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Physical approximation between lymphocytes and macrophages has been observed 
during cultivation of these cells (1-14), as well as when fixed preparations of lymphoid 
organs are examined (15-18). Although the exact nature of these cellular associations 
remains obscure, their occurrence both in vitro and in vivo, often in relationship to de- 
fined functional events, suggests physiologic significance. 

In the intact animal, clustering of lymphocytes and blast cells about macrophages 
has been observed in lymph nodes responding to immunization procedures (16-18). 
Likewise, the in vitro induction of primary antibody responses (7, 19), as well as anti- 
gen-mediated in vitro proliferation of immune lymphocytes (4-6, 8, 12), has been ob- 
served to involve direct physical contact between lymphocytes and antigen-containing 
macrophages. Anatomic approximation, thus, may facilitate functional cooperation be- 
tween macrophages and lymphocytes during the expression of an immune response. 

Lymphocytes have also been found closely associated with macrophages in vivo in 
the absence of specific immunization (15, 17, 18) and in vitro when lymphoid cells from 
mouse (7, 13), rabbit (1, 12), guinea pig (9-11, footnote 1), or human (2, 3) are cul- 
tured without relevant antigen. This suggests that these cellular interactions may sub- 
serve a variety of biological functions not involving antigens such as the maintenance 
of lymphocyte viability (20), or the promotion of the functional maturation and differ- 
entiation of thymocytes (21). While the presence of antigen has been noted to affect the 
degree of macrophage-lymphocyte interaction (4, 6, 7, 11, 12, 17, 18), the occurrence 
of similar cellular associations in the absence of specific antigen suggests that the initia- 
tion of these contacts may be antigen-independent. 

This report  describes studies designed to elucidate the nature  of the physical  
interact ion between macrophages and lymphocytes .  An in vi tro method was 
developed for examining the binding of guinea pig nonglass-adherent  lymphoid 
cells to syngeneic macrophage monolayers.  This cellular association was charac- 
terized through the use of a var ie ty  of experimental  conditions, inhibitors,  and 
enzymes, and examined ul t ras t ructural ly .  The binding of thymocytes  and lym- 
phocytes  to macrophages required active macrophage metabolism but  not  anti- 

1 Lopez, L. R., K. S. Johansen, J. Radovich, and D. W. Talmage. 1973. The interaction 
of thymus derived cells with macrophages and erythrocytes. Manuscript in preparation. 
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gen. T h e  requis i te  condi t ions  for this in te rac t ion  as well as the specificity of the  

pa r t i c ipan t  cell types  suggest  the  existence of a un ique  cel lular  recogni t ion 

mechan i sm for the  preferent ia l  associat ion of macrophages  and lymphocy tes .  

Mater ia l s  and  Methods  

Anlmals.--Inbred strain 2 or 13 guinea pigs, weighing 300-500 g (Division of Research 
Services, National Institutes of Health), were used as sources of all cell preparations. 

Media.--All washing procedures except where indicated were performed in Eagle's mini- 
mum essential medium (MEM) 2 for suspension cultures (Microbiological Associates, Bethesda, 
Md.) supplemented with fresh L-glutamine (0.3 mg/ml), glucose (5 mg/ml), sodium pyruvate 
(10 mM), nonessential amino acids 100 X (0.01 ml/ml; Grand Island Biological Co., Grand 
Island, N. Y.), penicillin (100 U/ml), and streptomycin (100 #g/ml). Cultures were performed 
in supplemented MEM (SMEM) plus 10% heat-inactivated syngeneic normal guinea pig 
serum (GPS). 

Cell Preparation.--All cells were prepared from unimmunized guinea pigs except where 
noted. 

Glass-adherent cells: Peritoneal exudate cells (PEC) were harvested 3 days after the 
intraperitoneal injection of 20 ml sterile Marcol 52 (Humble Oil and Refining Co., Houston, 
Tex.) by lavage of the peritoneal cavity with 200 ml SMEM. Peritoneal macrophages (nonoil- 
induced) were similarly obtained by lavaging the peritoneal cavities of normal untreated 
guinea pigs. Spleen cell suspensions were prepared by teasing apart spleens and pressing them 
through a no. 60 mesh wire screen (W. S. Tyler Co., Mentor, Ohio). Alveolar macrophages 
were obtained by a modification of a previously described technique (22). The trachea was 
clamped to prevent aspiration and entered with a 19 gauge needle through which the tracheo- 
bronchial tree was lavaged in situ with SMEM. Polymorphonuclear leukocytes (PMN) were 
harvested by lavaging the peritoneal cavities 18 h after the intraperitoneal instillation of 15 
ml sterile sodium caseinate (12% wt/vol, Difco Laboratories, Detroit, Mich.) (23). Each ceil 
preparation was washed, exposed to isotonic ammonium chloride to lyse excess erythrocytes 
(24), washed three times with SMEM, counted, and resuspended in SMEM with 10% GPS 
for culture. Fibroblast monolayers were established from minced, trypsinized kidney tissue 
obtained from 3-wk old animals and used after 5-7 days of culture. 

Nonglass-adherent cells: Thymocytes were obtained by teasing apart thymuses and 
pressing them through no. 60 mesh screens to obtain single cell suspensions. Lymph node 
lymphocyte (LNL) suspensions were prepared as previously described (25) by teasing and 
screening lymph nodes obtained from guinea pigs immunized 2-4 wk earlier with complete 
Freund's adjuvant (containing 2 mg/ml killed M. tuberculosis H37 Ra; Difco Laboratories). 
After exposure to ammonium chloride to remove erythrocytes, each population of cells was 
passed over glass-bead and nylon-wool columns (26) to deplete adherent cells. "I'he resultant 
cells were more than 950/0 viable by Trypan blue dye exclusion and contained less than one 
macrophage per 100 cells by established criteria (26). L2C leukemia cells, a gift of Dr. E. 
Shevach, were obtained by cardiac puncture from strain 2 guinea pigs previously inoculated 
with L2C cells intradermally (27). Erythrocytes were obtained from guinea pigs by cardiac 
puncture, separated from the buffy coat, and washed in EDTA and SMEM as described 
(28). Each cell population was then washed three times in SMEM, counted, and resuspended 
in SMEM with 10% GPS (except where noted) for experimental use. 

2Abbreviations used in this paper: GPS, heat-inactivated syngeneic normal guinea pig 
serum; HBSS, Hanks' balanced salt solution; LNL, column-purified lymph node lympho- 
cytes; Mq~, macrophage; MEM, Eagle's minimum essential medium; PEC, peritoneal exudate 
cell; PMN, polymorphonuclear leukocyte; SMEM, supplemented Eagle's minimum es- 
sential medium for suspension culture. 
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Cell Counts.--All cell counts were performed with a Coulter Counter, Model FN (Coulter 
Electronics, Inc., Hialeah, Fla.). 

Reagents.--The following reagents were used: 1X crystallized trypsin (Sigma Chemical 
Co., St. Louis, Mo.), Vibrio cholerae neuraminidase (General Biochemicals Div., Chagrin 
Fall, Ohio), iodoacetic acid, sodium salt (J. T. Baker Chemical Co., Phillipsburg, N. J.), 
sodium azide (Sigma Chemical Co.), 2-deoxy-D-glucose (Sigma Chemical Co.), mitomycin C 
(Nutritional Biochemicals Corp., Cleveland, Ohio), acfinomycin D (Calbiochem, San Diego, 
Cal.), cyclohexamide (Calbiochem), puromycin (Calbiochem), disodium ethylenediamine- 
tetraacetate (Fisher Scientific Co., Pittsburgh, Pa.), and Trypan blue stain in normal saline 
(Grand Island Biological Co.). 

Culture Chambers.--In vitro cultures were performed using microscope slide/tissue culture 
chambers (Lab-Tek Products, Division of Miles Laboratories, Kankakee, Ill.). These chambers 
consist of a glass microscope slide base with sides and lid formed by a removable plastic super- 
structure. At the conclusion of an experiment, the plastic superstructure was removed and 
the resultant microscope slide with its adherent cells processed for light or electron microscopy. 

Culture Technique.--Macrophage monolayers were prepared by culturing 1 X 106 cells 
in each microscope slide/culture chamber in 1 ml of SMEM with 10% GPS at 37°C in an 
atmosphere of 5% CO~ and 95% air. After 3 h in culture, nonglass-adherent cells were removed 
by two washes with SMEM. 2 ml of SMEM with 10% GPS were added to each of the chambers 
and the glass-adherent cells incubated overnight at 37°C in a 5% CO2,95% air environment. 
The following day, any additional nonadherent cells were removed with two washes of SMEM 
and the monolayers immediately used for experiments. PMN were likewise cultured at a 
concentration of 1 X 106 per chamber in 1 ml of SMEM with 10% GPS. After 90 rain in 
culture at 37°C any nonadherent cells were removed by two washes with SMEM. The glass- 
adherent PMN were then immediately used_ 

Macrophage-Lymphocyte Associalion.--Single cell suspensions of thymocytes, lymph node 
lymphocytes, L2C leukemia ceils, or erythrocytes were added to the monolayers in the slide/ 
chambers in 2 ml of SMEM + 10% GPS. The chambers were incubated at 37°C in a 5% 
CO2,95% air atmosphere on a slowly rocking platform (Bellco Glass, Inc. Vineland, N. J.) 
for various periods of time as indicated in the protocol. At the conclusion of an experiment, 
unbound cells were removed by decanting the supernatants and dipping and swirling the 
slides in three changes of SMEM with 19; GPS. "l he macrophage monolayers with cells 
adherent to them were fixed in 1% glutaraldehyde in modified Tyrodes buffer for 30 min 
and stained with buffered Giemsa in acetone. After the plastic superstructure of the chambers 
was removed, cover slips were applied to the slides and observations made using a Zeiss 
photomicroscope II (Carl Zeiss, Inc., New York). 

Enzyme Treatment.--Macrophage monolayers which had previously been cultured for 24 
h in vitro were washed three times with Hanks' balanced salt solution (HBSS) and exposed 
to trypsin (0.4 mg/ml) in HBSS for 20 rain at room temperature or to neuraminidase (50 
U/ml) for 60 min at 37°C. They were then washed with three changes of cold SMEM with 
10% serum and immediately used. After either treatment viability remained greater than 
95% by Trypan blue exclusion. 

Suspensions of 20 X 106 column-purified thymocytes were washed three times in HBSS 
and exposed to either trypsin (0.4 mg/ml) for 20 min at room temperature or neuraminidase 
(50 U/ml) for 60 min at 37°C in suspension. Cells were then washed three times with cold 
SMEM with 10% GPS, suspended in SMEM with 10% GPS and immediately used. Viability 
by Trypan blue exclusion remained greater than 95%. 

Heat-Killing.--Established macrophage monolayers were heated at 56°C for 60 rain, 
washed two times and immediately used. Column-purified thymocytes were exposed to 56°C 
for 60 rain in suspension in HBSS, washed twice, suspended in SMEM with or without 10% 
GPS and immediately used. Cells treated in this manner were uniformly nonviable by Trypan 
blue exclusion. 



PETER E. LIPSKY AND ALAN S. ROSENTI-IAL 903 

Electron Microscopy.--Monolayers were fixed in 1% glutaraldehyde with Tyrodes buffer 
for 30 rain. After postfixafion with 1% osmium tetroxide, adherent cells were dehydrated 
directly on the glass slides and embedded in Maraglas (Polyscience Corp., Evanston, Ill.) 
using inverted Beem capsules. After polymerization for 48 h at 65°C the Maraglas blocks 
were separated from the glass slides by immediate immersion in liquid nitrogen. "lThin sections 
were prepared, stained with lead citrate and uranyl acetate, and examined with a Philips 
300 electron microscope (Philips Electronic Instruments, Mount Vernon, N. Y.). 

RESULTS 

Macrophage Monolayers.--Monolayers, cultivated on glass for 24 h in vitro 
provided a population of uniformly viable cells (>  95 % by Trypan blue exclu- 
sion) whose characterixtics could be defined both morphologically and physio- 
logically by glass adherence and phagocytosis. The number of macrophages 
comprising a 24-h old monolayer could be directly counted microscopically and 
was found to reflect the number of peritoneal exudate cells initially cultured 
such that 1 X 106 PEC yielded 1 X 105 (range = 0.7 -- 1.3 X 105) adherent 
cells per slide/chamber. This density of macrophages was most convenient for 
accurate counting of lymphocytes clustered about individual macrophages. 
After 1 h of culture, certain cell populations, especially spleen cells, were found 
to have formed spontaneous clusters of lymphoid cells about larger glass ad- 
herent cells. When, however, the monolayers were examined microscopically 
after 24 h in culture, less than one lymphocyte was found per 100 macrophages 
(Fig. 1 A). 

Binding of Thymocytes To Macrophage Monolayers; Quantitative Considera- 
tions.--Varying numbers of column-purified thymocytes (0.1 >( 106 to 10 X 106) 
were added to macrophage monolayers in 2 cc of SMEM with 10 % GPS and 
allowed to incubate at 37°C for 1 h with gentle rocking. After unbound cells 
were washed away and slides prepared, clustering of thymocytes about macro- 
phages was routinely observed (Fig. 1 B and 1 C). The majority of thymocytes 
was found aligned along the perimeter of macrophages. Less than 5 % of the 
thymocytes associated with monolayers had been internalized into macro- 
phages. There was no relationship between the morphological characteristics of 
a macrophage and its likelihood of having one or more thymocytes associated 
with it, although larger macrophages tended to have more thymocytes associ- 
ated with them. 

Macrophage-thymocyte association was quantified by counting the number 
of thymocytes in physical contiguity with each of 200 randomly chosen macro- 
phages. The data obtained were expressed as either (a) the percent of macro- 
phages found associated with one or more thymocytes, or (b) the total number 
of thymocytes bound to 100 macrophages. While concomitant effects were 
usually observed in both of these parameters, the latter was found to be more 
sensitive to experimental manipulation. Thus, the data from many experiments 
will be presented only in terms of the number of thymocytes bound per 100 
macrophages. Fig. 2 describes the relationship between the number of added 



FIG. 1. The binding of column-purified guinea pig thymocytes to syngeneic macrophage 
monolayers in microscope slide/culture chambers. (A) Macrophage monolayers obtained by 
culturing peritoneal exudate cells for 24 h in SMEM plus 10% GPS. Before the addition of 
thymocytes, less than one lymphocyte per 100 macrophages was observed. (B) Clustering 
of thymocytes about macrophages observed when 2 )< 106 thymocytes were added to mono- 
layers in 2 ml SMEM plus 10% GPS and incubated for 60 rain at  37°C. The vast majority 
of bound thymocytes were found aligned along the free surfaces of macrophages. Very few 
thymocytes have been internalized into macrophages. (C) Thymocyte-binding observed 
when 10 )< 106 thymocytes were added to syngeneic monolayers and incubated in standard 
fashion. (D) The binding of heat-killed thymocytes (2 >( 106) to viable macrophage mono- 
layers. Few of the bGund, heat-killed thymocytes have been internalized. Magnification >( 
800. 
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FIG. 2. The binding of guinea pig thymocytes to glass-adherent macrophages as a function 
of the number of thymocytes presented. For each experiment the number of thymocytes 
found in physical contiguity with each of 200 macrophages was counted and the data expressed 
as (a) the percent of macrophages found associated with one or more thymocytes and (b) 
the total number of thymocytes bound to 100 macrophages. Each point represents the mean 
of four or more replicate experiments with vertical bars indicating the standard errors. 
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thymocytes and each of the above noted parameters. The maximum number of 
cells added per chamber, 10 X 106, resulted in one or more thymocytes being 
associated with more than 90% of the macrophages and a total of 316 i 13 
thymocytes bound per 100 macrophages. When 2 X 106 thymocytes were added, 
63% of macrophages were found associated with thymocytes with 120 4- 5 
bound per 100 macrophages. Because 2 X 106 added thymocytes yielded values 
for each parameter which were well within the most linear part of each of 
these curves, this number of thymocytes was used for most comparative ex- 
periments. 

The total number of thymocytes binding to a monolayer could be calculated 
from the number of thymocytes bound per 100 macrophages and the direct 
count of the number of macrophages comprising the monolayer. Thus, when the 
number of thymocytes presented to standard monolayers was increased (0.5 X 
106 through 5.0 X 106) the total number of thymocytes bound to the monolayers 
increased. Despite this, the percentage of added thymocytes bound to the 
monolayers remained constant (5.9 + 0.4 %). This observation suggested that 
only a small subset of tbymocytes was capable of physically interacting with 
macrophages. Alternatively, the physical characteristics of the incubation sys- 
tem could have been important in dictating the degree of observable interaction. 
To explore this question, the geometry of the system was altered by varying 
the number of macrophages composing the monolayers. If only 6 % of a thymo- 
cyte population were capable of binding to macrophages, then changing the 
density of cells in the monolayer should not result in an increased percentage- 
binding of added thymocytes. On the other hand, if a greater percentage of thy- 
mocytes could bind, increasing the density of the monolayer should increase the 
likelihood of cellular interaction and thus lead to an increase in the percentage of 
added thymocytes bound. When 2 X 106 thymocytes were presented to mono- 
layers of varying macrophage densities under standard conditions (Fig. 3), the 
percentage of added thymocytes bound to the monolayers increased as the 
number of macrophages composing the monolayer increased. Thus, it is more 
likely that the percentage-binding observed is reflective of the conditions of 
the incubation system rather than of the existence of a specialized subset of 
macrophage-associating thymocytes. 

Binding of Thymocytes To Macrophage Monolayers--Effect of Variation in 
Experimental Conditions.--The standard experiments measured the physical 
association which occurred between 2 X 106 thymocytes and 24-h old macro- 
phage monolayers after a 60 rain incubation at 37°C with gentle rocking in the 
presence of SMEM with 10% GPS. The presence of serum was not found to 
play a significant role in thymocyte-macrophage interaction (Table I). The 
possibility that cytophilic immunoglobulin bound onto the macrophage was 
mediating thymocyte-binding was tested by culturing the macrophages over- 
night in SMEM with 10% immunoglobulin-free fetal calf serum. The mono- 
layers were washed three times before use and after each wash allowed to 
incubate in the presence of SMEM with 10% immunoglobulin-free fetal calf 
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FiG. 3. The relationship between the number of macrophages composing a monolayer and 
the percentage of added thymocytes bound after a 1 h incubation. The number of macro- 
phages comprising an adherent-cell monolayer was counted microscopically. When 2 X 106 
syngeneic column-purified thymocytes are added to monolayers composed of 2.2 X 104 to 
3.2 X 1@ macrophages and incubated for 60 rain at 37°C with gentle rocking, the percent of 
added thymocytes bound by a monolayer is = (mean number of thymocytes per macrophage) 
(macrophages per monolayer)/(total thymocytes added) X 100. 

serum for 30 min at  37°C. After  these washes, significant amounts  of immuno- 
globulin could not  be detected on the macrophage surface util izing rabbi t  
ant iguinea pig immunoglobulin tagged with horseradish peroxidase as a marke r?  
Monolayers  thus depleted of cytophil ic immunoglobulin were as capable of 
binding thymocytes  as control  macrophages.  Likewise, the presence of S M E M  
itself was found not  to be essential in tha t  no decrease in cellular association 
occurred when the reaction was run in HBSS in the absence of serum. Rocking 
increased macrophage- thymocyte  association by  a small, but  significant, degree 
when 2 X 106 thymocytes  were presented to macrophage monolayers.  When, 
however, the number  of added thymocytes  was increased to 10 X 106, the effect 
of rocking became insignificant. 

In  vi t ro phagocytosis  by  macrophages was found to have li t t le effect on 
thymocyte-b ind ing  (Table I) .  When macrophage monolayers were exposed to 
0.1% polystyrene latex part icles (1.1/~m diameter ,  1.05 g/ml ,  Dow Chemical 

Lipsky, P. E., and A. S. Rosenthn]. 1973. Manuscript in preparation. 
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TABLE I 
The I~ect of Variations in Experimental Conditions on the Degree of Macrophage-Thymocyte 

Association 

Variable 
Percent of macrophages- Thymocytes bound per 

binding thymocytes 100 raacrophages 

% o f  control* 

S e r u m ~  

(a) No serum 101.1 4- 1.2 97.8 4- 4.8 
(b) 50% guinea pig serum 101.5 q- 1.6 100.9 4- 1.9 
(c) 10% fetal calf serum 94.7 4- 1.3 95.5 4- 3.5 

Rocking 
Stationary incubation 91.3 ± 1.4 77.8 4- 4.1 

Phagocytosis by macrophages§ 
Before 98.3 4- 2.2 99.1 4- 2.6 
Concurrent 95.8 4- 3.5 93.0 4- 7.7 

In vitro cultivation N of macrophages 
1 h 61.5 4- 2.7 34.5 4- 2.3 

48h 107.2 4- 1.8 132.3 4- 13.6 
96h 113.6 4- 1.2 157.0 4- 5.3 

* Data expressed as a percentage of the macrophage-thymocyte association observed when 
2 X 106 column-purified (viability >95%) thymocytes were added to syngeneic macrophage 
monolayers (derived by culturing peritoneal exduate cells in vitro for 24 h) in 2 ml SMEM with 
10% GPS and incubated for 60 min at 37°C with gentle rocking. Each term represents the 
mean -4- standard error of three or more replicate experiments. 

~c Standard monolayers presented with 2 X 10 s thymocytes in (a) 2 ml SMEM alone, (b) 
2 ml SMEM with 50% GPS, (c) 2 ml SMEM with 10% immunoglobulin-free fetal calf serum 
after manipulations to remove cytophilic immunoglobulin from the surface of macrophages 
(see text). 

§ Monolayers challenged with 0.1% polystyrene latex particles before or concomitant 
with standard thymocyte presentation. 

[I Duration of in vitro cultivation of macrophages before standard thymocyte presentation. 

U.S.A. Membrane Systems Div., Midland, Mich.) for 30 rain at 37°C, 78 4- 3 % 
of the macrophages were found to have ingested three or more beads. No sig- 
nificant effect on macrophage-thymocyte association was observed when macro- 
phages had ingested beads before being exposed to thymocytes or had beads 
and thymocytes presented simultaneously. Macrophages which had not  in- 
gested polystyrene latex beads were as likely to bind thymocytes as those which 
had ingested beads. 

The length of time that  the macrophages were cultivated in vitro before use 
markedly affected the observed degree of macrophage lymphocyte interaction 
(Table I). Shortly after glass-adherence, rnacrophages demonstrated less 
thymocyte-binding than cells which had been cultured on glass for 24 h. As 
time in culture was prolonged to 48 and 96 h, increases in binding ability were 
observed above that  seen with 24-h old cells. 

Binding of Thymocytes to Macrophage Monolayers--Kinetic Considerations.-- 
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The interaction of thymocytes and macrophages was a time-dependent phe- 
nomenon. Fig. 4 shows the binding of 2 X 106 thymocytes to macrophage 
monolayers as a function of the time during which the two cell types were 
incubated together. Maximal binding occurred within 60 min in culture and 
was maintained for up to 180 min. Within 30 min the percent of macrophages 
binding one or more thymocytes was 87 % of maximal while the number of 
thymocytes bound per 100 macrophages was 82 % maximal. Because of the 
kinetics observed, 60 rain was chosen as the standard incubation time for all 
further experiments. 

Binding of Thymocytes and Lymphocytes to Glass-Adherent Cell Populations-- 
Specificity of the Participating Cells.--The binding of thymocytes to a variety 
of glass-adherent cell populations was investigated to delineate the cellular 
specificity of this reaction (Fig. 5). Nonoil-induced peritoneal macrophages 
bound significantly fewer (P < 0.01) thymocytes per 100 glass-adherent cells 
than PEC when 2 X 106 thymocytes were presented. However, at higher num- 
bers of added thymocytes there was no significant difference between the 
number of thymocytes bound per 100 nonoil-induced peritoneal macrophages 
or 100 PEC. The binding of thymocytes to splenic macrophages was not sig- 
nificantly different from that to PEC. Alveolar macrophages bound signifi- 
cantly fewer thymocytes than PEC at all numbers of added thymocytes. 
Polymorphonuclear leukocytes were found associated with only about 15 % 
as many thymocytes as PEC at all numbers of added thymocytes. Further- 
more, PMN were significantly less capable (P < 0.001) of binding thymocytes 
than either freshly harvested PEC or PEC which had been cultured for 1-2 h. 
Fibroblasts bound only about 15 % as many thymocytes as PEC at all numbers 
of added thymocytes. All four of the macrophage populations were capable of 
binding significantly more (P < 0.001) thymocytes per 100 adherent cells than 
any of the nonmacrophage populations of cells. 

The ability of macrophage monolayers to bind a variety of non-glass-adherent 
cell types was investigated (Table II). LNL were bound to macrophage mono- 
layers much in the same fashion as thymocytes but in reduced numbers. The 
time requirement for LNL-binding to macrophage monolayers was quite simi- 
lar to that observed for thymocytes. Maximal binding was achieved by 60 rain 
and lasted for up to 3 h. Binding of LNL to macrophage monolayers was 
similar in SMEM with 10% GPS, SMEM with 10% immunoglobulin-free 
fetal calf serum, or SMEM alone. The association of L2C leukemia cells with 
macrophage monolayers was significantly less than that seen with LNL or 
thymocytes in the presence or absence of guinea pig serum. No significant bind- 
ing of guinea pig erythrocytes by macrophage monolayers was observed. 

Influence of Temperature on Macrophage-Thymocyte Association.--In these 
experiments each macrophage monolayer was equilibrated at experimental 
temperatures for 15 rain before the addition of 3 X 106 thymocytes. The inter- 
action of macrophages and thymocytes was temperature-dependent with bind- 
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Fro. 4. The kinetics of the physical interaction between glass-adherent peritoneal exudate 
macrophages and syngeneic thymocytes. Column-purified thymocytes (2 X 106) were added 
to standard macrophage monolayers in 2 ml SMEM with 10~: GPS and incubated at 37°C 
with gentle rocking for varying periods of time. Each point represents the mean of four or 
more replicate experiments with standard errors indicated by the vertical bars. 
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ing occurring most efficiently at 37°C (Fig. 6). The effect of temperature could 
not be ascribed to decreased viability of the macrophages maintained at sub- 
optimal temperatures as judged by Trypan blue exclusion. There was no sta- 
tistically significant difference in the maximum association observed at 37°C 
or 20°C, although the time required to achieve that  maximum was markedly 
temperature sensitive, increasing from 60 min to 120 rain as the temperature 
was decreased from 37°C to 20°C. The maximum thymocyte-macrophage 
association observed at 4°C, even after a 3 h incubation, was significantly less 
(P < 0.01) than that  observed witb either 37°C or 20°C incubations. 

Ability of Heat-Killed Cells to Participate in Macrophage-Thymocyte Associa- 
tion.--While heat-killed macrophage monolayers were incapable of partici- 
pating in significant macrophage thymocyte  interaction (Table I I I ) ,  heat- 
killed thymocytes did bind to viable macrophages (Fig. 1 D). Similar degrees 
of association were seen between heat-killed thymocytes and macrophage mona- 
layers in the presence or absence of heat-inactivated guinea pig serum. I t  was 
noted that with incubation of up to 3 h, less than 13 % of the heat-killed thymo- 
cytes bound by viable macrophages had been internalized. 
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TABLE II 

The Ability of Various Nonglass-Adherent Cell Types to Bind to Macrophage Monolaycrs 

Cell no. Cell type* Percent of macrophages- Cells bound per 100 
binding cells macrophages 

2 X10 ~ Thymocyte 62.9 4. 1.8 120 4- 5 
LNL 36.8 -4- 3.8 (58.5%):~ 49 -4- 7 (40.8%) 
L2C 6.8 ± 1.1 (10.8%) 8 4- 1 (6.7%) 
RBC 0.8 ± 0.3 (1.3%) 1 ± 0 (0.8%) 

5 X 106 Thymocyte 85.2 -¢- 1.0 244 -4- 7 
LNL 53.1 4- 2.8 (62.3%) 95 4. 9 (38.9%) 
L2C 13.9 4. 1.3 (16.3%) 18 -4- 2 (7.4%) 
RB¢ 3.3 4. 1.5 (3.9%) 3 4- 1 (1.2%) 

10 X 106 Thymocyte 91.9 -4- 1.0 316 4- 13 
LNL 58.9 4- 5.1 (64.1%) 118 4- 20 (37.3%) 
L2C 20.0 -4- 1.5 (21.8%) 29 4. 5 (8.1%) 
RBC 2.8 4- 1.5 (3.0%) 3 ± 1 (0.9%) 

* Preparation of cells is described in Materials and Methods. Indicated number of each cell 
type was added to individual syngeneic macrophage monolayers in 2 ml SMEM with 10% 
GPS and incubated for 60 min at 37°C with gentle rocking. Each term represents the mean 
4. standard error of four or more replicate experiments. 

:~ Expression in parentheses indicates binding of each cell type expressed as a percentage 
of the binding observed when an equal number of thymocytes was added to macrophage 
monolayers under standard conditions. 

TABLE III 

The Ability of Heat-Killed Cells to Participate in Macrophage-Thymocyte Association 

Percent of macrophages-binding Thymocytes per 100 macrophages 
Heat-killed cell thymecytes 

% of control* 

Macrophage:~ 6.5 4. 1.1 2.9 4. 0.5 
~[hymocyte§ 96.6 -4- 3.7 122.4 4. 9.4 

* Data expressed as a percentage of the macrophage-thymocyte association observed when 
2 >( 106 column-purified (viability >95%) thymocytes were incubated with syngeneic macro- 
phage monolayers (viability >95%) under standard conditions. Each term represents the 
mean 4. standard error of eight or more replicate experiments. 

Established macrophage monolayers were heated at 56°C for 60 min before the presenta- 
tion of 2 X 106 thymocytes (viability >95%) in standard fashion. 

§ Colunm-purified thymocytes were heated at 56°C for 60 rain, washed, counted, and pre- 
sented to untreated macrophage monolayers and incubated for 60 rain under standard con- 
ditions. 

Effect of Various Inhibitors on Macrophage-Thymocyte Interaction.--2-Deoxy- 
glucose, a revers ible  i nh ib i to r  of glycolysis ,  t h o u g h t  to affect  the  efficiency of 

glucose u t i l i za t ion  (24), caused  a small ,  b u t  s ignif icant  (P  ~ 0,02) decrease  in 

the  n u m b e r  of t h y m o c y t e s  b o u n d  per  100 m a c r o p h a g e s  w h e n  2 )< 106 t h y m o -  

cy t e s  were  added  to p r e t r e a t e d  m a c r o p h a g e s  in the  presence  of the  inh ib i to r  
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FIG. 6. The effect of temperature on the physical association between thymocytes and 
macrophages. Column-purified thymocytes (3 X l06) were incubated with syngeneic macro- 
phage monolayers for 10-180 min with gentle rocking at 4°C, 20°C, or 37°C. Each point 
indicates the number of thymoeytes bound per 100 macrophages and represents the mean 
of four replicate experiments with the vertical bars showing the standard errors. The maximal 
binding noted at 20°C was not significantly different from that observed at 37°C. 

(Table IV). No change in viability of treated macrophages was observed. 
Macrophages, which had been pretreated with 2-deoxyglucose and were then 
presented with thymocytes in the absence of the inhibitor, exhibited no signifi- 
cant decrease in binding as compared to control macrophages. Sodium azide, a 
reversible inhibitor of oxidative phosphorylation, also significantly decreased 
binding, without affecting viability, when thymocytes (2 X 106) were added to 
pretreated macrophages in the presence of the inhibitor. The combination of 
sodium azide + 2-deoxyglucose, when present continuously, resulted in nearly 
complete inhibition of thymocyte macrophage association. Sodium iodoacetate 
(3)< 10 -8 M), an irreversible inhibitor of glycolysis, markedly decreased thy- 
mocyte binding when thymocytes (2 X 106) were added to pretreated macro- 
phages in the presence or absence of this inhibitor (Table IV). Viability of the 
macrophages as gauged by Trypan blue exclusion was not affected. Thymo- 
cytes, on the other hand, which had been pretreated for 1 h with 3 mM sodium 
iodoacetate (posttreatment viability >95%)  exhibited a normal degree of 
binding to untreated monolayers. 

Inhibitors of protein synthesis (puromycin, cyclohexamide), DNA (mito- 
mycin C), or RNA (actinomycin D) metabolism had no significant effect on 
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TABLE IV 

The l(]ect of Metabolic Inhibitors on Macrophage-Thymocyte Association 

Inhibitor conc. Thymocytes-bound per 100 macrophages 
% of control* 

2-Deoxyglucose:~ 
(20 mM) 76.4 4- 4.1 

Sodium azide§ 
(20 raM) 25.6 4- 4.3 

Sodium azide + 2-deoxyglucoselI 
(20 mM + 20 raM) 4.1 -4- 0.4 

Sodium iodoacetate 
(3 mM) 
Continuous¶ 10.5 4- 0.9 
Macrophage** 19.8 4- 4.0 
Thymocyte:~:~ 105.8 4- 6.2 

* Data expressed as a percentage of the macrophage-thymocyte association observed when 
2 )< 106 column-purified thymocytes were incubated for 60 min at 37°C with macrophage 
monolayers in the absence of inhibitor. Each term represents the mean 4- standard error of 
four replicate experiments. 

:~ Monolayers pretrested with 2-deoxyglucose (20 mM) in HBSS without glucose for 30 
min at 37°C. 2 >( 106 thymocytes then presented in 2 ml HBSS without glucose + 2-deoxy- 
glucose (20 mM) and incubated in standard fashion. Controls were run in HBSS without 
glucose. Pretreated macrophages presented with thymocytes in HBSS without inhibitor yield 
89.4 + 2.9% of control binding. 

§ Monolayers pretreated with sodium azide (20 raM) in HBSS for 30 rain at 37°C. 2 N 106 
thymoeytes presented in 2 ml HBSS + azide (20 raM) and incubated in standard fashion. 
Control run in HBSS. Pretreated macrophages presented with thymocytes in HBSS without 
inhibitor yield 100.9 4- 6.3% of control binding. 

]J Monolayers pretreated with 2-deoxyglucose (20 raM) + azide (20 mM) in HBSS without 
glucose for 30 min at 37°C. 2 X 106 thymocytes presented in 2 ml HBSS without glucose + 
both inhibitors and incubated in standard fashion. Pretreated macrophages presented with 
thymocytes in absence of inhibitor yields 73.5 4- 1.6% of control binding. 

¶ Monolayers are pretreated with iodoacetate (3 mM) in SMEM for 30 min at 37°C. 2 X 
106 column-purified thymocytes were then presented in 2 ml (SMEM with 10% GPS) plus 
iodoacetate (3 mM) and incubated in standard fashion. 

** Monolayers were pretreated with iodoacetate (3 raM) in SMEM for 30 min at 37°C and 
washed times three. 2 X 106 thymocytes were then presented in 2 ml (SMEM with 10% 
GPS) containing no inhibitor and incubated in standard fashion. 

:~:~ Column-purified thymocytes were pretreated with iodoacetate (3 raM) in SMEM in sus- 
pension for 30 min at 37°C, washed, and counted. (Viability after treatment >95%.) 2 X 106 
treated thymocytes were presented to normal monolayers in 2 ml (SMEM with 10% GPS) 
containing no inhibitor and incubated in standard fashion. 

r n a c r o p h a g e - t h y r n o c y t e  i n t e r a c t i o n  w h e n  m a c r o p h a g e s ,  p r e t r e a t e d  w i t h  in-  

h i b i t o r  for 60 min ,  were  p r e s e n t e d  w i t h  t h y m o c y t e s  in t he  p resence  of t he  

i nh ib i t o r .  

The Requirement for  Divalent Cations in Macrophage-Thymocyte In te rac t ion . -  
T o  assess the  r e q u i r e m e n t  for d i v a l e n t  ca t ions ,  b i n d i n g  e x p e r i m e n t s  were per-  

f o r m e d  in S M E M  wi th  1 0 %  G P S  wh ich  c o n t a i n e d  1 X 10 -3 M disodiurn  
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E D T A .  H ighe r  concen t ra t ions  of E D T A  un i fo rmly  caused the macrophages  to 

de tach  f rom the  glass and thus  could no t  be used. W h e n  1 m M  E D T A  was 

present  for 15 rain before and  dur ing  t h y m o c y t e  presenta t ion ,  the  b ind ing  of 

t h y m o c y t e s  by  macrophages  was s ignif icant ly  (P  < 0.001) reduced (Table  V). 

M a c r o p h a g e - t h y m o c y t e  associat ion in the  presence of 1 X 10 -3 M E D T A  + 

2 X 10 -3 M C a + +  (Ca C12) was no t  s ignif icant ly  different  t h a n  control .  

M a c r o p h a g e - b i n d i n g  of t h y m o c y t e s  in the  presence of 1 m M  E D T A  + M g + +  

(MgSO4) a t  a concen t ra t ion  of 1 or  2 m M  was s ignif icant ly  (P  < 0.02) grea ter  

t han  in the  s i tua t ion  when  E D T A  alone was p resen t  b u t  s ignif icant ly  (P  < 

0.001) less t han  when 1 m M  E D T A  + 2 m M  C a + +  were present  (Table  V). 

E2ffect of Enzyme Treatment of the Participant Cells on Thymocyte-Macrophage 
Interaction.--Trypsin-treated t h y m o c y t e s  bind to normal  macrophages  in 

somewha t  grea te r  number s  than  control  t h y m o c y t e s  (Table  VI) .  Howeve r ,  

t ryps in  t r e a t m e n t  of macrophages  m a r k e d l y  decreased their  ab i l i ty  to b ind  

TABLE V 

The Role of Divalent Cations in Macrophage-Thymocyte Association 

EDTA* Cation:~ Conc. 
Thymocytes bound per 100 

macrophages 

% of controlJ[ 

1 m M  - -  - -  34.8 4- 1.5 
1 mM M g + +  1 mM 59.9 4- 8.8 
1 mM M g + +  2 mM 43.4 4- 4.1 
1 mM C a + +  1 mM 58.5 4- 4.2 
1 mM C a + +  2 mM 86.5 4- 4.4 

*~Macrophage monolayers were treated for 15 min at room temperature with 1 ml 
(SMEM + 10% GPS) with 1 X 10 -3 M disodium EDTA. 2 )< 108 thymocytes were added to 
monolayers in 2 ml (SMEM with 10% GPS) + 1 X 10 -3 M disodium EDTA + indicated 
cation at concentration noted. When EDTA was removed after pretreatment and thymocytes 
were added in 2 ml of SMEM with 10% GPS-binding was 85.2 4- 3.2 of control. 

J; C a + +  added as CaC12. M g + +  added as MgSO4. 
H Data expressed as a percentage of the standard macrophage-thymocyte association. 

Terms represent mean 4- standard error of four or more replicate experiments. 

TABLE VI 

The Ability of Enzyme-Treated Cdls to Participate in Macrophage-Thymocyte Association 

Enzyme (conc.) Cell treated 
Thymocytes-bound per tO0 

macrophages 

%of Control* 

Trypsin (0.4 mg/ml) Macrophage 20.4 4- 4.2 
Thymocyte 125.5 4- 7.5 

Neuraminidase (50 U/ml) Macrophage 111.2 4- 5.0 
Thymocyte 205.9 4- 8.0 

* Data expressed as a percentage of standard macrophage-thymocyte association. Each 
term represent the mean 4- standard error of eight or more experiments. 
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thymocytes, whether the thymocytes were added in the presence or absence of 
serum. When trypsin-treated macrophages were cultured, their ability to bind 
thymocytes was slowly regained such that macrophages cultured for 24 h after 
trypsinization could bind 93.0 4- 3.1% as many thymocytes per 100 macro- 
phages as control macrophages. 

Macrophages, which had been treated with neuraminidase, showed a mod- 
estly increased (_P < 0.05) ability to bind thymocytes (Table VI). Neura- 
minidase-treated thymocytes, on the other hand, were bound by macrophages 
in significantly greater (P < 0.001) numbers than control thymocytes. There 
was no increase in the endocytosis of neuraminidase-treated thymocytes as 
compared to untreated thymocytes in these experiments. 

Ultrastructure of Macrophage- Thymocyte A ssociation.--Electron microscopic 
observations of macrophage thymocyte interactions revealed that extremely 
close contact occurred between these cell-types, often with long expanses of 
closely approximated plasma membranes (Figs. 7 and 8). There was no obvious 
specialization of the submembrane architecture in the areas of the macrophage 
adjacent to thymocyte contact. Similarly, no particular region of the thymo- 
cyte was more frequently observed to be in contact with the macrophage. 
The vast majority of thymocytes were aligned along the surface of the macro- 
phage in seemingly random fashion. Few, if any intact thymocytes were found 
to have been internalized into macrophages. Tangentially cut sections occa- 
sionally caused thymocytes to appear to be completely surrounded by macro- 
phage cytoplasm, but serial sections revealed these cells to be external to the 
macrophage. 

D I S C U S S I O N  

These studies were undertaken to characterize the physical interaction be- 
tween lymphocytes and macrophage monolayers in vitro. The observations of 
Siegel (9, 10) that thymocyte "rosettes" developed about fresh guinea pig 
peritoneal mononuclear cells when the two cell types were mixed in suspension, 
our own observations of spontaneous clustering of lymphoid cells about larger 
glass-adherent cells in fresh spleen cell preparations as well as the numerous 
observations made on fixed sections of whole lymphoid organs (15, 17, 18) 
strongly suggest that the physical interaction between macrophages and 
lymphocytes studied in our system is representative of a function these cells 
possess in vivo and not one developed de now during in vitro cultivation. 
The ability of the macrophage to bind thymocytes increased as the time in 
culture, before thymocyte presentation, was lengthened. This may reflect 
more uniform viability of the glass-adherent cells, maturation of a functional 
and/or metabolic potential or merely increased surface area of the cells. Mono- 
nuclear cells have also been observed to develop increased capacity for phago- 
cytic uptake when maintained in prolonged culture (29). Likewise, macro- 
phages, after extended in vitro cultivation, have been noted to be more capable 



F~G. 7. The clustering of guinea pig thymocytes about syngeneic glass-adherent macro- 
phages. Broad areas of approximation between these cells were observed with little obvious 
specialization of the architecture adjacent to areas of contact. These cells were oriented by 
virtue of having been fixed, dehydrated, and embedded while adherent to glass slides as 
indicated in the Materials and Methods. Thymocytes have been observed to bind to all of 
the free, nonglass-adherent surfaces of the macrophages. Sections cut in a plane tangential 
to the free macrophage surface cause thymocytes bound to this surface to appear to be com- 
pletely surrounded by macrophage cytoplasm as in this photomicrograph. Serial sections 
show such thymocytes to be external to the macrophage. Magnification X 6,500. 
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Fie. 8. Macrophage-thymocyte-binding. Broad areas of close contact were observed with- 
out evidence of cytoplasmic bridging. Magnification X 14,000. 

of supporting antigen-mediated lymphocyte blast transformation than mono- 
cytes (8). 

Microcinematographic studies have revealed dynamic physical interactions 
between lymphocytes and macrophages in vitro (1-3, 11). Our studies indicate 
that during these interactions a bond is established between the cells which is 
firm enough to resist rather vigorous washing procedures. Despite the strength 
of this bond, no ultrastructural specialization of the cellular architecture was 
observed in the areas of contiguity other than extremely broad areas of closely 
apposed plasma membrane. We have not seen convincing evidence of cyto- 
plasmic bridging between cells. The kinetic nature of the cellular interactions 
studied in our system is suggested by the finding that prolongation of the in- 
cubation for up to 3 h did not result in increased thymocyte-binding above 
that observed after the first hour. The macrophages, however, had not been 
saturated with thymocytes, as evidenced by their ability to display increased 
binding when more thymocytes were presented, and no specialized subpopula- 
tion of "binding thymocytes" had been depleted. Thus, development of the 
observed plateau in macrophage-thymocyte interaction implies that an equi- 
librium between association and dissociation had been reached. The existence 
of such a steady-state is, furthermore, supparted by observations made in our 



PETER E. LIPSKY AND ALAN S. ROSENTHAL 919 

laboratory utilizing radioisotope-labeled thymocytes. 4 In these studies, macro- 
phage monolayers which had bound maximal numbers of thymocytes were 
observed to be able to exchange bound unlabeled thymocytes for isotopically 
labeled thymocytes without changing the total number of thymocytes bound. 

Investigation into the nature of the cells capable c,f participating in this 
cellular association revealed that, of the glass-adherent cell types studied, 
macrophages of various origins were more apt to bind thymocytes than either 
polymorphonuclear leukocytes or fibroblasts. The significance of the hetero- 
geneity observed among the various macrophages is unclear, but a variety of 
other functional and metabolic differences between macrophage types are 
known (22, 23, 30). Despite differences in the degree of binding observed, the 
assumption seems justified that the ability to physically intelact with lympho- 
cytes is a characteristic which distinguishes macrophages from other glass- 
adherent cells. Studies utilizing various nonglass-adherent cell types revealed 
that thymocytes as well as lymph node lymphocytes are bound to macrophage 
monolayers in a quantitatively reproducible fashion. In other studies, ~ peri- 
toneal exudate lymphocytes (25) were found to bind to macrophage monolayers 
in much the same manner as lymph node lymphocytes, while mouse thymocytes 
demonstrated no significant binding to guinea pig macrophages. The decreased 
binding of L2C cells as well as the lack of binding by guinea pig RBC or mouse 
thymocytes demonstrates specificity for the nonglass-adherent member of this 
cellular interaction. Thus, there is specificity for each of the participant cell 
types, suggesting the existence of a unique cellular recognition mechanism. 

A pre¥ious report has noted the selective removal of immunoglobulin-bearing 
lymphocytes from a complex mixture of mouse lymphoid cells by plating over 
macrophage monolayers (31). The suggestion was made that a selective binding 
of the immunoglobulin-bearing lymphocytes to macrophages occurred by 
virtue of the macrophage receptor for immunoglobulin. However, in our studies, 
L2C leukemia cells, known to bear 3,2-immunoglobulin on their surfaces (27), 
bound to macrophages less well than either thymocytes or column-purified 
lymph node lymphocytes. Further studies in our laboratory 3 using rabbit 
antibody directed against guinea pig immunoglobulin coupled to horseradish 
peroxidase to identify immunoglobulin-bearing lymphocytes (32) demon- 
strated that normal immunoglobulin-bearing lymphocytes obtained from lymph 
nodes are capable of, but not more likely to bind to macrophages than cells 
devoid of detectable surface immunoglobulin. Furthermore, modulation of 
immunoglobulin from the surface of immunoglobulin-bearing cells (32) did not 
diminish their binding and no competitive inhibition of binding by excess im- 
munoglobulin could be demonstrated. These observations together with the 
data obtained using L2C cells suggest that lymphocyte binding to macrophages 
does not involve the surface immunoglobulin of these cells. 

The ability of heat-killed thymocytes to bind to macrophages indicates that 

4 Lipsky, P. E., J. T. Blake, and A. S. Rosenthal. 1973. Manuscript  in preparation. 
5 Lipsky, P. E., and A. S. Rosenthal. Unpublished observations. 
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the thymocyte's role in this interaction is a passive one which does not require 
active cell metabolism. This is supported by the observation that thymocytes 
which had been treated with the irreversible metabolic inhibitor sodium iodo- 
acetate were fully capable of being bound by macrophages. Although the thy- 
mocyte is a passive participant in the initial development of this intercellular 
bond, an active role for the nonglass-adherent cells in other aspects of inter- 
actions with macrophages has not been excluded. Thus, the more active move- 
ment of the lymphocyte, as revealed by microcinematographic studies (1-3, 
1 l) may be important in bringing lymphocytes and macrophages into proximity 
so that specific-binding can occur. The termination of binding may, also, in 
part, be determined by an active function of the lymphocyte. In this regard, the 
increased net binding of heat-killed thymocytes by viable macrophages may 
reflect the loss of active thymocyte dissociation. The inability of heat-killed 
macrophages to bind thymocytes demonstrates the dependence of this phe- 
nomenon on the presence of intact, viable macrophages. The possibility that 
the macrophage component of the recognition mechanism was destroyed by 
heating was not specifically explored. The evidence, however, that iodoacetate- 
treated macrophages were incapable of participating in the interaction indicates 
that active macrophage metabolism was necessary for macrophage-lymphocyte 
interaction to occur. 

The studies utilizing inhibitors, enzymes, and other experimental manipula- 
tions were designed to describe the characteristics of the binding of thymocytes 
to macrophages. The recognition mechanism mediating this binding has many 
of the features of a macrophage "receptor" for lymphocytes whose charac- 
teristics can be compared to those of other known macrophage receptors. It 
can be differentiated from the macrophage receptor for immunoglobulin (7S) 
coated red cells by virtue of its temperature and trypsin sensitivity, its require- 
ment for divalent cations and its lack of competitive inhibition by excess im- 
munoglobulin (33-35). It differs from the receptor demonstrated on mouse 
macrophages for homologous 19S imnmnoglobulin-coated red cells by virtue of 
its trypsin sensitivity (36). Its Ca+ + rather than Mg+ + dependence as well 
as its suceptibility to sodium azide define it as different from the receptor for 
antibody and complement-coated red cells (34). It can be distinguished from 
the "particulate" receptor as exemplified by the binding of aldehyde-treated 
RBC by virtue of its dependence on divalent cations (35). Thus, it is likely that 
the binding of lymphocytes by macrophages is accomplished by a different 
receptor mechanism than the ones which have been previously described to 
mediate the binding of particles to macrophages. Furthermore, it is unlikely 
that this binding occurs by virtue of imnmnoglobulin and/or complement 
associated with the thymocytes or lymphocytes. 

In vivo, lymphocytes have been observed to be heterogeneous in regard to 
their migratory patterns (37). It is possible that these migration properties are 
related to the differential ability of various lymphocyte populations to develop 
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bonds with the indigenous macrophages of the lymphoid organs. Support for 
this concept comes from studies using enzyme-treated cells. Neuraminidase 
treatment of thymocytes markedly enhances their binding to macrophages in 
vitro. Neuraminidase treatment of thymocytes has also been noted to alter 
their subsequent in vivo migration (38). On the other hand, trypsin treatment 
of the thymocytes, which has less effect on their in vitro binding to macrophages 
in our assay has correspondingly little effect on in vivo migration. 

Trephocytic functions of macrophages may be facilitated by the cellular 
proximity which results from this interaction. Thus, macrophages, but not fibro- 
blasts or macrophage culture supernatants, could promote improved lymhpo- 
cyte viability in vitro (20). Likewise, the maturation and differentiation of 
functionally immature thymocytes occurred in vitro when these cells were 
cultured on supporting cell monolayers consisting of either thymic epithelial 
cells or splenic macrophages (21). The inability of soluble factors to substitute 
for monolayers themselves suggested that direct cell to cell contact was re- 
quired, perhaps to facilitate the transfer of needed nutrients. Indeed, trans- 
mission of isotopically-labeled materials from macrophages to lymphocytes 
during periods of physical contiguity has been observed (13). 

In the guinea pig (39), as in other species (5, 6, 40, 42), cellular cooperation 
between macrophages and immunocompetent lymphocytes has been demon- 
strated during the in vitro expression of antigen responsiveness. Antigen bound 
to macrophages triggers immunocompetent cells very efficiently as evidenced 
by the ability of antigen pulsed macrophages to stimulate immune lymphoid 
cells to the same degree as larger concentrations of free antigen (6, 8, 26, 40, 
41). Supernatants from cultures of macrophages which have been exposed to 
antigen cannot induce antigen-specific lymphocyte stimulation (26, 39) suggest- 
ing that the required cellular cooperation involves direct cell to cell contact. 
The importance of cell contact is further emphasized by the observation that 
during in vitro immune induction, the vast majority of antibody-forming cells 
were found in clusters of lymphocytes and macrophages while disruption of 
these cell clusters blocked antibody formation (7, 19). When [H3]thymidine 
incorporation was used as a marker for antigen-specific lymphocyte prolifera- 
tion in vitro, it was observed that cluster formation preceded [H3]thymidine 
incorporation (12), and that the majority of [H3]thymidine-labeled cells were 
found physically associated with antigen-containing macrophages (8, 12) 
during the early period of proliferation. 

Thus, much evidence exists that lymphocytes must physically interact with 
macrophages in order to manifest an antigen-dependent immune response in 
vitro. Since macrophage-lymphocyte interaction can occur in the absence of 
relevant antigen, it is reasonable to speculate that an early event in the im- 
mune response may involve antigen-independent reversible binding of lympho- 
cytes to macrophages by means of a specific cellular recognition mechanism. 
Only when the macrophages had previously taken up antigen and retained it in 
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immunogenic form would this initial binding step serve to select specifically 
immunocompetent lymphocytes and promote their proliferation and/or dif- 
ferentiation. 

SUMMARY 

The nature of the physical interaction between guinea pig non-glass-adherent 
lymphoid cells and syngeneic macrophages in vitro was investigated. This 
cellular interaction was found to require the presence of metabolically intact 
macrophages but neither serum nor antigen. Peritoneal, splenic, or alveolar 
macrophages were significantly more capable of interacting with thymocytes 
than either polymorphonuclear leukocytes or fibroblasts. The role of the non- 
glass-adherent cell was passive in that heat-killed or metabolically poisoned 
thymocytes were bound by normal macrophages. Two normal lymphoid cell 
populations, thymocytes, and lymph node lymphocytes, were bound to macro- 
phages in significantly larger numbers than either L2C leukemia cells or erythro- 
cytes. Thus, specificity for each of the participant cell types was demonstrated. 
These data indicate that macrophages possess a unique ability to recognize and 
bind lymphocytes and thymocytes by a mechanism which is distinguishable 
from other known macrophage receptors. 
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