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Abstract Inflammatory bowel disease [IBD] has a multifactorial origin and originates from a complex interplay of environmental factors with the 
innate immune system at the intestinal epithelial interface in a genetically susceptible individual. All these factors make its aetiology intricate 
and largely unknown. Multi-omic datasets obtained from IBD patients are required to gain further insights into IBD biology. We here review 
the landscape of multi-omic data availability in IBD and identify barriers and gaps for future research. We also outline the various technical and 
non-technical factors that influence the utility and interpretability of multi-omic datasets and thereby the study design of any research project 
generating such datasets. Coordinated generation of multi-omic datasets and their systemic integration with clinical phenotypes and environ-
mental exposures will not only enhance understanding of the fundamental mechanisms of IBD but also improve therapeutic strategies. Finally, 
we provide recommendations to enable and facilitate generation of multi-omic datasets.
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1.  Introduction
Inflammatory bowel disease [IBD] is a disorder of the gut 
characterised by prolonged periods of relapsing and remitting 
inflammation. IBD incidence has risen mainly in Asia and in 
the Middle East over the past four to five decades and has 
now become a global disease. The increasing incidence rates 
of IBD also translates into increased years lived with disabil-
ity [YLD] which has risen from 0.56 million to 1.02 million.1 
It has been estimated that IBD already poses a considerable 
threat to economic productivity as well as influencing early 
retirement.2 As with most modern lifestyle-related diseases, 
the aetiology and pathogenesis of IBD is complex, and driven 
by a range of extrinsic and intrinsic factors. These include 
but are not limited to drug exposures, antibiotic treatments, 
smoking, lifestyle, stress, dietary patterns, genetics, immune 
responses, and the gut microbiome.3–10 The complexity of IBD 
is also manifested by the heterogeneity of disease presentation 
and behaviour.11–14 Heterogeneity in IBD is not only attrib-
uted to the complex phenotypes and the aetiological drivers, 
but also to the plethora of diverse molecules,15–22 microbes, 
and cell types23–25 and the interactions26 among them.

The complexity and heterogeneity of IBD has resulted in a 
difficult endeavour for the scientific community to attribute 
causality as well as to raise treatment efficacies above the cur-
rent therapeutic ceiling marked by endoscopic remission rates 
of around 30%,27,28 although real-world observations recorded 
slightly higher efficacy rates.29–31 The current standard of care, 
which includes histological examination [used currently only 
for diagnosis and not for therapeutic endpoints] following 

endoscopy, does not capture the fine print of disease biology 
such as cellular heterogeneities, cell type-specific expression, 
interactions among cell-types, and microbial influences. In re-
sponse new approaches, like systems biology which integrates 
high-throughput datasets profiling different layers of biological 
organisation and the network of molecular interactions, have 
often been suggested as the ‘holy grail’ for understanding and 
treating IBD as well as other complex diseases.32–36 However, 
despite the advances made in experimental [sequencing, high-
throughput genotyping, etc] and computational [machine 
learning, data analysis tools, etc] methodologies, the -omic 
datasets in the IBD field are sparse and scattered, leading to in-
complete coverage across -omic layers [genome, transcriptome, 
proteome, metabolome, etc]. The sparsity of -omic datasets is 
still a major bottleneck if the IBD research community were to 
harness the power of systems biology.22,37–39

In this review, we highlight the need for coordinated sam-
pling to achieve horizontal [to increase sample size] and 
vertical [to cover different data types] -omic data coverage 
and the various challenges but also opportunities it presents. 
Motivated by improving disease knowledge and identifying 
therapeutic targets, we recommend how harmonised sam-
pling strategies can be implemented at the level of decision 
making in devising science policy, grant funding, creating 
collaborative consortiums, and planning core infrastructure 
facilities such as biobanks and data generation centres. This 
calls not only for regional or national but above all inter-
national cooperation among IBD researchers and funding 
agencies spanning geopolitical divides.
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2.  The Need for Systems Biology and -Omic 
Datasets
2.1.  Implications for experimental design and 
-omic data generation
The potential and utility of systems biology [Figure 1] in 
understanding and treating emerging diseases including 
IBD has been recognised over the past two to three decades. 
Various approaches employing a combination of top-down 
data-driven or bottom-up hypothesis-driven methodolo-
gies have been suggested and used to discover fundamental 
knowledge and uncover potential therapeutic pathways with 
clinical relevance.37 For any systems biology endeavour, the 
availability of -omic datasets is an indispensable requirement 
and IBD research is no exception to it. The more complex the 
disease, the more the number of required data types [corres-
ponding to -omic layers] to build models to better understand 
its pathogenesis, devise treatment options, and even suggest 
preventive strategies. This heavy need for -omic datasets has 
various implications at the level of experimental design and 
sampling, thus resulting in many challenges with multiple 
trade-offs and opportunities [Figure 2].

Broadly, before -omic datasets are generated, in the interest 
of best practice, considerations at the following levels [al-
though not exhaustive; summarised further in Figure 3] need 
to be made subject to operational and financial constraints.

 [a]  Given the need for validation and discovery cohorts, and 
the requirement to achieve statistical power, how many 
samples will be required?

 [b]  What needs to be the split between the discovery and 
validation cohorts?

 [c]  Are the publicly available datasets annotated sufficiently 
with appropriate metadata so as to make them useable?

 [d]  How many types of -omic datasets need to be generated?
 [e]  Is sufficient level of interaction information available so 

as to interpret the -omic datasets using a network/sys-
tems approach, if the aim is to infer mechanisms at a 
systemic level?

 [f]  Is there an established standardised protocol to en-
able the harmonised collection of clinical pheno-
types and subject information [diet, lifestyle,  
habits, etc]?

 [g]  Have the cohorts included a diversity of individuals 
representative of the population and the biological 
question[s] being investigated?

 [h]  Has the collection of subject information been custom-
ised to the expected cultural diversity in the population 
of interest?

 [i]  Has the gender aspect been addressed by an equitable 
inclusion of different gender categories?

 [j]  Have comorbidities been accounted for and recorded as 
part of the metadata?

 [k]  Have effect sizes been considered in the study design?

2.2.  Omic dataset availability in IBD: identifying 
the gaps
Based on the information available in literature, the current 
gaps in IBD-omics include: [a] lack of more granular infor-
mation [such as functional studies/effects on mutations]; [b] 
lack of IBD context-specific physical [mechanistic] interaction 
datasets; [c] small number of multi -omic studies [ie, studies 
profiling more than one -omic dataset]; and [d] an even 

smaller number of such studies using bimodal -omic data 
with independent validation. Each of the four above gaps are 
discussed more in detail below.

In order to gain an understanding of where IBD research 
stands in terms of [publicly] available -omic datasets, we 
compared it [Table 1] with a data-rich disease such as cancer 
and rheumatoid arthritis [RA]. Compared with IBD and RA, 
cancer is well represented not only in terms of the number 
of -omic-oriented public databases, but also with respect to 
the heterogeneity of datasets [ie, number of different -omic 
datatypes]. Furthermore, cancer datasets stand out in terms of 
their granularity or resolution such as, for example, the func-
tional annotation of cancer-associated mutations provided by 
resources such as MutationAligner,40 intOGen,41 Cancer3D42 
or the collection of variants corresponding to specific genes 
such as BRCA1 and BRCA2 in breast cancer. Other examples 
of specialised public databases in cancer include Lnc2Cancer43 
which stores curated information on the expression of long 
non-coding RNAs associated with different types of cancers. 
These are in addition to the databases such as TCGA44 which 
store different types of -omic datasets such as transcriptomics, 
genetics, methylomics, etc Despite the availability of -omic in-
tegration methods and datasets, examples of multi-omic data 
integration resulting in direct clinical translation are very few. 
Translation to the clinic depends on so many other aspects 
[regulatory, financial, ethical, time required] independent of 
the -omic datasets and the integration strategies, but there 
are several examples which reveal the potential of multi-omic 
data integration in disease sub-typing, biomarker discovery, 
and patient-specific treatments. 

The WINTHER trial45 stands out in particular and relies 
on the use of two -omic datasets [namely fresh biopsy-derived 
DNA sequencing and transcriptomics] along with other clinical  
data to make informed treatment decisions and recommenda-
tions for individual patients based on the -omic signatures. 
Several examples of individualised treatments or combin-
ations of treatments resulting in disease remission based 
on the -omic signatures are provided. As a sequel to the 
WINTHER trial, the SPRING trial46 was constituted follow-
ing the same integration and predictive modelling strategy as 
the WINTHER trial with the added criteria that cancer pa-
tients were included earlier on in their disease course. Vitali 
et al. used network interaction data as a template to integrate 
genetic and gene expression datasets from triple negative 
breast cancer patients to prioritise drug targets which were 
subsequently verified using in vitro experiments.47 

Other studies, such as the one by Buffa et  al.,48 identi-
fied new therapeutic targets for breast cancer by integrating 
miRNA and mRNA profiles. In addition, based on the in-
tegrative signatures, the authors identified pathways which 
could be involved in disease progression. Besides individual 
trials and studies, various consortium-level collaborative ef-
forts [such as ACGT,49 ContraCancrum,50 p-medicine,51 and 
CHIC52] have also been undertaken to create a translational 
framework in cancer by building on the power of -omic data 
integration on top of other methodologies such as multiscale 
modelling, cytology, toxigenomics, and pharmacology. 
However despite these advances, the question of whether the 
methodologies and approaches developed in the domain of 
cancer research can be applied to the more complex disease 
of IBD is still an open one.

In contrast, IBD is characterised by a far lower number of 
databases, albeit containing the usual suspects [genetics, gut 
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microbiome profiles, proteomics, metabolomics, etc] in terms 
of -omic datatypes [Supplementary Table 1]. However, not 
all the publicly available IBD databases are populated with a 
wide range of data types. For example, whereas the IBDMDB 
database4 affiliated to the HMP2/iHMP project is a reposi-
tory with proteomics, host tissue transcriptomics, 16S faecal 
microbiome profiling, metagenomes, viromics, metabolomics, 
serology, and metatranscriptomics, others such as UK 
Biobank,53 NIHR IBD bioresource,54 and the International 

Inflammatory Bowel Disease Genetics Consortium [IIBDGC], 
are confined to particular data types such as genetics. Also 
noteworthy is the fact that granular information, such as func-
tional characterisations of mutations, are not contained within 
any of the existing IBD resources. Nevertheless, IBD has a bet-
ter public -omic data availability than RA as evidenced by 
the absence of any devoted RA -omic repositories [Table 1]. 
Furthermore, existing IBD patient-derived -omic repositories 
are also lacking in terms of read-outs from specific regulatory 
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Figure 1. Data-integration framework in inflammatory bowel disease [IBD] characterised by the combination of heterogeneous information including 
multi-omic datasets, environment influences: exposome, clinical data, and network/functional annotations.
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molecules such as long non-coding RNAs [lncRNAs] and cir-
cular RNAs [circRNAs]. None of the studies reported in Table 
2 or the IBD-specific resources in Table 1 encompassed the 

profiles of lncRNA and circRNA expression. In other words, 
lncRNAs and circRNAs are neither profiled with other -omic 
datasets, which then results in disregarding the mechanisms 
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Table 1. Comparison of omic data repositories for three different diseases [cancer, inflammatory bowel disease, and rheumatoid arthritis]

Disease Database URL Omic layers available Downloadability? Data format [raw/ 
processed] 

IBD HMP2/IBDMDB https://ibdmdb.org/ Proteomics, host tis-
sue transcriptomics, 16S 
gut microbiome profiling, 
metagenomes, viromics, metabol-
ites, serology, metatranscriptomes

Yes Both raw and  
processed

 Dutch IBD biobank https://1000ibd.org/; https:// 
ega-archive.org/studies/ 
EGAS00001002702

Genetics, 16S gut microbiome 
profiling [faeces and intestinal biop-
sies], faecal metagenomics

Yes Raw only

International Inflam-
matory Bowel Disease 
Genetics Consortium 
[IIBDGC]

https://www.ibdgenetics.org/ 
downloadshtml

Genetics No -

NIHR IBD 
bioresource

https://www.ibdbioresource. 
nihr.ac.uk/index.php/resources/ 
applying-for-access-to-the-ibd- 
bioresource-panel-2/

Genetics No -

PRISM https://www.ncbi.nlm.nih.gov/ 
bioproject/PRJNA400072/

WGS gut microbiome profiling, LC- 
MS metabolomics

Yes Raw only

UK Biobank https://www.ukbiobank.ac.uk/ Genetics No -

Cancer ArrayMap http://www.arraymap.org Copy number data No -

 BCNTBbp https://www. 
breastcancertissuebank.org/
bioinformatics

Genomics, methylomics, 
transcriptomics, proteomics and 
microRNA

No -

BRCA Share http://www.umd.be/BRCA2/ Genomic variants on the BRCA1 
and BRCA2 genes

Yes Processed only

BreCAN-DB http://14.139.32.56/ Somatic DNA breakpoint profiles 
mapped using whole genome 
sequencing data

Yes Raw only

Cancer PPD http://crdd.osdd.net/raghava/ 
cancerppd/

Lists of proteins and peptides with 
anti-cancer activities

Yes Processed only

Cancer RNA-Seq 
Nexus

http://syslab4.nchu.edu.tw/ Expression of long non-coding 
RNAs and miRNAs

No -

Cancer3D http://www.cancer3d.org/search Map of cancer missense mutations 
on protein structures

Yes Processed only

cBioPortal https://www.cbioportal.org/ Mutations, copy numbers, mRNA 
and protein expression

Yes Both raw and  
processed

COSMIC https://cancer.sanger.ac.uk/
cosmic/

Mutations and their annotations Yes Both raw and  
processed

Database of Germline 
p53 Mutations

http://kolweb.lf2.cuni.cz//pro-
jects/germline_mut_p53.htm

Detailed annotations of p53 mu-
tations

Yes Processed only

intOGen https://www.intogen.org/search Mutational cancer driver genes Yes Processed only

Lnc2Cancer http://www.bio-bigdata.com/ 
lnc2cancer/home.jsp

Expression of cancer associated 
long non-coding RNAs

No -

MethHC http://methhc.mbc.nctu.edu.tw/ 
php/index.php

DNA methylation, gene expression, 
microRNA methylation, microRNA 
expression

Yes Both raw and  
processed

MOKCa http://strubiol.icr.ac.uk/extra/ 
mokca/

Map of cancer mutations and their 
phenotypic effects

No -

MutationAligner http://www.mutationaligner.org/ Mutation ‘hotspots’ identified in 
protein domains

Yes Processed only

Network of Cancer 
Genes

http://ncg.kcl.ac.uk/index.php Duplicated loci and expression of 
protein-coding cancer genes

Yes Both raw and  
processed

TCGA https://portal.gdc.cancer.gov/ RNA-seq, methylation, genotyping, 
miRNA-seq, whole-exome high- 
throughput DNA sequencing

Yes Both raw and  
processed

TCGA Splice Seq http://projects.insilico.us.com/ 
TCGASpliceSeq/

Cross-tumour and tumour-normal 
alterations in mRNA splicing pat-
terns in cancer

Yes Processed only

https://ibdmdb.org/
https://1000ibd.org/; https://ega-archive.org/studies/EGAS00001002702
https://1000ibd.org/; https://ega-archive.org/studies/EGAS00001002702
https://1000ibd.org/; https://ega-archive.org/studies/EGAS00001002702
https://www.ibdgenetics.org/downloadshtml
https://www.ibdgenetics.org/downloadshtml
https://www.ibdbioresource.nihr.ac.uk/index.php/resources/applying-for-access-to-the-ibd-bioresource-panel-2/
https://www.ibdbioresource.nihr.ac.uk/index.php/resources/applying-for-access-to-the-ibd-bioresource-panel-2/
https://www.ibdbioresource.nihr.ac.uk/index.php/resources/applying-for-access-to-the-ibd-bioresource-panel-2/
https://www.ibdbioresource.nihr.ac.uk/index.php/resources/applying-for-access-to-the-ibd-bioresource-panel-2/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA400072/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA400072/
https://www.ukbiobank.ac.uk/
http://www.arraymap.org
https://www.breastcancertissuebank.org/bioinformatics
https://www.breastcancertissuebank.org/bioinformatics
https://www.breastcancertissuebank.org/bioinformatics
http://www.umd.be/BRCA2/
http://14.139.32.56/
http://crdd.osdd.net/raghava/cancerppd/
http://crdd.osdd.net/raghava/cancerppd/
http://syslab4.nchu.edu.tw/
http://www.cancer3d.org/search
https://www.cbioportal.org/
https://cancer.sanger.ac.uk/cosmic/
https://cancer.sanger.ac.uk/cosmic/
http://kolweb.lf2.cuni.cz//projects/germline_mut_p53.htm
http://kolweb.lf2.cuni.cz//projects/germline_mut_p53.htm
https://www.intogen.org/search
http://www.bio-bigdata.com/lnc2cancer/home.jsp
http://www.bio-bigdata.com/lnc2cancer/home.jsp
http://methhc.mbc.nctu.edu.tw/php/index.php
http://methhc.mbc.nctu.edu.tw/php/index.php
http://strubiol.icr.ac.uk/extra/mokca/
http://strubiol.icr.ac.uk/extra/mokca/
http://www.mutationaligner.org/
http://ncg.kcl.ac.uk/index.php
https://portal.gdc.cancer.gov/
http://projects.insilico.us.com/TCGASpliceSeq/
http://projects.insilico.us.com/TCGASpliceSeq/
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and roles mediated by these novel regulatory molecules. This 
is conspicuous since lncRNAs and circRNAs are known to 
be involved in mediating disease pathogenesis and modu-
lating the expression of various genes and proteins, as well 
as predicting response to therapeutic outcomes in IBD.55–59 
Although not quantitatively proven and not exclusively limited 
to this reason, the exclusion of lncRNAs and circRNAs, while 
identifying and prioritising therapeutic biomarkers using high-
throughput profiling of other -omic datasets, could be a con-
tributing factor to the middling therapeutic efficacy rates in 
IBD treatments.

Despite the availability of -omic data repositories in IBD 
research, there is still a relatively small number [n = 14] of 
studies integrating at least two different -omic datasets from 
IBD patients [Table 2]. Furthermore, none of these studies 
[with the exception of Franzosa et al.60] include independent 
validation, with four of the studies relying on internal val-
idation [ie, assigning a specific proportion of the discovery/
test cohort for validation] or experimental validation/mouse 
models. An additional drawback of many existing IBD multi-
omic datasets is the lack of data from control/non-IBD sam-
ples. This could be an impeding factor in translational studies 
which measure the effects of therapeutic regimens in a par-
ticular population.

2.3.  Omic datasets: just the tip of the iceberg
The past two decades have witnessed a relative increase in 
the amount of -omic datasets generated directly from IBD 
patients or mouse models or from in-vitro models [such as 
organoids and cell cultures] derived from IBD patients or 
mouse models. However, despite the context-specific nature 
of the -omic datasets, the underlying network information 
comprising different types of interactions [protein-protein, 
microRNA-mRNA, miRNA-lncRNA, etc] are generic. In 
other words the interaction information, even that derived 
entirely from experimental studies, is measured using experi-
ments under conditions which may not be related to IBD. This 
poses a major bias while using network interaction informa-
tion to interpret and/or integrate IBD-specific -omic datasets 
and to glean mechanisms. To draw an analogy, this is akin to 
having traffic and vehicular flow data of a city but using the 
wrong map of the city.

Whereas the non-availability of context-specific network 
interaction information is not confined to IBD research, it is 
a limitation which the researchers need to have in mind while 
drafting research proposals using systems approaches. It could 

also mean that when it comes to experimentally validating key 
regulators such as transcription factors or miRNAs, interactions 
mediated by such regulators need to be determined using tar-
geted contextual approaches which profile the interactions from 
relevant IBD samples. Such targeted contextual approaches 
could include methodologies such as ChIP-seq61/ChIP-chip62 to 
validate transcriptional regulatory interactions or HITS-CLIP63/
PAR-CLIP64 to validate miRNA-mRNA interactions.

2.4.  Exposomics: capturing the 
environmental stimuli
The term ‘exposomics’ was first introduced by the cancer epi-
demiologist Christopher Wild in 2005 to describe the totality 
of environmental exposures to which an individual is sub-
jected over the course of a lifetime.65 Another way to put it 
is that it is an omic-scale characterisation of the non-genetic 
drivers of health and disease.66 The importance of these en-
vironmental exposures on human pathology becomes clear 
when considering the rapid increase in non-communicable 
diseases since the latter half of the 20th century, exceeding 
the speed at which genes are thought to evolve significantly.67 
Other examples include the worldwide increase in IBD preva-
lence [especially in regions that were historically spared from 
the disease, such as Asia] and the observation that IBD in-
cidence in immigrants’ children resembles that of the new 
country rather than that of their parent’s former country.1,68 
Furthermore, associations of environmental factors including 
diet, smoking status, antibiotic intake, and early life expos-
ures, have been repeatedly reported to impact on IBD onset 
and/or disease course.69,70

Another mediator to bridge the gap between the [meta]
genome and environment is the gut microbiome, as al-
terations in this ‘other’ genome are increasingly linked to 
various pathological conditions.71 This is especially the 
case in IBD, where an increasing number of studies sug-
gests a crucial role for dysbiosis in disease pathogenesis, 
and where modulation of the microbiota through diet-
ary interventions or faecal microbiome transplantation 
might alter disease course through the production of me-
tabolites and interactions with the immune system.72–76 
This new angle was only possible because of the advent 
of novel technologies such as 16S rRNA sequencing and 
shotgun sequencing in combination with metabolomics, 
which can provide useful information on the exact com-
position of the microbiota and their functionality.16 Using 
high-resolution mass spectrometry, metabolomics can be-

Rheumatoid 
arthritis

Biogps http://biogps.org/dataset/tag/ 
rheumatoid%20arthritis/

Gene expression Yes Both raw and  
processed

 Gene Expression 
Omnibus

https://www.ncbi.nlm.nih.gov/ 
geo/

Gene expression Yes Both raw and  
processed

Array Express https://www.ebi.ac.uk/ 
arrayexpress/

Gene expression Yes Raw only

PMID: 23143596 https://pubmed.ncbi.nlm.nih. 
gov/23143596/

Genetics Yes Both raw and  
processed

PMID: 22446963 https://pubmed.ncbi.nlm.nih. 
gov/22446963/

Genetics Yes Both raw and  
processed

RADB http://www.bioapp.org/RADB/ RA-related genetic polymorphisms 
extracted from published papers

Yes Processed only

IBD, inflammatory bowel disease; LC-MS, Liquid Chromatography-Mass Spectrometry; RA, rheumatoid arthritis; WGS , whole genome sequencing.

Table 1. Continued

http://biogps.org/dataset/tag/
rheumatoid%20arthritis/
http://biogps.org/dataset/tag/
rheumatoid%20arthritis/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://pubmed.ncbi.nlm.nih.gov/23143596/
https://pubmed.ncbi.nlm.nih.gov/23143596/
https://pubmed.ncbi.nlm.nih.gov/22446963/
https://pubmed.ncbi.nlm.nih.gov/22446963/
http://www.bioapp.org/RADB/
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come an increasingly interesting tool, since the endogenous  
compounds from various matrices [such as stool, blood, 
urine, which can give an idea of the biological responses] 

can be combined with exogeneous-derived small molecules 
[such as pesticides, herbicides, pharmaceuticals, and flame 
retardants].77,78

Table 2. A non-exhaustive list of multi -omic IBD studies. .

Study Disease  
context 

Study context Omic layers Source of 
validation 
dataseta 

Control/ non-
IBD samples? 

[Lloyd-Price 
et al., 2019]4

CD, UC Identification of multi-omic signatures  
associated with IBD patients

Faecal proteomics  
Host mucosal  
transcriptomics  
16S faecal microbiome  
profiling  
WGS faecal metagenomics  
Faecal viromics  
Faecal metabolomics  
Serology  
Faecal metatranscriptomics

No valid-
ation

Yes

[Borren 
et al., 2020]111

CD, UC Prediction of biomarkers associated with 
disease relapse

Faecal proteomics  
Faecal metabolomics  
WGS faecal metagenomics

Internal 
dataseta

No

[Suskind 
et al., 2020]120

CD Investigating the effect of different diets 
on disease symptoms and inflammatory 
burden

Faecal metabolomics  
WGS faecal metagenomics Fae-
cal proteomics

No valid-
ation

No

[Le et al., 2020]121 CD, UC Prediction of metabolite abundances from 
microbial abundances

Faecal metabolomics  
WGS faecal metagenomics

Internal 
dataseta

No

[Dai et al., 2019]122 CD Identification and characterisation of im-
portant drivers of CD pathogenesis

Host genetics  
TWAS  
Host mucosal transcriptomics  
Methylomics

No valid-
ation

Yes

[Liu et al., 2021]123 CD, UC Role of microbiota in oxalate metabolism 
in IBD patients

WGS faecal metagenomics  
Faecal metatranscriptomics

Experimental 
validation

No

[Revilla 
et al., 2021]124

CD Interdependent host genes and microbial 
genera in CD

Host mucosal transcriptomics  
16S gut microbiome profiling

No valid-
ation

No

[Jin et al., 2019]125 CD, UC Dysregulated genes and pathways in CD/
UC pathogenesis

Host mucosal transcriptomics  
Host mucosal proteomics

No valid-
ation

No

[Sudhakar 
et al., 2020]22

CD Drivers of clinical heterogeneity in CD PBMC gene expression  
CD4 gene expression  
Host genetics

No valid-
ation

No

[Nusbaum 
et al., 2018]126

UC Influence of FMT on gut microbial and 
metabolic activity in paediatric  
UC patients

16S faecal microbiome  
profiling  
WGS faecal metagenomics  
Faecal viromics  
Faecal metabolomics

No valid-
ation

No

[Metwaly 
et al., 2020]127

CD Integrative analysis of metabolic and  
microbial profiles in CD

16S faecal microbiome  
profiling  
WGS faecal metagenomics  
faecal metabolomics

Validation in 
mouse model

No

[Douglas 
et al., 2018]113

CD Prediction of treatment response 16S gut microbiome profiling  
WGS gut metagenomics

No valid-
ation

Yes

1000IBD dataset CD, UC, IBDU Discover molecular sub-types of IBD Host genetics  
16S faecal microbiome  
profiling  
16S gut microbiome profiling  
WGS faecal metagenomics  
Single cell RNA sequencing 
from biopsies

NAa No

[Franzosa 
et al., 2019]60

CD, UC Investigation of microbiome and  
metabolic activity in IBD

Faecal metabolomics  
WGS faecal metagenomics

Independent 
validation 
cohort

Yes

IBD, inflammatory bowel disease; UC, ulcerative colitis; CD, Crohn’s disease; FMT, faecal microbiota transplanation; NA, not available; PMBC, peripheral 
blood mononuclear cells; TWAS, transcriptome-wide association study; WGS, whole genome sequencing;
aInternal independent dataset: defined as a dataset which is derived by ring-fencing a particular proportion of the test cohort for validation. Only published 
studies related to IBD and which integrate at least two different -omic datatypes were included. Publications based on original research were retrieved 
from PubMed using the co-occurrence of the search term ‘multi -omics’ with ‘IBD’, ‘Inflammatory Bowel Disease’, ‘Ulcerative colitis’, ‘Crohns disease’, or 
‘Crohn’s disease’
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Of course, metabolomics [and other single -omic layers] 
alone will most likely not be sensitive and specific enough 
to adequately capture all human exposures, but can give a 
glimpse of the idea of designing a way to integrate various 
components with a single method. This method could then 
be implemented like DNA-sequencing and could complement 
genomic with environmental information.

We will illustrate the latter with the example of titanium 
dioxide [TiO2]. TiO2 is a white pigment and brightening agent 
that is widely used in various day-to-day products such as 
toothpaste, but also as a food additive [E171] in confection-
ery items, white sauces, and icing.79 It can be categorised as 
a nanoparticle because of its size in the nanoparticle range 
and presents unique physical and chemical properties.79 In-
vitro studies of TiO2 were able to link this nanoparticle to 
alterations in intestinal immunity, with uptake of the particle 
by macrophages and epithelial cells and the potential to in-
duce inflammation through activation of the inflammasome 
and IL-1b secretion.80,81 Studies focusing on the microbiota 
found that TiO2 might be able to induce dysbiosis with long 
exposure times to human colon microbiome in vitro [5 days] 
at environmentally relevant concentrations, leading to sig-
nificant changes in bacterial metabolites [including in short 
chain fatty acid production].79,82 This might be of particular 
importance since bioavailability studies suggest that 99% of 
ingested TiO2 accumulates in the gut lumen with a persistent 
contact of the particles with the commensals.79 A randomised 
controlled trial that investigated the effect of a diet reduced 
in microparticles [TiO2 and particulate silicates] in Crohn’s 
disease failed to show any effect on remission.83

As illustrated, this classical ‘one exposure—one disease’ 
hypothesis-driven approach can be very informative for the 
specific exposure studied and provide mechanistic insights, 
but gives an incomplete picture as only one particle is being 
assessed. Importantly, the exposome implies a cumulative ex-
posure over time and this includes [cumulative] dose, but also 
the possibility of critical windows when a certain exposure 
or dose might be more impactful.84,85 Next, the exposome 
concept implies a multitude of various exposures that might 
interact with each other and with the individual genome, thus 
making a more holistic approach, like the untargeted and un-
biased genome-wide association studies [GWAS], necessary to 
fully grasp the effect of the exposome.84

First steps towards studying the exposome in chronic dis-
eases are already there, like the use of EWAS [environment-
wide association study] as a tool in diabetes research86 and 
the Groningen IBD Environmental Questionnaire to map 
the exposome.87 These initiatives have been followed by the 
establishment of large collaborations such as the European 
Exposome Network launched by the European Commission in 
2020[https://www.humanexposome.eu] [see Supplementary 
Table 2] and American HERCULES [the Human Exposome 
Research Center: Understanding Lifetime ExposureS] [https://
emoryhercules.com], an NIH-funded project that started in 
May 2013 and has now grown to include 20 centres across 
the USA, which prove feasibility of a more structural and col-
laborative approach.

Unfortunately, proving causality and translating this in-
formation into meaningful interventions for prevention 
and treatment of IBD has been shown difficult. The main  
reason is that the impact on and interaction with other -omic 
layers remain poorly understood. That being said, there 

are large-scale IBD-including initiatives like ImmUniverse 
which try to understand the role of cross-talk of tissue and 
immune cells in a longitudinal fashion, making use of mul-
tiple -omic layers [https://immuniverse.eu]. Unfortunately, 
even with metabolomics and the gut microbiome included, 
capturing data on exposures like nutrition seems to be over-
looked. Interestingly, a comprehensive multi-omics [including 
the exposome] project on the pathogenesis and outcomes in 
primary sclerosing cholangitis [PSC: a disease associated with 
IBD] will be started shortly and aims to combine large clinical 
databases and biorepositories, as well as expertise in PSC and 
related conditions, exposomics, metabolomics, methylomics, 
transcriptomics, metagenomics, genomics, and data analytics 
to better understand the role and interplay of the genome, 
exposome, and microbiome [https://mayoclinic.pure.elsevier.
com/en/projects/dissecting-the-pathogenesis-and-outcomes-
of-psc-using-multi-omics]. A  similar but IBD-oriented en-
deavour with international collaborations and skills to map 
exposures and biological responses together with genetic in-
formation will likely be critical to move the field forwards 
[Figure 4A]. Recent initiatives, such as the one using dental 
matrices to evaluate early life exposures and their associations 
with IBD development, are worth highlighting [https://www.
hospitaldaluz.pt/en/media/news/inflammatory-bowel-disease-
joana-torres-ioibd-fellowship] [Supplementary Table 2].

3.  Policy Recommendations for Coordinated 
and Effective -Omic Data Generation and 
Analysis
Multi-omic studies holds great promise to fill knowledge gaps 
in IBD pathogenesis, to advance therapeutic development, 
and to attain the yet unfulfilled goals of modifying the nat-
ural course of the disease. Unfortunately, the aforementioned 
challenges and risks hinder the widespread adoption of multi-
omics in IBD studies thus far. However IBD researchers, re-
search consortia, and other professional organisations can 
foster collaborations and facilitate the successful application 
of multi-omics in IBD. We list many [Table 3] and highlight 
a few relevant recommendations which could guide various 
stakeholders in IBD research to maximise coherence and ef-
ficiency.

3.1.  Devise guidelines to design multi-omic 
studies tailored to the field of IBD
Before multi-omic studies can be widely implemented in IBD, 
clear guidelines are needed pertaining to which objectives can 
be pursued [disease prediction, outcomes prediction, drug tar-
get discovery, etc] and for each of these, the most suitable re-
search design [cross-sectional, longitudinal, etc] and sampling 
schemes [time of sampling, number of omic layers, frequency 
of sampling, etc] [Table 4]. IBD consortia may take the lead 
in bringing experts and stakeholders together to develop these 
guidelines that are direly needed to execute suitable oper-
ational decisions. Taking such guideline-based decisions will 
have a huge impact on not only research discoveries, but also 
on financial and logistic aspects to ensure the efficient dur-
ability of multi-omic projects at low costs and labour efforts, 
a the same time providing the needed answers to fulfill the 
unmet needs. In addition to guidelines, we also recommend 
open-sourcing good practice recommendations generated 
within the IBD community as well as making -omic datasets 

https://www.humanexposome.eu
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac027#supplementary-data
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac027#supplementary-data
https://emoryhercules.com
https://emoryhercules.com
https://immuniverse.eu
https://mayoclinic.pure.elsevier.com/en/projects/dissecting-the-pathogenesis-and-outcomes-of-psc-using-multi-omics
https://mayoclinic.pure.elsevier.com/en/projects/dissecting-the-pathogenesis-and-outcomes-of-psc-using-multi-omics
https://mayoclinic.pure.elsevier.com/en/projects/dissecting-the-pathogenesis-and-outcomes-of-psc-using-multi-omics
https://www.hospitaldaluz.pt/en/media/news/inflammatory-bowel-disease-joana-torres-ioibd-fellowship
https://www.hospitaldaluz.pt/en/media/news/inflammatory-bowel-disease-joana-torres-ioibd-fellowship
https://www.hospitaldaluz.pt/en/media/news/inflammatory-bowel-disease-joana-torres-ioibd-fellowship
http://academic.oup.com/ecco-jcc/article-lookup/doi/10.1093/ecco-jcc/jjac027#supplementary-data
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Figure 4. [A] Preclinical and clinical opportunities in inflammatory bowel disease [IBD] exposome research. [B] Omic data generation tailored to the 
wide range of IBD disease attributes which can be either static [like disease location] or dynamic [disease behaviour, response to therapy, perianal 
manifestations for example]. a, 88; b, 89; c, 22,90,91; d, 92,93; e, 90; f, 89,94–97; g, 98–107; h, 108–110; I, 111,112; j, 111–115; k, 116,117. Numbers in superscript indicate the 
studies which have integrated at least two omic layers to study the corresponding disease attribute.

Table 3. Recommendations for the harmonious generation of omic datasets towards the goals of advancing mechanistic knowledge and clinical 
translation in IBD research.

Policy domain Stakeholders Recommendations 

Funding and resource allocation •  Funding agencies  
•  IBD consortia  
•  Principal investigators

• Prolonged funding for generating omic datasets from IBD pa-
tients in a longitudinal manner  
•  Targeted financial support for promoting international collabor-

ation with research stakeholders in developing countries  
•  ‘Follow-up’ grants to generate missing particular omic datasets 

to complement pre-existing omic datasets from the same samples  
•  Ring-fencing funding for training skilled omic scientists

Collaboration and harmonisation •  Funding agencies  
•  Principal investigators  
•  Non-profit medical organisations 

in the realm of IBD  
•  IBD consortia  
•  Principal investigators

•  Compilation of commonly agreed standards for IBD omic 
datasets  

•  Coordinated strategies between international and national fund-
ers to avoid huge redundancies in terms of omic datasets  

•  Creation of an easily shareable IBD omic dataset catalog be-
tween multiple funders and agencies in the IBD domain  

•  Encouraging exchange programmes for interdisciplinary re-
search

Legal and organisational •  Universities  
•  Principal investigators  
•  Industry

•  Creating robust and flexible inter-institutional confidentiality 
agreements to promote exchange of knowledge and information 
while fulfilling GDPR requirements  

•  Intra- and inter-project alignment for achieving multiple object-
ives using the same omic datasets

GDPR, general data protection regulation; IBD, inflammatory bowel disease.



Tailoring Multi-omics to Inflammatory Bowel Diseases 1315

publicly available. Furthermore, IBD-specific metadata 
standards need to be compiled so that datasets can be made 
compatible for comparison with others and hence can be  
potentially harnessed for validation by the community.

3.2.  Prevent redundant multi-omic IBD studies
Even though a certain degree of redundancy is required to 
ensure validation of findings, a large number of duplicated 
studies are a very much debated problem in all fields of med-

Table 4. Best practices for IBD omic data generation and interpretation. Many decision points are influenced by clinical feasibility and translational 
application potential. 

Phase of research Decision points Recommendations Examples

Cohort design and 
sample collection 

Inclusion / exclusion 
criterion

•  Fine tune based on research question and  
record the clinical data 

•  Think about the control population/samples. 

•  Consider enriching clinical data with  
environmental data.

•  Include or exclude inflamed/non-inflamed 
samples, treatment-naïve patients, 
postoperative setting etc 

•  Should it be healthy controls, patients with 
other IMIDs, or non-diseased sites from the 
same IBD patients? 

•  Smoking status, dietary factors, BMI,  
exercise etc

Sampling dynamics

•  Using low-throughput biomarkers, determine 
the relationship between flares and patterns in 
high-throughout -omic datasets measured from 
longitudinal cohorts. 

•  Generate the same set of -omic datasets at 
multiple time-points from the corresponding 
samples (subject to technical limitations,  
available biomaterial and any possible  
time-lags between the -omic datasets) to  
enable sample-to-sample comparability. 

•  Incorporate additional measurements after 
starting a new treatment

•  Markers like fecal calprotectin and CRP 

•  For example, host transcriptomics +  
microbial metatranscriptomics from  
biopsies at different time-points over  
treatment course or disease course. 

•  For example, pharmacodynamics

Sampling site •  Sample from the primary disease site but  
consider paired samples from other sites. 

•  Primary disease site (ileum, colon etc),  
other sites (such as PBMCs)

Sampling for  
|microbiota 

•  Microbiota profiles from primary disease site 
generally preferred over faecal samples.  
Nonetheless, the latter might prove to be  
valuable given the ease of sampling. 

•  Additional host and microbial community based 
omics datasets can bridge the  
environmental and host aspects. 

•  Primary disease site - luminal contents  
(from biopsies directly) 

•  Metabolomics, metabonomics, 
metatranscriptomics, metaproteomics, 
viromics, mycobiomics etc

Sampling mass •  Pre-determine the number of samples  
(or biopsies) and/or amount of biomass  
required to generate the different -omic datasets 
from the same sample.

•  Depends on the specification of the kit/ 
in-house protocols used for the extraction  
of the different molecular fractions

Sample treatment •  Follow standardized protocols for sampling, 
processing and storage specific for each -omic 
dataset where applicable. 

•  Kit-based or in-house protocols

Sample storage and  
documentation

•  Use of registered biobanks recommended 
•  Samples to be systematically indexed and 

barcoded during storage. 

•  UK Biobank 
•  -

Data generation Cellular resolution  
(bulk or single cell or 
purified cell-types/ 
fractions)

•  Measurements from single cell technologies 
highly recommended. 

•  -

Sequencing strategy (short 
or long read sequencing)

•  Sequencing type. Budget, biological question(s) 
etc dictate the choice 

•  Long-read or short-read sequencing? 

-Omic data type  
(genomics, 
transcriptomics,  
proteomics etc)

•  Dependent on biological question and various 
other factors like budget, research question, 
clinical and translational feasibility. 

•  Include novel molecules for -omic measure-
ments. 

•  For example, bulk transcriptomics provide a 
relatively cheap option for high-throughput 
genome-wide profiling of biological state. 
However, proteomics is closer to phenotype 
than transcriptomics but lags behind on 
coverage.  

•  Circular RNAs, long non-coding RNA

Microbiota specific  
data resolution  
(16S or WGS)

•  16S for preliminary studies 
•  WGS preferred for making in depth  

assessments due to its advantage of being  
able to make strain-level inferences

•  - 
•  -

IMID, Immune Mediated Inflammatory Disease; PBMC, Peripheral Blood Mononuclear Cells; BMI , Body Mass Index; CRP, C-reactive protein; WGS, Whole 
Genome Sequencing.
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ical research, as it squanders public funds and delays the 
achievement of breakthroughs. In a resources-consuming do-
main as multi-omic studies, this redundancy should be min-
imised if not entirely avoided. Although this issue started to 
get attention from health care regulators [as in EU Clinical 
Trials Regulation 536/2014], IBD organizations and consortia 
should tackle this issue in the early stages of the multi-omic 
era. This can be achieved by establishing collaborative efforts 
involving IBD investigators for timely and transparent com-
munication of study ideas and preliminary results to harmon-
ise efforts and minimise redundancies.

In the same context, the conduct of clinical trials has been 
accompanied in recent years by the collection of numerous 
biospecimens with detailed clinical characteristics from in-
cluded patients and the generation of corresponding omic 
datasets. Unfortunately, these resources are often out of reach 
for principal investigators/researchers since the accrued data 
are rarely published. The pharmaceutical industry should be 
encouraged to grant IBD investigators access to these piled-up 
data or at least share preliminary findings to avoid duplica-
tion, save resources and time, integrate knowledge, and guide 
future research.

3.3.  Disseminate training and education 
for harnessing the power of analytical and 
computational approaches to analyse high-
throughput multi-omic datasets
Once the guidelines outlining design of multi-omic studies 
are firmly established, IBD researchers need to be able to 
analyesthe resulting data using methods tailored to IBD. 
Currently, there is a lack of concise computational method-
ologies in this research domain in IBD. This can be overcome 
by enhancing familiarity of clinical investigators with ana-
lysing multi-omic data through fostering collaboration with 
skilled bioinformaticians and organising hands-on training 
workshops for interested IBD researchers.

3.4.  Ensure sufficient funding and resources
To ensure flexibility in investigating the different facets of 
IBD and dissect its complex pathogenesis, adequate amounts 
of multi-omic data need to be generated in the first phases, 
and this requires a stable funding approach and not to be 
solely reliant on sporadic funding opportunities. Therefore, 
inter-institutional collaboration among multi-omic investiga-
tors is necessary to collectively convey their message to policy 
makers in national scientific funding agencies to secure suffi-
cient funding for multi-omic projects and to illustrate the im-
pact of such investments on the prospects of national health 
quality and expenditure.

3.5.  Approach IBD in a global framework
As the incidence and prevalence of IBD are increasing world-
wide, it should be tackled globally with the same sense of 
solidarity as communicable diseases are being and have been 
dealt with before.118 Furthermore, the genome end exposome 
components are likely to differ between different ethnicities 
and geographical areas.70,119 IBD consortia in developed coun-
tries should assist IBD clinicians and scientists in countries 
with limited resources in establishing an affordable frame-
work to collect and generate multi-omic data that are crit-
ical to give answers for their IBD patient cohorts. In addition, 
valuable knowledge and best practices as to how IBD can be 
prevented and managed [despite being genetically susceptible] 

can be gathered from different cultural backgrounds. Such 
knowledge can be transferred across cultures, if found to be 
inter-culturally appropriate.

4.  Conclusion
Investigating the causes of any complex disease, including 
IBD, requires not only a multidisciplinary effort but also an 
extensive multi-omic effort to propel a systems view of the 
disease. Concurrently, multi-omic research deals with sam-
pling the different levels of biological complexity and organ-
isation. Since multi-omic datasets are at the heart of both 
multi-omic research and multidisciplinarity, it is essential 
to holistically integrate various technical and non-technical 
aspects while compiling patient cohorts from whom multi-
omic datasets will be generated. Acknowledging and ap-
prising such factors have a huge influence not only on the 
study design but also on the overall impact of the study. In 
this review, we attempt to provide an overview of disease 
complexity, the systems biology-based research framework, 
and multi-omic datasets tailored to the heterogeneous 
disease attributes [Figure 4B] as well as the technical and 
non-technical factors which could influence sampling and 
study design. Although nowhere near exhaustive or com-
prehensive, outlining the above-discussed aspects will help 
aid the IBD research community in generating informative 
multi-omic datasets to investigate research questions rele-
vant to IBD biology and/or clinical/translational importance.

Supplementary Data
Supplementary data are available at ECCO-JCC online.
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