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Abstract

Introduction
The ability to estimate risk of multimorbidity will provide valuable information to patients and
primary care practitioners in their preventative efforts. Current methods for prognostic prediction
modelling are insufficient for the estimation of risk for multiple outcomes, as they do not properly
capture the dependence that exists between outcomes.

Objectives
We developed a multivariate prognostic prediction model for the 5-year risk of diabetes, hypertension,
and osteoarthritis that quantifies and accounts for the dependence between each disease using a
copula-based model.

Methods
We used data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) from
2009 onwards, a collection of electronic medical records submitted by participating primary care
practitioners across Canada. We identified patients 18 years and older without all three outcome
diseases and observed any incident diabetes, osteoarthritis, or hypertension within 5-years, resulting
in a large retrospective cohort for model development and internal validation (n=425,228). First,
we quantified the dependence between outcomes using unadjusted and adjusted φ coefficients. We
then estimated a copula-based model to quantify the non-linear dependence between outcomes that
can be used to derive risk estimates for each outcome, accounting for the observed dependence.
Copula-based models are defined by univariate models for each outcome and a dependence function,
specified by the parameter θ. Logistic regression was used for the univariate models and the Frank
copula was selected as the dependence function.

Results
All outcome pairs demonstrated statistically significant dependence that was reduced after adjusting
for covariates. The copula-based model yielded statistically significant θ parameters in agreement
with the adjusted and unadjusted φ coefficients. Our copula-based model can effectively be used to
estimate trivariate probabilities.

Discussion
Quantitative estimates of multimorbidity risk inform discussions between patients and their primary
care practitioners around prevention in an effort to reduce the incidence of multimorbidity.
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Introduction

Harnessing observational health data to improve patient
care, such as through decision support tools embedded into
electronic medical records (EMRs), is a topic of great interest
[1, 2]. Prognostic prediction models can provide decision
support through quantitative estimates of disease risk based
on a patient’s individual predictors (e.g., age, sex, physical
activity level) [3–5]. Understanding a patient’s risk of disease
empowers prevention efforts, a hallmark of population health,
by guiding decision-making processes and identifying patients
at increased risk [6]. Research related to decision support at
the point of care requires both methodological and clinical
considerations. Methodological considerations span from data
source selection and pre-processing to model development
and evaluation; clinical considerations include identifying what
disease(s) or aspects of clinical care could benefit from decision
support and the types of information or tools that will
accomplish this.

There is a gap between one of the most prominent
clinical challenges faced by primary care practitioners and
their patients and the development of prognostic prediction
models thus far. Multimorbidity, where a patient has two
or more chronic diseases, is increasing in prevalence and
presents several challenges in terms of identification and
treatment [7, 8]. The ability to estimate a patient’s risk of
multimorbidity is needed [7, 9]. Research into multimorbidity
has predominantly focused on establishing patterns or clusters
of multimorbidity or establishing risk factors by investigating
the associations between multimorbidity and potential risk
factors [10, 11]. While related to multimorbidity risk, the
latter does not allow for risk estimation. Recently, there
has been a focus on developing strategies to prevent
multimorbidity as health policy makers and health care
practitioners recognize its importance [12, 13]. There are many
existing prognostic prediction models for individual diseases
but few for multimorbidity [14, 15]. Using a series of single-
disease models in a clinical setting to estimate risk of multiple
diseases is not only burdensome but also may give inaccurate
perceptions of risk.

Methodological complexity may be a barrier to developing
tools for multimorbidity risk prediction; standard off-the-shelf
packages for developing prediction models are not expected to
perform correctly. Prognostic prediction models are commonly
developed to estimate the risk of a single disease. To estimate
the risk of multimorbidity, one might combine the risks of
multiple single disease models. For example, if one were
interested in estimating a patient’s risk of diabetes and
hypertension co-occurring, they might multiply the patient’s
risk of diabetes by their risk of hypertension, giving the risk
of both diseases occurring. However, this method assumes
independence between the incidence of diseases, which rarely
occurs. Instead, this dependence must be accounted for when
estimating the risk of multiple diseases. We hypothesize that a
lack of clear methodology for how to account for dependence
between disease incidence is a barrier to the development of
prognostic prediction models for multimorbidity and targeting
this methodological gap is a necessary first step towards proper
estimation of multimorbidity risk.

The objective of this study is to present a methodology
for prognostic prediction models that accounts for dependence

between disease incidence. This is achieved in the context
of Canadian primary health care, whereby we developed a
prognostic prediction model that estimates the 5-year risk
of diabetes, hypertension, and osteoarthritis. These diseases
were selected as a case study based on their prevalence,
availability of validated case-detecting algorithms [16], and
clinical importance. To accomplish this, we first developed
univariate multivariable models for each disease. We then
explored the dependence between disease incidence, which
led to the development of a model capable of predicting
each disease and their co-occurrence while accounting for the
dependence between disease incidence.

Methods
Data source

Primary care is typically the first contact for patients within the
Canadian healthcare system. A patient is managed in primary
care by their primary care practitioner or referred to secondary
or tertiary care, depending on the level of care required
[17]. Primary care is an ideal setting for the deployment of
interventions aimed at reducing multimorbidity risk given the
broad population it serves who typically are in earlier stages of
disease compared to patients of secondary or tertiary care.

All data used were derived from the Canadian Primary
Care Sentinel Surveillance Network (CPCSSN) database [18]:
a database containing patient information from the EMRs of
primary care practices across Canada starting in 2008 [19].
Nearly 1,200 primary care practitioners voluntarily contribute
deidentified records of more than 1.5 million patients. Patients
provide consent via an opt-out system, where patients who
do not wish to contribute their data may choose to opt-
out, except in Quebec, where an opt-in process is mandated
by provincial law. In 2013, CPCSSN patients were older and
more likely to be female compared to the overall Canadian
population as reported in census data [20], which is typical of
primary care [21–23].

All structured data from the EMR are available
in CPCSSN, including patient demographics, diagnoses,
laboratory results, prescriptions, referrals, risk factors, medical
procedures, vaccinations, and allergies. For privacy reasons,
the free-text narrative where primary care practitioners record
their notes is not available in CPCSSN.

Measures
Outcome

CPCSSN researchers developed and validated case-detecting
algorithms for several chronic diseases to identify cases
of disease within the database [16]. These case detecting
algorithms were developed using published evidence and input
from primary care and specialist physicians and validated by
a comprehensive chart review. Validation demonstrated high
sensitivity and specificity.

We used CPCSSN case-detecting algorithms to identify
cases of diabetes, osteoarthritis, and hypertension. Sensitivity
and specificity for these case-detecting algorithms were high;
see Appendix Table 1. Our use of validated disease case-
detecting algorithms helps ensure that the identification of
outcomes is accurate. Inaccurate outcome identification (a
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form of measurement error) will decrease the accuracy of risk
estimates due to biased relationships between the predictors
and true disease development. This poor performance would
not be revealed by internal validation as the data used for
validation would be subject to the same issue of inaccuracy
in outcome identification as the data used to construct the
model. Often only internal validation is feasible, reinforcing
the importance of using a validated case-detecting algorithm
for the identification of outcomes.

Blinding of predictor information during outcome
assessment was not possible. Predictor assessment and
subsequent outcome assessment were both conducted by the
primary care practitioner; thus, it is likely that primary care
practitioners had some knowledge of the patient’s predictors
while assessing the outcomes, which may have introduced
measurement bias. However, each outcome has clearly defined
diagnostic criteria; thus, the impact of this is likely minimal.

Predictors

We identified predictors for each outcome through review
of relevant literature. These predictors are presented in
Appendix Table 2. We then attempted to identify predictors
in the CPCSSN database. We identified 5 predictors of
osteoarthritis, 8 of diabetes, and 6 of hypertension; see Table
1. Where possible, we used CPCSSN validated case-detecting
algorithms. Otherwise, we developed an algorithm to identify
each predictor using CPCSSN data: some combination of
diagnostic terms and codes; medications used for specific
indications; and laboratory results. These algorithms were
reviewed by a primary care practitioner to ensure accuracy.
See Supplemental Appendix 1 for predictor case-detecting
algorithms.

We estimated each patient’s income by linking their
Forward Sortation Area (FSA) to area-level income data
collected by the National Household Survey conducted in 2011
[24]. Rurality was assessed based on the second digit of the
FSA.

As suggested in TRIPOD [25], we included all continuous
risk factors in their original form. We did not transform or
categorize continuous variables.

Participants

We included all patients aged 18 or older who did not have
diabetes, osteoarthritis, and hypertension at baseline (i.e.,
we excluded patients with all 3 outcomes) and had some
interaction with their primary care practitioner in 2009 or

2010 (i.e., an interaction that resulted in a billing occurrence,
encounter recording or diagnosis, exam, or health condition
diagnosis in the EMR). For each patient, we considered the
first interaction with their primary care practitioner between
1 January 2009 and 31 December 2010 the patient’s unique
start-date. We assessed the patient’s predictors at this point
(including diabetes, hypertension, and osteoarthritis as one
may predict another). We then noted any diagnosis of
diabetes, osteoarthritis, or hypertension over the following 5
years. We included all eligible patients to maximize predictive
performance.

Missing data

EMR are collected for clinical purposes, not specifically for
research use. Data are often missing from the EMR because
they are not relevant for patient care, despite being highly
relevant for research. Multiple imputation was used to address
missing data, which produced 5 multiple completed datasets.
While a single point estimate will be presented for each
statistic, in actuality, several were computed (one for each
imputed dataset); these results were then combined using
Rubin’s rules [26] to create a single statistic whose variance
has been adjusted to account for the uncertainty of deriving
an estimate from multiple datasets.

Statistical analysis

To construct a prognostic prediction model for diabetes,
hypertension, and osteoarthritis, we analyzed the dependence
between these diseases. We selected copulas [27, 28] to model
the dependence between outcomes because they account for
more than two diseases, adjust for both continuous and
discrete variables, and can be used to construct a prognostic
prediction model. First, we constructed univariate models
for each outcome then we used a copula to describe the
dependence between outcomes.

Univariate multivariable logistic regression

We constructed univariate multivariable logistic regression
models for each outcome. We included patients without the
outcome at baseline when estimating the univariate model.
For example, we used a subgroup of patients who did not
have diabetes at baseline to construct the diabetes univariate
model. We internally validated each univariate model by
measuring its discrimination and calibration. We assessed

Table 1: Predictors available in CPCSSN database

Osteoarthritis Diabetes Hypertension

Osteoporosis Hypertension Older age
Previous leg injury Older age Diabetes
Older age Lipid disorders Obesity
Obesity Obesity Kidney disease
Female sex Male sex Tricyclic antidepressant

Schizophrenia (TCA) use
Depression
Low socioeconomic status
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sθ (θ, βk , βl) =

n∑
i=1

Ċθ (πik , πil)

(
(1− Yik) (1− Yil)

Cθ (πik , πil)
− (1− Yik)Yil

πik − Cθ (πik , πil)
− Yik (1− Yil)

πil − Cθ (πik , πil)
+

YikYil

1− πik − πil + Cθ (πik , πil)

)
(1)

Ċθ (u, v) =

eθθ
(
(u − 1)

(
−eθv

)
− eθ(u+v) + ueθv+θ − (v − 1) eθu + veθu+θ − eθ (u + v) + u + v − 1

)
(eθ − 1)

(
−eθ(u+v) + eθu+θ + eθv+θ − eθ

)
+ log

((
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

+ 1

)
θ2 (2)

πik = 1− πik (3)
πil = 1− πil (4)

where Cθ is the copula function; Ċθ is the derivative of the copula function; πik and πil are estimated probabilities of disease k and
l for patient i based on their univariate models, respectively; and Yik and Yil are the observed disease outcomes for patient i.

discrimination (the ability to assign higher risk to true positive
cases) by determining the area under the receiver operator
characteristic curve (AUC). We assessed calibration (how well
the model fits the data) by examining calibration plots. To
investigate the potential impact of censoring (e.g., a patient
changing providers), we conducted a sensitivity analysis where
we required that each patient have at least one interaction with
their primary care practitioner after the end of their follow-up
period. We compared parameter estimates from this restricted
cohort to those of the overall cohort.

Analysis of dependence

We explored the dependence between outcomes in a pairwise
fashion. For each pairwise analysis, we included patients who
did not have either outcome at baseline. For example, in the
analysis of diabetes and hypertension, we included patients
who did not have diabetes or hypertension.

We estimated the unadjusted pairwise correlation between
outcomes using the φ coefficient (also known as the mean
square contingency coefficient). The φ coefficient is a measure
of association between two binary variables, analogous to the
Pearson correlation coefficient for continuous variables [29]. In
fact, estimating a Pearson correlation coefficient for two binary
variables gives the φ coefficient [29].

We then estimated the adjusted pairwise correlation (also
known as partial correlation) between outcomes using the φ
coefficient adjusted for the predictors of both outcomes.

To enable predictions that account for the dependence
between outcomes, we estimated a copula-based model that
captures the dependence between each outcome pair. Copula
models are able to capture dependence among variables
without imposing any requirements on marginal distributions
of the variables; for example, the marginal distributions do not
need to be Gaussian. Many parametric copula forms exist that
are characterized by the structure of the dependence they can
best describe. We selected the Frank copula [30] based on
its ability to describe weak dependence based on the weak
correlations we observed between outcome pairs.

Cθ (u, v) = −1
θ
ln

(
1+

(
e−θu − 1

) (
e−θv − 1

)
e−θ − 1

)
(5)

When modelling the dependence between binary variables,
the copula is defined by both the parameter θ and the marginal
distributions [27]. As such, we used the two-stage estimation
procedure based on the composite likelihood suggested by
Zhao and Joe [31] for the estimation of θ. First, we
determined the marginal models using the maximum likelihood
estimation procedure, yielding β estimates that we used in the
second step. From these univariate models, we estimated the
probabilities for the independent occurrence of each outcome
(πj), by:

πj (x) =
exp

(
xTβj

)
1+ exp

(
xTβj

) (6)

where βj is a vector containing the β estimates for each
outcome j and x is a matrix of covariate data. Second, we
obtained estimates of θ, again using the maximum likelihood
estimation procedure. This process made use of the bivariate
conditional distributions of each outcome pair. From these, the
likelihood function was constructed. By setting the derivative
of the log likelihood function (known as the score function, sθ
[Equation 1]) equal to zero, we estimated θ.

A dependence structure using copulas is completely
specified by its univariate models and copula, which is specified
by its θ estimate. For each disease pair, we estimated the
parameter θ and bootstrapped confidence intervals using the
percentile method [32] and 1,000 replicates. Additionally,
we tested the null hypothesis that the observed outcome
frequencies are no different than what would be expected
under independence [27] using the following hypothesis test
based on the score test. We rejected the null hypothesis if
zobs is larger in absolute value than a critical value derived
from the standard Normal distribution, denoted N(0, 1).

zobs =

n∑
i=1

Ċθ0
(
π̂ik , π̂il

)
(Yik − π̂ik) (Yil − π̂il)

π̂ik π̂il π̂ik π̂il
/√√√√√ n∑

i=1

Ċ 2
θ0

(
π̂ik π̂il

)
π̂ik π̂il π̂ik π̂il

(7)

Based on these copula models, trivariate probabilities
that account for the dependence between outcomes can be
estimated; that is, the probabilities of each combination of
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diseases will be estimated. Each trivariate probability can be
described as a probability mass function.

p (x1, x2, x3) = p (X1 = x1,X2 = x2,X3 = x3) (8)

Bivariate probability mass functions can be used to
describe the marginal distributions of the trivariate probability
mass functions.

p (x1, x2) =
∑

x3∈{0,1}

p (x1, x2, x3) (9)

Similar expressions are true for p (x1, x3) and p (x2, x3).
Based on p̂ (x1, x2), p̂ (x1, x3), and p̂ (x2, x3) as estimated
by the copula model, trivariate probability mass functions
(p̂ (x1, x2, x3)) can be found such that their bivariate
distributions match the specified bivariate marginal distri-
butions. In fact, there may be many trivariate probability
mass functions whose bivariate marginals match the specified
bivariate distributions. We chose the trivariate with the
highest entropy (highest uncertainty), as this gives the most
conservative estimate in terms of the model’s predictions.

To find the trivariate distribution with maximum entropy,
we first note that it is possible to define the space of all
trivariate probability mass functions that satisfy the bivariate
constraints using a single parameter, α (see Supplementary
Appendix 2). Therefore, to find the distribution with maximum
entropy, we first determined the permitted bounds of α, such
that all estimated probabilities fall in the range 0 to 1, and we
then defined the entropy of a potential solution distribution
as a function of α [33]. By searching over possible α, we
found the distribution that maximizes entropy. Given the
resulting trivariate distribution, all joint probabilities of disease
incidence can be estimated. I.e., the risk of developing any
combination of diabetes, hypertension, and osteoarthritis all
within a 5-year window can be estimated.

We have included code to estimate the copula-based
model, perform hypothesis testing, and estimate trivariate
probabilities using the copula-based model, see Supplementary
Appendix 3.

Results

Descriptive statistics

We followed a cohort of 425,228 adult patients who did not
have multimorbid diabetes, hypertension, and osteoarthritis
(i.e., they had at most two of these three conditions) who
had received care between 1 January 2009 and 31 December
2010 for 5 years. Figure 1 details the flow of patients into the
cohort.

At baseline, the majority of patients were female (58%) and
had a body mass index (BMI) greater than 25 kg/m2 (64%)
with a median age of 49 years old (interquartile range: 34 to
59). For a detailed description of all patient characteristics,
see Appendix Table 3.

After 5 years, hypertension was the most commonly
acquired outcome (n=39,882; incidence proportion of 9.4%),
followed by diabetes (n=18,769; 4.4%), then osteoarthritis
(n=12,803; 3.0%).

Predictors

For BMI, the most recent value before baseline was used. For
each predictor found in the CPCSSN database, we assessed its
face validity by comparing its prevalence in CPCSSN during
2009 and 2010 with national averages from 2010 (data not
shown). Polycystic ovarian syndrome and alcohol use disorder
were much lower than national averages; we did not include
these predictors in our analysis. Additionally, family history
data was not collected in several networks; thus, we did not
include family history in our analysis.

The following predictors were missing to some degree:
smoking information, sex, BMI, age, and income (Table 2). We
used multiple imputation by chained equations to account for
missing data in sex, BMI, age, and income. We did not impute
smoking information due to its high degree of missingness.

Many patients were missing BMI values. We could
not determine the reason why patients were missing BMI
values; however, the distribution among patients with BMI
values was approximately similar to that of the Canadian
population (Appendix Table 4). We examined the kernel
density distribution of imputed BMI values compared to known
BMI values: all imputed BMI values were within a reasonable
range of values (Appendix Figure 1).

Figure 1: Cohort based on CPCSSN database
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Table 2: Predictors with missing data

Development set Validation set
(n = 265, 228) (n = 160, 000)

n missing % n missing %

Smoking 247,918 93% 149,401 93%
Sex 44 0.02% 25 0.02%
BMI 175,632 66% 105,768 66%
Age 167 0.06% 92 0.06%
Income 13,824 5.2% 8,579 5.4%

BMI: body mass index

Table 3: Univariate logistic regression models

Reference category/units β estimate 95% CI Odds ratio 95% CI

Diabetes univariate model (AUC = 0.85)
Hypertension No Reference Reference

Yes 0.3 0.26 to 0.35 1.35 1.30 to 1.42
Age (Years) 0.04 0.03 to 0.04 1.04 1.03 to 1.04
Lipid disorders No Reference Reference

Yes 1.69 1.64 to 1.73 5.42 5.16 to 5.87
BMI (kg/m2) 0.07 0.07 to 0.08 1.07 1.07 to 1.08
Sex Male Reference Reference

Female -0.3 -0.34 to -0.26 0.74 0.71 to 0.77
Schizophrenia No Reference Reference

Yes 0.63 0.51 to 0.75 1.88 1.67 to 2.12
Depression No Reference Reference

Yes 0.14 0.08 to 0.20 1.15 1.08 to 1.22
Income ($10,000) -0.89 -1.15 to -0.64 0.41 0.32 to 0.53

Hypertension univariate model (AUC = 0.84)
Diabetes No Reference Reference

Yes 0.18 0.12 to 0.23 1.19 1.13 to 1.26
Age (Years) 0.07 0.06 to 0.07 1.07 1.06 to 1.07
BMI (kg/m2) 0.06 0.06 to 0.07 1.06 1.06 to 1.07
Chronic Kidney Disease No Reference Reference

Yes 0.8 0.74 to 0.85 2.22 2.09 to 2.35
Tricyclic Antidepressant Use No Reference Reference

Yes 0.55 0.49 to 0.62 1.74 1.63 to 1.86
Osteoarthritis univariate model (AUC = 0.83)
Age (Years) 0.06 0.05 to 0.06 1.06 1.05 to 1.06
Sex Male Reference Reference

Female 0.22 0.17 to 0.27 1.25 1.19 to 1.31
BMI (kg/m2) 0.04 0.03 to 0.04 1.04 1.04 to 1.05
Previous Leg Injury No Reference Reference

Yes 1.6 1.52 to 1.68 4.94 4.57 to 5.35
Osteoporosis No Reference Reference

Yes 0.9 0.83 to 0.98 2.47 2.29 to 2.66

AUC: area under the receiver operator characteristic curve; BMI: body mass index;
CI: confidence interval.

Univariate results

Univariate results are displayed in Table 3. We found that all
predictors were associated with the corresponding outcome.
Each univariate model displayed strong discrimination and
moderate calibration (see Appendix Figures 2a-c for calibration
plots). Sensitivity analyses revealed that censoring was not
a concern: model estimates based on a cohort restricted
to patients with at least one interaction with their primary

care practitioner after the follow-up period (n=315,859) were
similar to those of the overall cohort (Appendix Table 5).

Dependence analysis
We estimate the unadjusted and adjusted correlation between
each outcome pair (Table 4a). All pairs were positively
correlated. Diabetes and hypertension displayed the highest
correlation, followed by hypertension and osteoarthritis, then
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Table 4a: Unadjusted correlation (φ coefficients)

Diabetes Hypertension Osteoarthritis

Diabetes 1
Hypertension 0.240

(0.238 to 0.246, 1
p < 0.0001)

Osteoarthritis 0.098 0.209
(0.093 to 0.102, (0.205 to 0.213,
p < 0.0001) p < 0.0001) 1

Table 4b: Adjusted correlation (partial correlation)

Diabetes Hypertension Osteoarthritis

Diabetes 1
Hypertension 0.132

(0.128 to 0.137, 1
p < 0.0001) 1

Osteoarthritis 0.038 0.123
(0.034 to 0.042, (0.118 to 0.127, 1
p < 0.0001) p < 0.0001)

Table 4c: Adjusted dependence (θ estimates)

Diabetes Hypertension Osteoarthritis

Diabetes
Hypertension 1.677

(1.566 to 1.788,
p < 0.0001)

Osteoarthritis 0.683 1.949
(0.526 to 0.841, (1.822 to 2.076,
p < 0.0001) p < 0.0001)

Table 5: Trivariate probabilities for simulated patient

P(Diabetes, Hypertension, Based on Based on independence
Osteoarthritis) copula model assumption Ratio

P(0,0,0) 0.6088 0.5798 1.05
P(0,0,1) 0.0481 0.0665 0.72
P(0,1,0) 0.2362 0.2633 0.90
P(1,0,0) 0.0466 0.0302 1.54
P(0,1,1) 0.0282 0.0371 0.76
P(1,0,1) 0.0026 0.0043 0.61
P(1,1,0) 0.0239 0.0169 1.42
P(1,1,1) 0.0055 0.0019 2.84

Simulated patient: 79 year-old woman whose BMI is 34 kg/m2 with an income of roughly $35,000 and free of any other risk factors.

diabetes and osteoarthritis. This was consistent after adjusting
for predictors, though smaller in magnitude (Table 4b).

We estimated copulas for each outcome pair (Table
4c). Hypothesis testing demonstrated a significant positive
dependence between all outcome pairs after adjusting for risk
factors.

To demonstrate the use of our model, we estimated the
trivariate probabilities for a simulated patient accounting for
the dependence between outcomes using the copula model

and without accounting for the dependence between outcomes
by multiplying the probability from each univariate model
(Table 5). Risk estimates differed between these approaches,
demonstrating the need to account for the dependence
between outcomes.
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Discussion

We developed and internally validated univariate models for
diabetes, hypertension, and osteoarthritis based on EMR
records. All models were highly discriminative and moderately
calibrated. We then explored the dependence between each
outcome by estimating the unadjusted and adjusted correlation
in a pairwise fashion. All outcome pairs were positively
correlated. After adjusting for predictors, outcome pairs
remained positively correlated with reduced magnitudes.
Finally, we estimated a copula-based model that describes the
dependence between outcomes while enabling risk predictions.

Existing research for multimorbidity risk prediction includes
four areas. First, establishing risk factors for multimorbidity
that can be used to identify high-risk patients. Many
studies have found that older age, female gender, and lower
socioeconomic status are associated with multimorbidity [34].
While our model was constructed for prediction purposes,
rather than to derive causal inferences, these factors were all
included in our model and found to be predictive of diabetes,
hypertension, or osteoarthritis.

Second, two prognostic prediction models have been
developed for the onset of the first of several possible
chronic disease outcomes. Ng et al. (2020) developed a
model from national survey data linked with provincial health
administrative data in Canada that is primarily intended for
population-level predictions to aid health policy makers [35];
May et al. (2019) developed a model with primary care clinical
data in the United States that is intended for implementation
with EMRs for individual patient-level predictions [36]. These
models require the absence of all possible outcome diseases at
baseline (6 and 10, respectively) and predict the first instance
of any of the diseases, which may signal the beginning of
progression towards multimorbidity. In contrast, our methods
account for dependence between diseases and allow for the
presence of some of the outcome conditions at baseline such
that predictions may be made for individuals who are further
along in the natural history of diseases.

A third line of research relevant to multimorbidity
prediction includes Bayesian networks rather than regression-
based models [37–39]. Lappenshaar et al. developed multilevel
Bayesian network methodology and applied it to explore
cardiovascular multimorbidity from primary care data in the
Netherlands [38]. Their methodology allows for predicting
multiple outcomes, explicit modelling of interactions and
dependence between variables, formally incorporating domain
knowledge, and accounting for practice-level variation which
is commonly present in large health databases. In contrast
to our regression-based methods that estimate conditional
probability distributions with predictions based on all variables
in a parametric model, multilevel Bayesian networks model a
joint probability distribution and make predictions based on
variables in the Markov blanket of the outcome(s) of interest.
Lappenshaar et al. extended their models to include changes
over time through multilevel temporal Bayesian networks [37].
While this methodology has the potential for individual risk
prediction, it has not been evaluated in that setting; the main
focus of the work thus far was to understand interactions
between diseases and the progression of multimorbidity over
time and to predict of future rates of multimorbidity at a group
level.

Finally, Wang et al. (2014) developed a multitask machine
learning framework for EMR-based multiple disease prediction
[40]. Their framework includes learning groupings of common
risk factors across the outcome diseases, which serve as high-
level latent predictors to use instead of raw EMR features and
learning regression coefficients to weight these groupings. The
resulting model can be used both for risk prediction and to
explore the groupings to identify potential shared or unique
risk factors across outcome diseases. A case study with chronic
obstructive pulmonary disease and congestive heart failure
found the multitask learning framework had better AUCs than
a single-outcome dimensionality reduction approach (Principal
Component Analysis) and similar performance to a logistic
regression-based approach.

Strengths and limitations

Our analysis was limited by the availability of risk factor
information within the EMRs. Data such as behavioral or
environmental factors are not typically collected during a
clinical encounter, thus not stored in the EMR. As such, the
univariate models likely underestimated risk among patients
who possess the unavailable risk factor. For the dependence
analysis, the observed dependence might have been influenced
by an unavailable risk factor that could not be adjusted for.
Such a factor could act in either direction; a risk factor could
increase or decrease the observed dependence between the
outcomes, thus the true dependence could be less than or
greater than what we observed.

Our analysis may be subject to bias introduced by
patterns in physicians’ diagnosis of diabetes, hypertension,
and osteoarthritis. For example, when a physician diagnoses
a patient with diabetes, they will likely assess for related
conditions that may have otherwise gone undetected, such as
hypertension. This may explain some of the dependence that
we observed between disease pairs.

The CPCSSN case definition we used to identify patients
with diabetes identifies both type 1 and type 2 diabetes but
does not distinguish between the two. However, type 1 cases
typically constitute the minority of diabetes cases (10%, [41])
and are more commonly diagnosed in children [42]; thus,
incident cases of diabetes that we observed in adults were
more likely type 2. Risk factor information for type 1 diabetes
(i.e., genetic factors [43]) were not available; however, risk
factors for type 2 diabetes (e.g., age, sex, obesity, income
[44]) were available and included in the model. Indeed, our
model estimates risk of diabetes (type 1 or type 2) based on
risk factors for type 2 diabetes. The same issue discerning
type 1 from type 2 diabetes exists when treating diabetes as a
predictor for hypertension. Because the majority of patients
with diabetes at baseline likely have type 2 diabetes, the
association between diabetes and incident hypertension will
largely be determined by these patients. Any patients with
type 1 diabetes at baseline will essentially be assigned the risk
of a patient with type 2 diabetes at baseline. If the true risk
of hypertension differs between patients with type 1 and type
2 diabetes, there may be some misspecification of risk.

The CPCSSN validated case-detecting algorithm for
osteoarthritis has lower sensitivity than the algorithms for the
other conditions. Assuming misclassified osteoarthritis cases
are similar to correctly classified cases among truly positive
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cases, this may reduce the strength of associations that are
observed between the predictors and osteoarthritis and result
in underestimated risk. However, the difference in sensitivity
is small, thus any underestimation in risk would be expected
to be small.

Ideally, a prognostic prediction model should be deployed
in the same setting that it was developed [14]. Our use of
CPCSSN data strongly positions our model for deployment in
the Canadian primary care setting, especially among physicians
who submit data to CPCSSN. Use in new settings requires
model ‘updating’ using data from the new setting [45]. This
is also ideal operationally, as no additional measures beyond
those already collected in the physician’s EMR were used
in development; thus, no additional measures are required
when applying our model to a patient in practice. A future
direction could be to pilot test implementation of our model
in CPCSSN-contributing settings to passively operate in the
background of a physician’s EMR, flagging patients whose
estimated risk is above some specified risk threshold.

Conclusion

Prevention efforts are needed to mitigate the increasing
population health burden of multimorbidity. Quantitative
estimates of risk can play a valuable role by providing a
means to better understand potential future health trajectories
and to foster discussions between patients and their primary
care practitioners about appropriate preventative measures.
Our research presents a model that can be used to provide
such risk estimates while understanding and accounting for
the dependence that exists between outcomes. The methods
described above should be considered whenever predicting
multiple outcomes where there may be some dependence
between diseases. Further research will determine how best to
incorporate this model into primary care practitioners’ clinical
workflow and assess its real-world performance.
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Appendix Table 1: Validation of CPCSSN case-detecting algorithms [16]

Outcome Sensitivity % (95% CI) Specificity % (95% CI)

Hypertension 84.9 (82.6 to 87.1) 93.5 (92.0 to 95.1)
Diabetes 95.6 (93.4 to 97.9) 97.1 (96.3 to 97.9)
Osteoarthritis 77.8 (74.5 to 81.1) 94.9 (93.8 to 96.1)

Appendix Table 2: Outcome predictors

Diabetes Hypertension Osteoarthritis

Hypertension [46, 47] Older age [56] Osteoporosis [63]
Older age [46, 47] Diabetes [56, 57] Previous leg injury [64–67]
Lipid disorders [46] Obesity [56, 57] Leg length inequality [68]
Obesity [46–49] Smoking [56] Older age [63, 65, 66, 69, 70]
Waist circumference Stress [58] Obesity [63–67, 69, 70]
Smoking [46, 47] Kidney disease [59] Female sex [63, 65, 66, 69]
Stress [46] Tricyclic antidepressant Family history of osteoarthritis [69]
Male sex [46] (TCA) use [60]
Polycystic ovarian syndrome (PCOS) [50] High salt intake [56, 61] Physically intensive occupations [69]
Schizophrenia [51, 52] Sleep apnea [62]
Depression [53]
Bipolar disorder [52, 54]
Low physical activity [49]
Family history of type 2 diabetes [46]
Air pollution [55]
Low socioeconomic status [49]
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Appendix Table 3: Descriptive statistics

Development set Validation set
(n = 265,228) (n = 160,000)
n cases % n cases %

Osteoarthritis 26,013 9.8% 15,840 9.9%
Diabetes 18,140 6.8% 10,839 6.8%
Hypertension 41,185 15.5% 24,845 15.5%
Depression 38,629 14.6% 23,348 14.6%
Smoking 11,037 63.8% 6,807 64.2%
Female Sex 153,664 57.9% 93,202 58.3%
Alcohol 4,038 1.5% 2,429 1.5%
Stress 7,907 3.0% 4,729 3.0%
Epilepsy 1,842 0.7% 1,137 0.7%
Schizophrenia 3,955 1.5% 2,424 1.5%
Anxiety 18,894 7.1% 11,432 7.1%
Cancer 11,139 4.2% 6,514 4.1%
Cardiovascular Disease 14,730 5.6% 8,772 5.5%
COPD 4,515 1.7% 2,750 1.7%
Rheumatoid Arthritis 2,039 0.8% 1,224 0.8%
Lipid Disorder 47,619 18.0% 28,634 17.9%
Polycystic Ovarian Syndrome 706 0.5% 448 0.5%
Chronic Kidney Disease 9,283 3.5% 5,484 3.4%
Tricyclic Antidepressant Use 8,114 3.1% 4,921 3.1%
Osteoporosis 8,971 3.4% 5,413 3.4%
Leg Injury 7,808 2.9% 4,603 2.9%
Family History of Osteoarthritis 168 0.1% 114 0.1%
Family History of Diabetes 2,851 1.1% 1,727 1.1%
Family History of Hypertension 1,817 0.7% 1,087 0.7%
Lives in a rural location 55,527 20.9% 33,371 20.9%

Morbidity
−1 disease* 79,671 30.0% 48,110 30.1%

Multimorbidity
−2 disease* 23,565 8.9% 14,114 8.8%
−3 disease* 6,286 2.4% 3,777 2.4%

Age
−18 to 24 36,962 13.9% 21,985 13.7%
−25 to 44 89,608 33.8% 54,052 33.8%
−45 to 64 95,161 35.9% 57,763 36.1%
−65 and older 43,330 16.3% 26,108 16.3%

BMI
−Underweight (< 18.5 kg/m2) 1,680 1.9% 1,014 1.9%
−Normal (18.5 to 24.9 kg/m2) 30,541 34.1% 18,379 33.9%
−Overweight (25 to 29.9 kg/m2) 30,736 34.3% 18,644 34.4%
−Obese (≥ 30 kg/m2) 26,639 29.7% 16,195 29.9%

Personal Income
−Less than $30000 1,401 0.6% ** **
−$30000 to $49999 185,981 74.0% 111,810 73.8%
−$50000 to $74999 64,016 25.5% 38,768 25.6%
−Greater than $75000 6 0.0% ** **

*Morbidity and multimorbidity considered the following diseases: asthma, arthritis, COPD, diabetes, cardiovascular disease, mental disorder (mood disorder
and/or anxiety), Alzheimer’s disease and related dementias, cancer, stroke [71].
**Cell counts of 5 or less have been suppressed.
Percentages are based on patients with complete data for the characteristic.
BMI: body mass index.
COPD: chronic obstructive pulmonary disease.
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Appendix Table 4: BMI distribution compared to Canadian population

Development set Validation set Canadian
(n = 265228) (n = 160000) Population
n cases % n cases % %

BMI
-Underweight (< 18.5 kg/m2) 1,680 1.9% 1,014 1.9%
-Normal (18.5 to 24.9 kg/m2) 30,541 34.1% 18,379 33.9% 32%*
-Overweight (25 to 29.9 kg/m2) 30,736 34.3% 18,644 34.4% 40%*
-Obese (> 30 kg/m2) 26,639 29.7% 16,195 29.9% 27%*

*Canadian Health Measures Survey (CHMS) 2009/10 [72].
BMI: body mass index.

Appendix Table 5: Sensitivity analysis excluding patients without encounter after follow-up

Reference category/units β estimate 95% CI Odds ratio 95% CI

Diabetes univariate model
Hypertension No Reference Reference

Yes 0.23 0.18 to 0.28 1.26 1.20 to 1.32
Age (Years) 0.03 0.03 to 0.04 1.03 1.03 to 1.04
Lipid disorders No Reference Reference

Yes 1.55 1.50 to 1.60 4.71 4.50 to 4.93
BMI (kg/m2) 0.06 0.06 to 0.07 1.06 1.06 to 1.07
Sex Male Reference Reference

Female -0.28 -0.32 to -0.23 0.76 0.72 to 0.79
Schizophrenia No Reference Reference

Yes 0.56 0.42 to 0.70 1.75 1.52 to 2.01
Depression No Reference Reference

Yes 0.07 0.01 to 0.14 1.08 1.01 to 1.15
Income ($10,000) -0.06 -0.09 to -0.03 0.94 0.91 to 0.97

Hypertension univariate model
Diabetes No Reference Reference

Yes 0.15 0.10 to 0.20 1.16 1.10 to 1.22
Age (Years) 0.06 0.06 to 0.07 1.06 1.06 to 1.07
BMI (kg/m2) 0.04 0.04 to 0.05 1.05 1.04 to 1.05
Chronic Kidney Disease No Reference Reference

Yes 0.64 0.58 to 0.70 1.9 1.79 to 2.02
Tricyclic Antidepressant Use No Reference Reference

Yes 0.57 0.51 to 0.64 1.77 1.66 to 1.89
Osteoarthritis univariate model
Age (Years) 0.06 0.05 to 0.06 1.06 1.06 to 1.07
Sex Male Reference Reference

Female 0.19 0.14 to 0.25 1.21 1.15 to 1.28
BMI (kg/m2) 0.04 0.03 to 0.04 1.04 1.03 to 1.04
Previous Leg Injury No Reference Reference

Yes 1.52 1.43 to 1.60 4.56 4.18 to 4.97
Osteoporosis No Reference Reference

Yes 0.78 0.70 to 0.86 2.18 2.01 to 2.37

AUC: area under the receiver operator characteristic curve; BMI: body mass index; CI: confidence interval.
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Appendix Figure 1: Kernel density estimates for the marginal distribution of the five imputed datasets (red) and the original data
(blue) (left: development sets; right: validation sets)

Appendix Figure 2a: Calibration plot for diabetes
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Appendix Figure 2b: Calibration plot for hypertension

Appendix Figure 2c: Calibration plot for osteoarthritis
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