaluated by unpaired t-test (* p < 0.05).

3. Discussion

In this study, we investigate the impact of aSyn on microtubule organization and
neuritic integrity using aSyn overexpressing H4 cells and hiPSC-derived neuronal cells
generated from a PD patient carrying a heterozygous duplication of the SNCA locus.
Our data suggest a mechanistic link between aSyn overexpression, aSyn aggregation,
altered aSyn-tubulin interaction and microtubule organization, as well as impaired neuritic
integrity in patient-derived neurons.

3.1. aSyn Overload and Its Aggregation

Although the aetiology of PD may be multifactorial, elevated aSyn levels are assumed
to be an important risk factor for aSyn aggregation. This is particularly supported by genetic
evidence that SNCA duplication or triplication alone is sufficient to cause PD [20,21]. Ex-
tending our previous studies on hiPSC-derived neurons (CPNs and mDANs from SNCADupl

PD patients [9,13], we confirm increased aSyn protein levels in hiPSC-derived cells carrying
SNCADupl. An approximately two-fold increase in aSyn protein levels was clearly detected
in NPCs or mDANs differentiated for 10 days (Figure 3), thereby verifying our previous
findings in hiPSC-derived neurons generated from other SNCADupl patients [9,13]. Impor-
tantly, we demonstrate a clear link between a high aSyn level and aSyn aggregation in two
aSyn overexpressing H4 cell lines (Figure 1A), SNCADupl NPCs (Figure 3 and Supplemen-
tary Figure S5) and mDANs (Figures 3 and 5B). aSyn overload-mediated accumulation of
aSyn aggregated species can be explained by overwhelmed protein degradation pathways
and/or increased resistance to protein degradation machineries, as indicated by numerous
studies [22–25].
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3.2. aSyn and Microtubule Organization

The interference of aSyn with the microtubule network has been implied by several
in vitro and in vivo studies, demonstrating that aSyn interacts physiologically directly with
tubulin in Hela cells and in hamsters’ brain homogenates via co-immunoprecipitation
assays (reviewed in [15]). In the present study, we observed a high binding affinity be-
tween aSyn and bTubIII in aSyn overexpressing H4 cells and in SNCADupl mDANs. More
importantly, unbiased proteomic analysis revealed that aggregated aSyn, induced by aSyn
overexpression, exhibits a higher binding capacity for a number of beta tubulin isoforms,
compared to non-aggregated aSyn. These findings highlight the role of aSyn aggregation in
the dysregulation of tubulin homeostasis. Our findings in aSyn overexpressing H4 cells and
SNCADupl mDANs suggest that tubulin dyshomeostasis occurs probably at two different
levels in neurons:

Firstly, aSyn impacts tubulin levels, including bTubIII and acetylated aTub
(Figures 2D,F and 4), either directly or indirectly. A downregulation of bTubIII was ob-
served in the present study and in our previous study, in which mDANs differentiated
from an additional SNCADupl PD patient were characterized [13]. Interestingly, NPCs and
H4-aSyn cells did not show a decrease in bTubIII, despite increased aSyn (Figures 1A and 3)
and aggregation (Figures 1A and 2B, and Supplementary Figure S5) as well as a reorga-
nization of microtubule elements (Figure 2). Thus, our current data suggest a neuronal
differentiation-dependent decrease in bTubIII protein levels, which are linked to SNCADupl

mDANs. Interestingly, the downregulation of tubulin elements was not described in
other aSyn overexpression cell models, for example, in hiPSC-neurons with SNCA triplica-
tion [21,26]. It should be noted that tubulins are involved in a dynamic balance between
microtubule assembly and disassembly processes and that their solubility is closely cor-
related to assembly extent, as indicated in Figures 2 and 5. Thus, the fact that tubulin
downregulation was not observed in other cell models might be attributed to the hetero-
geneity of cell models, differentiation protocols or biochemical processing of samples (e.g.,
centrifugation conditions for sample preparation). The mechanism by which aSyn regulates
tubulin levels remains unclear. The lack of alteration in bTubIII transcripts, as determined
in this study, suggests a posttranscriptional regulatory mechanism.

Secondly, aSyn interferes with microtubule organization. The regulatory role of aSyn in
microtubule formation has been implied in several, predominantly cell-free in vitro studies
(reviewed in [15,27]). However, the question as to how aSyn modulates tubulin polymer-
ization remains controversial. While some studies reported that aSyn promotes tubulin
polymerization in vitro, other studies provided data for an inhibitory effect. Our previous
in vitro study indicated that the aggregation states of aSyn and microtubule-associated
proteins have a great impact on microtubule assembly: For example, wild type aSyn aggre-
gates reduced microtubule assembly in the presence of Tau [11]. A detailed cell-free study
by Cartelli et al. recently suggested a dual role of aSyn in regulating microtubule assem-
bly [12]: Physiologically, aSyn binds to α2β2 tubulin tetramers and thereby acquires alpha
helical structures, thus promoting furthermore microtubule nucleation. Pathologically,
PD-linked, aggregation-prone aSyn mutants are not able to undergo tubulin–mediated
conformational changes and thereby cause tubulin aggregation rather than organized
polymerization. Hence, the correct organization of the microtubules could be impaired
by aggregated aSyn. Interestingly, our results from the experiments on human cell model
systems (Figures 2 and 5) support these cell-free findings. In both hiPSC SNCADupl mDANs
and H4-Syn cells, we observed increased insoluble aSyn levels, correlating with aSyn over-
expression, accompanied by a shift of soluble bTubIII into insoluble fractions. Although it
is currently difficult to distinguish abnormally aggregated tubulins from the assembled
tubulins, our data regarding impaired neurite outgrowth in SNCADupl mDANs support the
notion that increased aSyn levels and aggregation result in an improper aggregation of tubu-
lins. Future in-depth studies employing more advanced biochemical and ultrastructural
imaging techniques would be necessary to address the issue of aSyn conformer-dependent
tubulin alterations under pathological conditions.
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3.3. aSyn and Neuritic Integrity

Loss of dopaminergic neurons in the SNpc is the main cellular determinant for move-
ment disorders as observed in PD patients. By the time first motor symptoms occur, 30–70%
dopaminergic neurons in the SNpc are already degenerated [28,29]. Therefore, understand-
ing the mechanisms underlying early neurodegenerative processes is a focus point in PD
research for delaying onset of motor symptoms and halting disease progression.

Neuritic degeneration in affected neurons has been suggested to be a common initial
pathological event in PD and other neurodegenerative disorders [6,30]. Specifically in PD,
post-mortem studies of PD brains demonstrate a significant decrease in dopaminergic fibers,
for example, in the dorsal putamen, while dopaminergic cell bodies in the SN were less
affected [31,32]. These findings were corroborated by in vivo animal studies using imaging
tools, demonstrating an early proportional loss of striatal and putaminal dopaminergic
terminals (reviewed in [30,33]).

In order to understand the effect of aSyn on neuritic deficits, Koch et al. [8] and
Oliveira et al. [26] investigated neurite morphology in primary midbrain neuron over-
expressing aSyn induced via viral transduction and in hiPSC neurons carrying SNCA
triplication, respectively. These studies showed that aSyn overexpression remarkably re-
duces the elongation of processes [8,26] and impairs branching behavior [8]. Here, we
provide consistent results that SNCADupl-mediated aSyn elevation hampers the neuritic
development (Figure 6). This was reflected by reduced neurite length and diameter. Strik-
ingly, the number of neurites directly originating from the soma was significantly greater
in SNCADupl neurons, applying two different assessment approaches, i.e., counting the pri-
mary neurites and via the Sholl analysis. An identical morphological change was described
in the study by Koch et al. on rat primary neurons [8]. They speculated that increased
primary neurites may be a result of dysregulated cytoskeletal homeostasis. Whereas neurite
initiation is modulated by actin assembly, neurite elongation is dependent on tubulin poly-
merization [8]. Supporting that hypothesis, we observed that elevated aSyn in SNCADupl

neuronal cells correlates with decreased bTubIII and acetylated aTub, but increased bActin
levels. Indeed, the effect of aSyn on actin structure and assembly dynamics has been
previously shown in cell-free conditions and in cell models [34].

Recent accumulating evidence indicates a pivotal role of prion-like intercellular propa-
gation of aSyn in the pathological progression of PD. Numerous studies, either on patient
post-mortem tissue [35–37] or on animal models [38,39], have provided supportive evi-
dence for aSyn propagation pathways from the periphery to the central nervous system
(CNS), e.g., from the gut to the CNS via the vagus nerve, followed by a stereotypic prop-
agation within the CNS, i.e., from the olfactory bulb and the brain stem to the striatum
and cortex through the substantia nigra. Neuron-to-neuron, trans-synaptic spreading of
aggregated aSyn has been suggested as an underlying mechanism of aSyn propagation [40].
Functional axonal transport of aSyn within the neurons seems to be required for such
trans-synaptic spreading [41]. Interestingly, our present data and previous results strongly
support impairments in neuritic integrity and a dysfunctional axonal transport in diseased
neurons [9]. One explanation, as speculated by Lamberts et al. [42], could be that the
recipient neuron takes up smaller aSyn aggregates, and those could be transported to the
synaptic terminal with still functional axonal transport machinery. During this process,
lager aggregates could form by recruiting endogenous aSyn. Based on our findings, we
further speculate a role of distinct spatial interaction of aSyn and the microtubule network
in trans-synaptic spreading of aSyn pathology. In addition to the intercellular transfer
property, recent studies have also demonstrated the existence of distinct aSyn strains, which
are distinguished by differences in biochemical properties as well as transmission potency,
and furthermore are related to specific phenotypes and different synucleinopathies, such
as PD and multiple system atrophy [43–47]. Our previous cell-free study has shown that
aSyn oligomers, fibrils and monomers divergently impact microtubule assembly and the
interaction of microtubules with anterograde motor protein kinesin [11]. Therefore, it is con-
ceivable that distinct aSyn strains may interfere with the microtubule network differently.
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Further studies are required to address strain and axonal transport-associated interaction
of aSyn and microtubule machinery.

In conclusion, we demonstrate in human cell models, in particular in SNCADupl patient-
derived neuronal cells with a clinically relevant aSyn level, that aSyn overload induces an
elevation in aggregated aSyn. We provide the evidence that aSyn binds directly to bTubIII
in both aSyn overexpressing H4 cells and hiPSC-derived neuronal cells. More importantly,
aggregated aSyn preferentially interacts with tubulins. Furthermore, abnormal aSyn over-
expression not only promotes its own aggregation, but also increases insoluble tubulin
levels, correlating with altered neuritic phenotypes in patient-derived neurons. Given the
important role of neuritic degeneration in neuronal death, our data support the mechanistic
pathway from aSyn overload to neuritic impairment via the disruption of microtubule
organization. Thus, pharmacological interference, with regard to PD-linked neuritic degen-
eration, might target the maintenance of microtubule organization/homeostasis in future.

Models utilizing hiPSC-derived cells offer unique advantages, because of restrictions
regarding the use and availability of human brain tissue and the limitations of working
with animal models due to differences between humans and animals. In particular, hiPSC
neurons differentiated from patients with monogenic forms of PD, as presented in this study
and other published studies (reviewed in [48,49]), recapitulate important, although not
fully, PD-linked phenotypes. Despite of the lack of some epigenetic or microenvironmental
effects, e.g., caused by aging or neuron-glia network, genetic effect may have a dominant
role in hiPSC-derived neurons carrying PD-causing mutations. Therefore, such models
present as a promising candidate for application in PD diagnosis, monitoring disease
progression and evaluation of novel therapeutic options due to the minimally invasive
nature of cell harvesting.

4. Materials and Methods
4.1. H4 Cell Lines

Naïve H4 human neuroglioma cells (ATCC, HTB-148), a H4 cell line overexpressing
wild type aSyn (H4-aSyn, generated as described in Menges et al. [50]) and a H4 cell line
overexpressing wild type aSyn under the control of a tetracycline inducible promoter
(H4-aSyn tet-off, as previously described in Mazzulli et al. [51]), were used in this study.
The cells were either cultured in Opti-MEM™ Reduced Serum Medium, GlutaMAX™
Supplement (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% FCS
(Sigma Aldrich, Munich, Germany) and 1% pen-strep (Thermo Fisher Scientific) for naïve
and H4-aSyn cells or in OptiMEM media (Thermo Fisher Scientific) containing 5% FCS,
200 µg/mL geneticin (Thermo Fisher Scientific), 200 µg/mL hygromycin (Sigma Aldrich),
and 1% pen-strep for H4-aSyn tet-off cells. For the experiment, cells were seeded at
2 × 105 cells per well in a 6-well plate or 1 × 106 cells per 10 cm2 dish and grown until the
cells were confluent. The expression of aSyn in H4-aSyn tet-off cells was turned off by the
addition of 2 µg/mL doxycycline (Sigma Aldrich) (H4-aSyn tet-off+Dox) for 24–72 h.

4.2. Human iPSC

hiPSCs derived from human dermal fibroblasts were obtained from the stem cell
core unit of the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU). Written in-
formed consents were received from voluntary donors of skin biopsies prior to inclusion
in the study at the Movement Disorder Clinic at the Department of Molecular Neurology,
Universitätsklinikum Erlangen (Erlangen, Germany).

All experiments using hiPSC-derived cells were conducted in accordance with the
Institutional Review Board Approval (Nr. 259_17B). Skin biopsy samples were obtained
from a PD patient carrying SNCADupl and two healthy individuals with no history of
neurologic disease. The PD patient is female, was 44 years old at the time of skin sample
collection, and presented with the symptoms of disease manifestation at age 39. The
occurrence of the SNCADupl was confirmed using next generation sequencing, revealing
a heterozygous duplication of SNCA. A 69-year-old male donor (#1) and a 42-year-old
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female donor (#2) were recruited as control persons at the time of taking biopsy. hiPSCs
were reprogrammed from fibroblasts as described previously [9,13,52]. Two PD-hiPSC lines
(UKERi7GG-S1-004 and –S1-005) derived from the PD SNCADupl patient and two control
hiPSC lines (UKERiG3G-R1-039 from control #1 and UKERi1JF-R1-011 from control #2,
respectively) were included in this study.

4.3. Differentiation of mDANs

mDANs were generated utilizing a small molecule-induced hiPSC differentiation
protocol according to Reinhardt et al. [17] and our previous studies [13,19], adapted with
minor modifications (Supplementary Figure S3A): for the induction of NPCs, hiPSCs were
resuspended in mTeSR+ Medium (STEMCELL Technologies, Vancouver, BC, Canada)
supplemented with the small molecules 1 µM LDN, 10 µM SB-431542, 3 µM Chir, 0.5 µM
Purmorphoamine (PurMA) as well as 10 µM ROCK inhibitor, and cultured on an Ultra-Low
Adhesion Surface Plate (Corning, New York, NY, USA). On the next day, the medium was
replaced with the same medium supplemented with small molecules as prior; however,
the use of ROCK inhibitor was excluded. After another day, the medium was replaced
with N2B27 medium (50% DMEM/F12, 50% Neurobasal Medium, 1:200 N2 Supplement,
1:100 B27 Minus Vitamin A, 1:200 GlutaMAXTM Supplement and 1:100 pen-strep (all from
Thermo Fisher Scientific) supplemented with the aforementioned small molecules) for
two additional days (total 4 days). The medium was thereafter replaced with smNPC
medium (N2B27 medium supplemented with 3 µM Chir, 0.5 µM PurMA and 150 µM
ascorbic acid). After two more days, the resulting embryoid bodies (EBs) were triturated
and replaced on a Matrigel (Corning)-coated plate in smNPC medium supplemented
with ROCK inhibitor, which was removed on the following day. Afterwards, a medium
replacement was conducted every other day using smNPC medium. NPCs were passaged
every six days at a ratio of 1:5 using Accutase (Sigmal-Aldrich). After a minimum of
five passages, the NPCs were differentiated into mDANs. For this, NPCs cultured in
smNPC medium for two days were further cultured in N2B27 medium supplemented
with 100 ng/mL FGF8, 1 µM PurMA and 200 µM ascorbic acid. After eight days, the cells
were replated on a Matrigel-coated plate from day 9 with maturation medium (N2B27
supplemented with 10 ng/mL BDNF, 10 ng/mL GDNF, 1 ng/mL TGFb3, 200 µM ascorbic
acid, 500 µM Dibutyryl-cAMP (dbcAMP) and ROCK inhibitor). The cell density for plating
was either 1.5× 106 per well for a 6-well plate or 1.5× 105 per well for a 24-well plate. After
one day, the medium was replaced with maturation medium without ROCK inhibitor and
the cells were incubated for another day. Finally, the medium was replaced with maturation
medium without PurMA. mDANs were cultured in this maturation medium with medium
replacement twice per week.

4.4. Dot Blot

Native dot blot analysis of aggregated aSyn was performed by applying the cell lysate
containing 10 µg total protein on a nitrocellulose membrane (0.45 µm, Buckinghamshire,
UK) in a total volume of 5 µL. Membrane was air-dried for 3 h and subsequently blocked
in 5% non-fat dry milk in TBS for 1 h at RT. Aggregated aSyn was probed by using a rabbit
conformation-specific antibody MJFR-14-6-4-2 (Abcam, Cambridge, UK) in combination
with IRDye 800CW donkey anti-rabbit secondary antibody (LI-COR Biosciences, Lincoln,
NE, USA) using the identical immunostaining protocol for WB. Fluorescent signals were
detected by using the Odyssey imaging system (LI-COR Biosciences). Loading of total
protein was controlled by staining total protein loaded using direct blue 71 according to
Hong et al. [53]. For this purpose, the blot membrane was stained by using a working
solution of direct blue 71 containing 0.008% direct blue 71 (Sigma Aldrich), 40% Ethanol
and 10% acetic acid for 5 min at RT, followed by rinsing the membrane with 40% ethanol
and 10% acetic acid.
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4.5. Western Blot (WB)

Cells were homogenized in TBS containing 1% Triton X 100 using a B. Braun Pot-
ter S Homogenizer (Sartorius AG, Göttingen, Germany). Homogenates were thereafter
diluted in RIPA buffer (50 mM Tris/HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP40,
0.5% sodium deoxycholate, 0.1% SDS) for 30 min on ice to lyse the cells. Subsequently,
samples were centrifuged at 10,000× g for 10 min at 4 ◦C. Protein content of the supernatant
was determined using a bicinchoninic acid (BCA) assay (Thermo Fisher Scientific). For
SDS-PAGE, 15 µg total protein was mixed with LDS-sample buffer and reducing agent
(Thermo Fisher Scientific) according to the manufacturer’s recommendations, and boiled
afterwards at 70 ◦C for 10 min. For electrophoresis, samples were loaded on precast gels
NuPage 4–12% Bis-Tris or Bolt 4–12% Bis-Tris Plus (Thermo Fisher Scientific). For protein
transfer, the gel was blotted on a PVDF membrane (Merk Millipore, Darmstadt, Germany).
After blotting, the PVDF membrane was incubated with 4% PFA for 15 min, then thor-
oughly rinsed with TBS-T. For protein loading control, the membrane was stained using
Ponceau S solution (Sigma Aldrich) prior to the immunodetection.

For immunostaining, the membrane was incubated with primary antibodies either
for 1 h at RT or overnight at 4 ◦C, followed by incubation of horseradish peroxidase-
conjugated secondary antibodies. Specific proteins were visualized with SuperSignal West
Pico Plus or SuperSignal West Femto (both from Thermo Fisher Scientific) chemilumines-
cent horseradish peroxidase substrate. Signal detection and imaging were performed by
using Fusion Fx7 (PEQLAB). Signal intensities were measured by using Image Lab Software
(Version 6.0.1, BioRad) or Bio1D (PEQLAB). Only images not oversaturated were used for
WB analysis and quantification.

4.6. Immunoprecipitation and LC-MS Analysis

To verify the interaction of aSyn and specific microtubule proteins, immunoprecipita-
tion was conducted by using the mouse anti-aSyn antibody Syn1. Cells were homogenized
in TBS buffer or TBS buffer with 1% Triton X 100, 1% NP40, or RIPA (all supplemented with
protease-inhibitor cocktail (cOmplete tablets)) using a Potter S homogenisator (B. Braun,
Melsungen, Germany) in the concentration recommended by the manufacturer. The cell
homogenates were centrifuged at 500× g at 20 ◦C for 5 min to remove cell debris. The
protein concentration of the supernatant was determined via BCA assay and adjusted to
1 µg/µL using the buffer for cell lysis. Prior to co-immunoprecipitation, 10 µL Protein G
Plus/Protein A agarose beads (IP05, Calbiochem, San Diego, CA, USA) were incubated
with 5 µL Syn1 antibody at 4 ◦C for 2 h under rotation, followed by the addition of 50 µL
cell lysate to the antibody and agarose bead mixture. The immune complex was incu-
bated overnight at 4 ◦C under continuous rotation and centrifuged at 2000× g at 4 ◦C for
10 min. The pelleted beads were rinsed three times with 100 µL cold lysis buffer. Bound
proteins were eluted by using 1× LDS-sample buffer (Thermo Fisher Scientific), subjected
to SDS-PAGE and analyzed by immunoblotting.

For identification of proteins bound to aSyn via LC-MS, a mouse anti-aSyn antibody
Syn211 (Sigma Aldrich) and the conformation-specific MJFR-14-6-4-2 antibody were used.
Cells were lysed in 40 mM HEPES buffer pH 7.4 containing 120 mM NaCl, 1 mM EDTA,
0.3% CHAPS and 10% glycerol. After removing cell debris by centrifugation at 21,000× g
for 10 min at 4 ◦C, the protein concentration was determined via a BCA protein assay.
Immunoprecipitation was performed using cell lysate with 1000 µg total protein, incu-
bated with protein A/G beads (Santa Cruz, Dallas, TX, USA) for 30 min at 4 ◦C under
agitation. After removal of the beads via centrifugation at 1000× g for 5 min at 4 ◦C, the
supernatant was either incubated with 3 µL Syn211 or MJFR-14-6-4-2 overnight at 4 ◦C
under rotation. Simultaneously, 30 µL protein A/G beads were blocked in 2% freshly
prepared BSA overnight at 4 ◦C under rotation and washed by 500 µL lysis buffer three
times by centrifugation at 1000× g for 5 min. Next, the blocked protein A/G beads were
added to the immune complex for 4 h at 4 ◦C under rotation. The immunoprecipites were
collected via centrifugation at 1000× g for 5 min at 4 ◦C and washed three times with the
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lysis buffer. Bound proteins were eluted by 1× sample loading dye containing 22 mM
Tris/HCl (pH 6.8), 9% (v/v) glycerol, 0.02% SDS (v/v), 22.4 mM DTT and bromophe-
nol blue for mass spectrometric identification of proteins co-precipitated via Syn211 or
MJFR-14-6-4-2 antibody.

Following the elution from protein A/G beads, samples were made up to 100 µL with
ammonium bicarbonate (ABC, 100 mM) in 1% SDS and reduced with tris(2-carboxyethyl)-
phosphine (5 mM) at 65 ◦C for 30 min and then alkylated in the dark at 25 ◦C using
iodoacetamide (12.5 mM). Proteins were precipitated on Speedbead Magnetic Carboxylate
modified beads (SP3 beads, 10:1, beads to protein, GE healthcare, Chicago, IL, USA) by
adding a 6-fold volume of ethanol. The samples were incubated with the beads for 20 min to
initiate binding and then washed three times with 80% ethanol. Samples were resuspended
in ABC (100 mM) and trypsin (at an enzyme:protein ratio of 1:25) added and left to digest
overnight at 37 ◦C. The supernatant was removed using a magnet and then dried via
vacuum centrifugation and stored at −20 ◦C before being resuspended in running buffer
(3% acetonitrile (ACN), 0.1% trifluoroacetic acid (TFA)) prior to LC-MS measurements.

LC-MS analysis was conducted using a Dionex Ultimate 3000 nano-UHPLC cou-
pled with an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher Scientific, Bre-
men, Germany). The samples were washed on a trap column (Acclaim Pepmap 100 C18,
5 mm × 300 µm, 5 µm, 100 Å, Dionex) for 4 min with 3% ACN/0.1% TFA at a flow rate of
30 µL/min prior to peptide separation using an Acclaim PepMap 100 C18 analytical column
(50 cm × 75 µm, 2 µm, 100 Å, Dionex). A flow rate of 300 nL/min using eluent A (0.05%
formic acid (FA)) and eluent B (80% ACN/0.04% FA) was used for gradient separation.
Spray voltage applied on a metal-coated PicoTip emitter (10 µm tip size, New Objective,
Woburn, MA, USA) was 1.8 kV, with a source temperature of 275 ◦C. Full scan mass spec-
trometry (MS) spectra were acquired between 350 and 1400 m/z at a resolution of 120,000
at m/z 400. The 10 most intense precursors with charge states greater than 2+ were selected
with an isolation window of 1.4 m/z and fragmented by HCD with normalized collision
energies of 30 at a resolution of 30,000. Lock mass (445.120025) and dynamic exclusion
(30 s) were enabled. Samples were measured in duplicate (technical injection replicates).

For MS data analysis, the MS raw files were processed by Proteome Discover 2.2
(Thermo, version 2.2.0.388) and MS/MS spectra were searched using the Sequest HT
algorithm against a database containing common contaminants (45 sequences) and the
canonical human database. The enzyme specificity was set to tryptic with two missed
cleavages allowed. A MS1 tolerance of 10 ppm and a MS2 tolerance of 0.02 Da were imple-
mented. Oxidation (15.995 Da) of methionine residues was set as a variable modification,
while carbamidomethyl (57.02146 Da) on cysteine residues was set as a static modification.
Minimal peptide length was set to 6 amino acids and the peptide false discovery rate (FDR)
was set to 1%. Label free quantitation was performed in Proteome Discover using Minora
Feature Detector. The files were then exported and a statistical analysis was performed
using Perseus (1.6.10.43). Samples were log2 transformed and filtered so that only proteins
that were observed in both biological samples were kept. A two-tailed t-test was performed
using a permutation based false discovery rate (FDR) to account for the multiple testing hy-
pothesis (technical injection replicates were preserved during randomization). Candidates
were filtered using an FDR of 1% and a fold change (s0) of 2.

4.7. In-Cell Fractionation

Fractionation of cells to soluble (S) and detergent resistant, insoluble, microtubule-
associated fractions (IS-MT) was performed according to Katsetos et al. [16] with minor
modifications (Figure 2A). Briefly, attached H4 cells (naïve or H4-aSyn cells) or hiPSC-
mDANs were rinsed with prewarmed (37 ◦C) microtubule stabilizing buffer MSB I (100 mM
MES/KOH, pH 6.9, 2 mM EGTA, 2 mM MgCl2). The cells were incubated in pre-warmed
MSB I containing protease-inhibitor (cOmplete tablets, Roche, Basel, Swiss) and 0.2% Triton
X 100 (MSB II) for 1 min at 37 ◦C. Afterwards the soluble fraction of cells was carefully
collected from the cell culture well and centrifuged at 5000× g for 1 min at RT. The soluble
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fraction (S) and pellet (P) obtained were separated and kept. The insoluble structure
remaining in the well was solubilized with MSB II + LDS-sample buffer and pooled with
the pellet (P), generating insoluble, microtubule-associated fraction (IS-MT). Finally, both
S and IS-MT fractions were adjusted to the equal volume using MSB II buffer and mixed
with LDS-sample buffer for SDS-PAGE and WB.

4.8. Immunocytochemistry (ICC)

Cells were treated with 2% paraformaldehyde (PFA) for 8 min, followed by another
10 min fixation in 4% PFA and three rinses with PBS. Thereafter, cells were blocked for
15 min with fish skin gelatin buffer (Tris-buffered saline (TBS) with 0.4% cold water fish
skin gelatin in water, 1% bovine serum albumin (BSA) and 0.1% Triton X 100). Subsequently,
cells were incubated with a primary antibody overnight at 4 ◦C followed by incubation
with a secondary, fluorescence-labelled antibody for 1 h at room temperature (RT). Finally,
cell nuclei were stained with DAPI for 15 min at RT. Images were captured using an Axio
Observer inverted fluorescence microscopes (Carl Zeiss AG, Oberkochen, Germany).

4.9. Analysis of Neuronal and Neurite Morphology

Neuronal and neuritic morphology was analyzed using the “Sholl Analysis” plugin
within the software ImageJ (FIJI distribution, v1.53c, (37)). mDANs after 10 days of differ-
entiation were fixed and immunostained using an anti-bTubIII antibody as described in
the ICC section. Images were further processed using the “Simple Neurite Tracer (SNT)”
of “NeuroAnatomy” Plugin in ImageJ. Five bTubIII+ neurons were traced on each of
12 images per cell clone, from three differentiation experiments, respectively. Skeletonized
neurons processed using SNT, with marked neurites of one neuron and the localization
of its nucleus, were saved in individual files. The nucleus served as the center for Sholl
analysis. Sholl analysis was performed using the “Sholl” plugin (v4.0.1) in ImageJ. Shell
parameters were set to 10 µm start radius, 3.33 µm step size and 250 µm end radius. The
number of primary neurites was counted using “Cell counter” plugin in ImageJ. Neurite
diameter was examined using the “Straight Line” tool in ImageJ to measure the diameter of
primary neurites, using the cell body as a reference point. Measurements were subsequently
grouped in diameters ≥1 µm and <1 µm.

4.10. Antibodies

All antibodies utilized for WB and ICC and their dilutions are summarized in Table 1.

Table 1. Primary and secondary antibodies for WB and ICC.

1st Antibody Host Company Order No. Dilution WB/ICC

Acet aTub Mouse Sigma-Aldrich T7451 1:1000 WB

aSyn (Syn1) Mouse BD Biosciences 610786 1:1000 WB

bTubIII Rabbit Abcam ab18207 1:1000 WB

bTubIII (TUJ1) Mouse BioLegend 801201 1.1000 WB/ICC

DDC Rabbit Abcam ab3905 1:500 WB

MJFR-14-6-4-2 Rabbit Abcam ab209538 1:1000 Dot blot

Nestin (10C2) Mouse EMD Millipore Corp. MAB5326 1:300 ICC

Sox-2 (Y-17) Goat Santa Cruz Biotech. Sc-17320 1:300 ICC

Synapsin1 Mouse Synaptic Systems SySy106011 1:1000 WB

Tau Rabbit Abcam ab64193 1:1000 WB

TH Rabbit EMD Millipore Corp. AB152 1:300 WB/ICC
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Table 1. Cont.

2nd Antibody Host Company Order No. Dilution WB/ICC

Goat Alexa-488 Donkey Thermo Fisher Sci. A-11055 1:1000 ICC

Mouse Alexa-568 Donkey Thermo Fisher Sci. A10037 1:1000 ICC

Mouse Alexa-647 Donkey Thermo Fisher Sci. A-31571 1:1000 ICC

Mouse HRP Goat Jackson ImmunoResearch 11-035-146 1:20,000 WB

Rabbit Alexa-488 Donkey Thermo Fisher Sci. A21206 1:1000 ICC

Rabbit IRDye
800CW Donkey LI-COR Biosciences 926-32214 1:10,000 Dot blot

Rabbit HRP Donkey Thermo Fisher Sci. SA1-200 1:5000 WB

4.11. Statistical Methods

Statistical analyses were carried out using GraphPad Prism version 5.03 (GraphPad
Software, Inc.). The tests used to evaluate the differences between groups are indicated in
the legends. p-values < 0.05 were considered statistically significant (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001). If not stated differently, all graphs are presented as mean of
independent experiments ± standard deviation (SD).
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Abbreviations

ABC ammonium bicarbonate
ACN acetonitrile
aSyn alpha synuclein
aTub alpha tubulin
bActin beta actin
BSA bovine serum albumin
bTub beta tubulin
bTubIII beta tubulin, class III
CNS central nervous system
CPN cortical projection neuron
DAPI 4′,6-Diamidin-2-phenylindol
DDC DOPA decarboxylase
EBs embryoid bodies
FA formic acid
hiPSCs human induced pluripotent stem cells
ICC immunocytochemistry
LC-MS liquid chromatography coupled mass spectrometry
mDAN midbrain dopaminergic neuronal cell
NPC neural precursor cell
PD Parkinson’s disease
PFA paraformaldehyde
RT room temperature
RT-PCR reverse transcription polymerase chain reaction
SNCA aSyn gene
SNCADupl SNCA gene duplication
SNpc substantia nigra pars compacta
TBS Tris-buffered saline
TFA trifluoroacetic acid
TH tyrosine hydroxylase
WB Western blot
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