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Abstract

Hearing loss is the most common neurosensory deficit. It results from a variety of heritable and acquired causes
and is linked to multiple deleterious effects on a child’s development that can be ameliorated by prompt iden-
tification and individualized therapies. Diagnosing hearing loss in newborns is challenging, especially in mild
or progressive cases, and its management requires a multidisciplinary team of healthcare providers compris-
ing audiologists, pediatricians, otolaryngologists, and genetic counselors. While physiologic newborn hearing
screening has resulted in earlier diagnosis of hearing loss than ever before, a growing body of knowledge sup-
ports the concurrent implementation of genetic and cytomegalovirus testing to offset the limitations inherent
to a singular screening modality. In this review, we discuss the contemporary role of screening for hearing loss
in newborns as well as future directions in its diagnosis and treatment.
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Introduction

Hearing loss is the most common neurosensory deficit.
It affects about 1 in 500 newborns, and by the age of
80 approximately half the population has hearing loss
significant enough to interfere with effective communi-
cation.1 While causality is multifactorial, on aggregate,
at least 50% of cases are linked to genetic causes. For

deafness arising pre-lingually (prior to the development
of language), genetic causes comprise an even higher
percentage.2 Non-genetic causes in neonates and young
infants arise from a wide variety of prenatal, perinatal,
and postnatal etiologies, including infections, develop-
mental anomalies, hypoxia, trauma, and the use of cer-
tain medications.
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Prior to the implementation of universal newborn
hearing screening (NBHS) in the USA, even until the mid-
1990s children born with even profound (>90 dB) hear-
ing loss had significant delays in their diagnosis and
treatment. History and physical examination in these
patients may reveal no obvious abnormalities, and tra-
ditional means of evaluating auditory function in new-
borns such as behavioral tests are fraught with the
potential for bias.3–5 In 1994, the Joint Committee on
Infant Hearing (JCIH) endorsed the goal of universal
detection of infants with hearing impairment and pro-
moted continued research to improve detection of, and
intervention for, deafness as early as possible.6 Laws
mandating NBHS were subsequently passed by 43 states
and territories, with the remainder of states implement-
ing universal NBHS without legislation. Consequently,
the most recent data show that 98.3% of newborns in the
USA undergo NBHS,7 adhering to the current JCIH rec-
ommendations of NBHS by 1 month of age, diagnosis by
3 months of age, and early intervention by 6 months of
age.6,8

In this review, we will discuss the strengths and weak-
nesses of the current NBHS in the context of permanent,
bilateral sensorineural congenital hearing loss. We will
also discuss the future direction of hearing screening,
including adjunctive hearing screening tests for genetic
and infectious causes. Finally, we will focus on the per-
sonalized current and future treatments for hearing loss
in newborns that are afforded by rapidly advancing diag-
nostic technology for heritable deafness. Throughout
this review, we will use the terms “deaf” with a lower-
case “d”, “hearing loss”, or “hard of hearing” to refer to a
diminished or lack of a sense of hearing. For many within
the Deaf (written with a capital “D”) community, “hearing
impairment” is an inappropriate and antiquated term, as
they do not consider themselves impaired.9

Physiologic NBHS

Prior to the widespread adoption of screening for hearing
loss in newborns, hearing screening was accomplished
via distraction or other behavioral tests in infants.10 Only
children with specific risk factors for hearing loss were
screened at birth. A list of risk factors for hearing loss
in childhood is given in Table 1.11,12 That this list was
suboptimal is reflected by the fact that >50% of children
with hearing loss have none of these risk factors.13 In
addition, the testing procedures were inadequate, with
validation studies of behavioral tests of hearing in chil-
dren revealing unacceptably poor inter-observer relia-
bility, high false positive rates, and high false negative
rates.3–5 As a consequence, many children with clinically
actionable hearing loss were missed during this criti-
cal period of auditory cortex neuroplasticity, language
acquisition, and development.14 In response to these
shortfalls, universal NBHS was endorsed by the Ameri-
can Academy of Pediatrics and the United States Preven-
tative Services Task Force with the goal of screening all
infants by 1 month of age, diagnosing hearing loss by 3

Table 1. Risk factors associated with the development of
deafness in newborns.

1. Family history of childhood deafness
2. Neonatal intensive care unit stay of >5 days
3. Use of ototoxic medications (e.g. aminoglycosides)
4. Signs and symptoms of maternal infection during pregnancy
5. Asphyxia at birth
6. Prematurity (<32–34 gestational weeks)
7. Low birth weight (<1200 g)
8. Hyperbilirubinemia
9. Craniofacial anomalies of the head and neck
10. Parental consanguinity
11. Parental concerns about their child’s hearing
12. Signs associated with syndromic hearing loss (e.g. a white

forelock)

months of age, and enacting appropriate intervention by
6 months (1-3-6 paradigm).6,8

Contemporary physiologic NBHS is a two-tiered
approach, with an initial screen via portable automated
auditory brainstem response (AABR) or detection of tran-
sient evoked or distortion product otoacoustic emissions
(OAEs) followed by a formal auditory brainstem response
(ABR) for an abnormal initial test.15 Some institutions
choose to perform OAE testing followed by AABR prior to
formal ABR. The International Pediatric Otolaryngology
Group recommends performing both OAE and AABR in
children with risk factors for deafness.16 These tests are
simple to perform, inexpensive, require only 10–20 min-
utes to complete, and do not require sedation. Parental
response has been overwhelmingly positive,17 and in
2017 over 98% of newborns in the USA were screened.7

The results are astounding—the median age of diagnosis
of severe-to-profound hearing loss has improved from >2
years of age prior to universal NBHS to just 2 months of
age.18

Despite the unquestionable success of universal
NBHS, there are several limitations to the current screen-
ing methods. The two-tiered system was designed for
the identification of children with moderate, severe, and
profound hearing loss as the effect of mild hearing loss
was not recognized in the mid-1990s. Both AABR and
OAE testing have thresholds of detection of approxi-
mately 30–40 dB,8 which means that newborns with
mild-to-moderate hearing loss have a longer median
time-to-diagnosis and time-to-treatment than newborns
with severe-to-profound hearing loss.18 There is now a
growing body of literature that links even mild hear-
ing loss to delays in linguistic development, diminished
academic achievement, and social difficulties that can
be obviated with early identification and individualized
resources.19,20 Furthermore, some forms of genetic hear-
ing loss are progressive and because they may begin
as mild or even normal hearing, affected children will
be under diagnosed or missed completely by the cur-
rent screening methods.21 False positive test results sec-
ondary to environmental factors, debris in the ear canal,
and fluid in the middle ear are also common with
both OAE and AABR testing,8 and as a consequence,
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over five normal-hearing newborns will be erroneously
referred for evaluation for every one newborn with
true hearing loss.22 Poor inter-test reliability between
OAE and AABR testing has been reported, with up to
a quarter of children with abnormal OAE results hav-
ing a normal AABR despite ultimately abnormal hear-
ing findings on diagnostic ABR.23 Thus, despite the suc-
cesses of universal physiologic NBHS, all infants with
hearing loss are not identified with current screening
techniques.

Current role of genetic diagnosis

Prior to the late 1990s when GJB2 was identified as
the cause of hearing loss in three consanguineous Pak-
istani families, segregating autosomal recessive deaf-
ness, genetic testing for non-syndromic hearing loss
(NSHL) was not possible.24 In the decade following this
discovery, a large number of genes was implicated in
non-syndromic hearing loss, although establishing a
genetic diagnosis for hearing loss remained challeng-
ing. Candidate genes were typically screened for muta-
tions using Sanger sequencing, a highly reliable but rela-
tively expensive and slow technique if many genes were
being considered. GJB2 is an exceptional gene—not only
is it the leading cause of severe-to-profound autosomal
recessive NSHL in many populations around the world,
it is also simple to screen, comprising a single coding
exon. As a result, in the late 1990s, a few clinical labo-
ratories began to offer genetic testing for deaf and hard-
of-hearing patients and their families focusing primarily
on testing GJB2.

In 2003, the Human Genome Project (HGP) was com-
pleted ahead of schedule and under budget.25 This mon-
umental achievement provided a foundation for the
development of massively parallel sequencing (MPS)
technologies, which could amplify millions upon mil-
lions of 150–300 base pair fragments of DNA and align
them to the reference genome established by the HGP.
This technology led to the development of OtoSCOPETM,
a targeted ”deafness” panel of genes for the clinical
diagnosis of genetic hearing loss. Initially described in
201026 and made clinically available in 2012, OtoSCOPETM

was the first clinically validated comprehensive genetic
panel. MPS also made novel gene discovery much easier,
and, consequently, the number of genes associated with
NSHL increased markedly.

A variety of MPS genetic panels targeting deafness
are now available in the United States, including from
23 to 252 genes (Table 2). Obtaining a specific genetic
diagnosis of deafness has significant implications for
patients regarding counseling, prognosis, and individual-
ized treatment. Furthermore, information regarding the
genetic diagnosis of a child and associated risk of having
another affected child may influence future reproduc-
tive decisions for parents.27 Obtaining this knowledge is
empowering for the patient and their family members
alike.

Current role of cytomegalovirus testing
and treatment

Congenital cytomegalovirus (cCMV) is estimated to affect
∼0.3%–1.2% of newborns, making it the most common
prenatal infection in developed countries.39,40 A pri-
mary maternal infection during pregnancy has a fetal
transmission rate of ∼32%, but in seropositive moth-
ers the rate of vertical transmission is only about 1.4%.
Infection of the newborn is classified as either symp-
tomatic or asymptomatic cCMV.41 Symptomatic cCMV,
which affects up to 10% of infected fetuses, manifests
as intrauterine growth restriction, preterm delivery, and
end-organ dysfunction. Half of this overtly symptomatic
group of newborns develop sensorineural hearing loss.42

Asymptomatic cCMV is more difficult to diagnose as
there is typically no evidence that an in utero infection
has occurred. However, approximately 10% of newborns
with asymptomatic cCMV infection present with hear-
ing loss at birth as their only symptom. This association
has led to the progressive implementation of hearing-
targeted cCMV screening in the USA, with several states
having legislation to mandate CMV screening after failed
NBHS to identify hearing loss associated with asymp-
tomatic cCMV. Although the presentation of this type
of hearing loss is extremely variable and can be unilat-
eral or bilateral and stable, fluctuating or progressive,
it is estimated that ∼15%–20% of children with bilateral
moderate-to-profound sensorineural hearing loss have
CMV-related hearing loss, making CMV the second most
common etiology of hearing loss in this subgroup of chil-
dren after genetic causes.43

Testing all newborns for cCMV may not necessarily be
beneficial or cost-effective, as most infected newborns
develop no symptoms and have no sequelae. If testing
is pursued, the virus must be isolated either prenatally
or within the first 2–3 weeks of life, as the presence of
CMV after this point cannot be distinguished from a peri-
or postnatal infection.44 Culture and polymerase chain
reaction (PCR) testing of amniotic fluid via amniocentesis
is the method of choice for diagnosing CMV in the fetus41,
and this is recommended in the presence of verified pri-
mary CMV infection in an expectant mother.41 Because
of an attributable risk of 0.49% for fetal demise following
amniocentesis,45 this step is not recommended as a rou-
tine screening test. In newborns, PCR assays from saliva
swabs or urine samples are the preferred method of test-
ing and have sensitivities and specificities approaching
100%.42 Serological testing for CMV-specific IgM antibod-
ies in newborns is not recommended, as only 70% of
cCMV-positive newborns have detectable levels of anti-
body. PCR of dried blood spots also has a limited role in
screening for cCMV, with a disappointing sensitivity of
28.3%.46

To optimize value and maximize the yield of cCMV
testing, Park and colleagues developed a sequential
diagnostic protocol for children with abnormal hearing
screenings.47 Because of its relatively low cost in com-
parison to imaging studies or targeted genetic panels,
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Table 2. Comparison of the current MPS genetic panels in the United States that target deafness, which range from 23 to 252
genes implicated in autosomal dominant, autosomal recessive, and X-linked NSHL, mitochondrial deafness, a number of the
more common syndromic forms of hearing loss, and non-syndromic mimics.

Name Institution Number of genes

Blueprint Genetics Comprehensive Hearing Loss and
Deafness Panel28

Blueprint Genetics, Seattle, WA 239

GeneDx Hearing Loss Test29 GeneDx, Gaithersburg, MD 150
Hereditary Hearing Loss and Deafness Panel30 Prevention Genetics, Marshfield, WI 202
Comprehensive Hearing Loss Panel31 sema4, Stamford, CT 92
Fulgent Comprehensive Hearing Loss NGS Panel32 Fulgent Genetics, Temple City, CA 167
OtoGenomeTM33 Partners Healthcare, Boston, MA 110
OtoSeq R©34 Cincinnati Children’s Hospital Medical Center Laboratory

of Genetics and Genomics, Cincinnati, OH
23

OtoSCOPE R© (version 9)35 Molecular Otolaryngology and Renal Research
Laboratories at the University of Iowa, Iowa City, IA

252

Hearing Loss Panel36 EGL Genetics, Tucker, GA 131
Hearing Loss Sequencing Panel37 Greenwood Genetic Center, Greenwood, SC 91
Expanded Hearing Loss Panel38 ARUP Laboratories, Salt Lake City, UT 56

saliva or urine-based cCMV PCR is performed as the
initial test for idiopathic deafness. In a cohort of 83
newborns with confirmed hearing loss who were eval-
uated with this method over a 5-year period, 30% had
confirmed or probable cCMV-associated deafness. This
protocol, known as hearing-directed cCMV testing, was
enacted into the Utah Health Code in 2013, requiring
newborns with abnormal physiologic hearing screen-
ings to undergo cytomegalovirus testing.48 A follow-up
study 2 years after implementation revealed that the
rate of definitive audiologic evaluation before the age of
3 months for all patients with an abnormal screening
examination increased from 56% to 77%.49 This increase
may be related to a secondary provision contained within
the 2013 bill, which set aside funds for education and
outreach regarding CMV and hearing loss for pregnant
women and healthcare providers.48 At the time of writing
this manuscript, legislation requiring hearing-directed
cCMV testing has been enacted in Utah, Connecticut,
Iowa, New York, and Virginia.50

Symptomatic cCMV has classically been treated with
the guanosine analog ganciclovir parenterally, or its
oral prodrug valganciclovir. This medication’s triphos-
phate derivative has a particular affinity for the viral
DNA polymerase of CMV.51 A randomized clinical trial
in 2003 examining audiometric outcomes via ABR in
neonates (≤1 month of age) with symptomatic cCMV
who received ganciclovir versus a control showed sta-
tistically significant preservation of hearing in the treat-
ment arm.52 The primary toxicity was neutropenia,
which developed in over half of children on treat-
ment. A continuation of this study was published in
2015 and investigated the effect of a 6-week versus
a 6-month course of valganciclovir against placebo.53

Although no difference in hearing thresholds was noted
6 months after treatment, a modest improvement was
noted 12–24 months after treatment in the longer
treatment arm. Unfortunately, neither study enrolled
significant numbers of patients with asymptomatic

cCMV and sensorineural hearing loss and so conclu-
sions regarding treatment for these babies could not be
made.

Small, uncontrolled case series and case reports have
been published investigating valganciclovir for hearing
loss in asymptomatic cCMV, but the lack of a placebo
control group in these studies has made it impos-
sible to conclude whether there is an improvement
in hearing as a result of a medication effect versus
the naturally waxing and waning hearing loss associ-
ated with cCMV.54–57 Currently, there are three clinical
trials investigating the effect of valganciclovir treatment
on the progression and severity of cCMV-associated sen-
sorineural hearing loss.58–60 Other lingering questions
regarding long-term use of ganciclovir or valganciclovir
revolve around as-yet-unknown sequelae. Animal mod-
els have demonstrated a risk for gonadotoxicity and car-
cinogenicity,61 and although these complications have
not been reported in humans to date, parents or legal
guardians should be counseled on the potential for these
effects prior to initiating therapy.

Finally, it is important to recognize that hearing loss
associated with asymptomatic cCMV is characterized
by its variability. In contrast to the typically symmet-
ric hearing loss seen with nonsyndromic genetic deaf-
ness, the hearing loss with asymptomatic cCMV can be
asymmetric, fluctuating, and progressive.62 In up to half
of cases, the hearing loss is late-onset and does not
appear until the child is several years of age. Further-
more, a positive diagnosis of cCMV does not exclude
genetic hearing loss. In one study, for example, of 12 chil-
dren with hearing loss and a diagnosis of asymptomatic
cCMV infection, two had a genetic cause for their hearing
loss.63 Both of these children had bilateral, symmetric,
severe-to-profound hearing loss. While some children
with asymptomatic cCMV have audioprofiles indistin-
guishable from genetic deafness, a positive viral test with
a symmetric severe-to-profound sensorineural hear-
ing loss warrants suspicion for an underlying genetic
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cause and comprehensive genetic testing should be
completed.

CMV testing cannot be used as a stand-alone diag-
nostic tool for deafness in newborns. However, as an
adjunct to a thorough history and physical examina-
tion and comprehensive genetic testing, it provides valu-
able information that narrows the list of potential eti-
ologies for hearing loss. In selected clinical scenarios, it
also allows for initiation of antiviral treatment with the
potential for amelioration of hearing loss in affected chil-
dren.

The future of hearing screening and
challenges to implementation

Physiologic hearing screening, genetic testing, and cCMV
screening each have strengths and weaknesses, which
are summarized in Table 3. A screening strategy that
combines these methods will maximize the number of
infants diagnosed with hearing loss and in doing so, soci-
ety will benefit via a reduction of economic burden and
lost wages.64 More importantly, individual patients will
benefit from the personalized therapy, counseling, and
appropriate treatment afforded by an early diagnosis of
hearing loss.

A proposal for comprehensive hearing screening
involving physiologic, genetic, and cCMV testing was
described in 2019,65 and a flowchart incorporating all
three methods of NBHS for otherwise healthy-appearing
newborns is shown in Fig. 1. While whole genome
sequencing is likely to be the primary method by which
newborns are screened within the next few decades,66

the method of delivery and timing of genetic screen-
ing for deafness in the newborn is currently debated.
Clinicians in China recently implemented concurrent
physiologic and genetic hearing screening using microar-
rays that tested between 7 and 18 variants associ-
ated with deafness in GJB2, SLC26A4, and GJB3.67,68

This panel also tested for two variants that predis-
pose for aminoglycoside-related ototoxicity in MT-RNR1.
Although the microarrays included 16 variants that are
relatively common causes of genetic deafness, bi-allelic
genotypes involving these variants alone would only
diagnose 134 out of 2050 patients (6.5%) who received
a definitive genetic diagnosis via a comprehensive MPS
panel (Table 4). For SLC26A4, 464 variants are currently
classified as likely pathogenic or pathogenic in the
Deafness Variation Database (DVD), a comprehensive
database of all known variants responsible for genetic
hearing loss, highlighting the difficulty of obtaining an
acceptable diagnostic yield via microarray.69 Nonethe-
less, these studies have provided promising results. In
total, 420 105 babies received genetic screening dur-
ing the study periods. 111 babies received a diagnosis
of genetic deafness as a result of the presence of bi-
allelic GJB2 or SLC26A4 variants. Thirty-two of these 111
patients (28.8%) passed their NBHS. Twenty of these 32
patients (71.9%) eventually developed hearing loss by 60

months of age. By receiving a diagnosis of genetic deaf-
ness at birth, these children were able to access person-
alized therapies immediately, including cochlear implan-
tation in at least 12.

Suitable genetic screening technology for the het-
erogenous population of the United States has yet to be
incorporated on a large scale. With over 8000 deafness-
associated variants classified as likely pathogenic or
pathogenic, an optimal screening platform must be capa-
ble of testing for a large number of mutations.65,70 As the
numbers of targeted genomic regions and patients being
tested increase, MPS becomes the most cost-effective
option.71,72 Furthermore, copy number variants (CNVs)—
insertions or deletions in the genome that result in struc-
tural variations—are implicated in about ∼20% of diag-
noses, making them a common contributor to inherited
deafness and mandating their detection on screening
platforms.73 Although microarrays are capable of detect-
ing CNVs via comparative genomic hybridization or sin-
gle nucleotide polymorphism arrays, the diagnostic yield
is low and the false negative and false positive rates are
high.74 MPS, by comparison, is a high yield diagnostic
method for the detection of CNVs.75

In accordance with the updated Wilson and Jungner
criteria for the implementation of genetic screening pro-
grams, the overall benefits of the screening must out-
weigh its harms.76 Sequencing portions of the genome
must be performed judiciously; although MPS can gen-
erate incredible amounts of data, this comes at a cost
of an ever-higher number of variants of uncertain sig-
nificance (VUS). Per the American College of Medical
Genetics and Genomics, a VUS is a variant with clin-
ical relevance unknown, and thus should not be used
in clinical decision making.77 The DVD reports >695 000
VUSs within genes that are associated with deafness.70

Some bioethicists argue that VUSs should be reported
to patients under the principle of hypothetical utilitari-
anism (i.e. the potential that the VUS may someday be
impactful), whereas others posit counterarguments to
reporting on principles of avoiding harm.78

Childbirth is a highly stressful time for parents. For
the purposes of a NBHS, every effort must be made to
minimize false positive results.79 For this reason, we
advocate a middle ground between a small microarray
panel and a full diagnostic deafness panel with a tar-
geted MPS panel that uses high throughput detection of
thousands of confirmed pathogenic or likely pathogenic
variants at costs comparable to other newborn screen-
ing examinations. These variants must be thoughtfully
selected based on population-specific frequencies to pre-
vent ethnic bias and should include both autosomal
recessive and autosomal dominant causes of deafness.
Furthermore, targeting genetic deafness associated with
mild-to-moderate hearing loss will be particularly valu-
able as a complement to physiologic hearing screen-
ing, as AABR and OAE may miss these phenotypes. Vari-
ants included in this type of targeted detection panel are
easily modifiable to populations of interest and as our
knowledge of the genetics of deafness increases.
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Table 3. Comparison of strengths and weaknesses of current and future newborn hearing screening techniques.

Physiologic Genetic cCMV

Strengths Quick and easy to perform Provides definitive diagnosis and
etiology

Highly accurate

Inexpensive Phenotype-genotype correlation Inexpensive
Minimal risk Highly accurate Minimal risk

Weaknesses High false positive rate Most expensive option High rate of asymptomatic carriers
No information on etiology of deafness Potential for genetic discrimination Must be collected within 2–3 weeks of

birth

cCMV—congenital cytomegalovirus

Figure 1. Proposed molecular diagnostic algorithm for genetic hearing screening.

Table 4. List of patients diagnosed by OtoSCOPETM stratified by type of genetic deafness.

OtoSCOPE patient groups, from its inception to October 2019 Number of patients
Number of unique

variants

All unique patients with positive diagnoses (% of total) 2050 (100.0%) 1692
All patients with autosomal recessive deafness (% of total) 1525 (74.4%) 1250
All patients with autosomal dominant, X-linked, or mitochondrial deafness (% of total) 525 (25.6%) 442
All patients with GJB2-associated deafness (% of total) 405 (19.8%) 80
All patients with SLC26A4-associated deafness (% of total) 116 (5.7%) 97
Patients with bi-allelic genotypes for microarray variants described by Dai et al.67 and
Guo et al.68 (% of total)

134 (6.5%) 16

This is further stratified by number of patients who were diagnosed with GJB2 or SLC26A4-associated deafness, and the number of patients who would be diagnosed

using a microarray as proposed by Dai et al.67 and Guo et al.68 The GJB2 variants on the microarray are NM 004004.5: c.35delG, c.167delT, c.176 191del16, c.235delC, and

c.299 300delAT. The SLC26A4 variants on the microarray are NM 000441.1: c.281C > T, c.589G > A, c.919–2A > G, c.1174A > T, c.1226G > A, c.1229C > T, c.1707 + 5G > A,

c.1975G > C, c.2027T > A, c.2162C > T, and c.2168A > G.
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Other ethical concerns to genetic testing (and other
hearing screening methods for newborns) include eth-
nic biases. Especially in the context of a targeted genetic
screening panel, ethnic bias must be addressed. For
Mendelian inheritance, genetic diseases common in
European populations are over diagnosed compared with
their relative frequency, whereas diseases common in
African populations are under diagnosed.80 Significant
differences exist between racial groups in their access to
genetic research and genetic testing as well as their con-
cerns regarding the misuse of genetic testing.81 This dis-
parity is reflected in the Genome Aggregation Database,
a collection of exome and genome sequencing data,
which contains 110 588 alleles from non-Finnish Euro-
peans compared with only 15 152 from African popu-
lations.82 Accordingly, the design of a targeted genetic
deafness panel must use ethnicity-specific minor allele
frequencies for deafness-associated variants to ensure
equity and reduce disparities in healthcare.

Over 90% of deaf children are born to hearing par-
ents and most, therefore, do not have frequent contact
with other deaf persons.73,83 Among normal hearing par-
ents with deaf children, there is overwhelmingly positive
sentiment in regards to the benefits of genetic testing
from both those who have and have not already sought
out genetic tests.84,85 Of parents who receive a genetic
diagnosis for their child, reported benefits include a bet-
ter understanding of risk of recurrence in future chil-
dren, a reduction in blame toward themselves for their
child’s deafness, and personalized guidance of treat-
ment.86 However, despite having a generally positive
opinion of genetic testing, parents who are members
of the Deaf community are more cautious and skepti-
cal than hearing parents.87,88 As a linguistic minority,
the potential for “ethnocide” of Deaf communities must
be considered: the advent of treatments for deafness
including cochlear implantation could be viewed as a
means of forced integration of these communities.

We contend that even if a parent within the Deaf com-
munity is not interested in cochlear implantation, hear-
ing amplification, or other treatments for their child with
hereditary deafness, a genetic diagnosis would provide
value through counseling on potential comorbid condi-
tions and the expected trajectory of deafness. Sign lan-
guage is a sophisticated form of nonverbal communi-
cation that offers the full depth of language,89 and an
earlier diagnosis of hearing loss would result in earlier
access to individualized resources to acquire this skill.
Ultimately, despite strong evidence for a high benefit-
risk ratio, newborn screening requires informed con-
sent from parents. Under the auspices of parental auton-
omy, parents would possess the moral and legal rights
to refuse any part of the comprehensive NBHS for their
child.

In regards to cCMV, with PCR already being a cost-
effective and accurate method of detection,42 the most
important lingering question for screening implemen-
tation is the timing of testing. Should all infants be
screened at birth or should testing be limited to those

with abnormal physiologic hearing screenings? Screen-
ing may not be beneficial for all newborns, as many with
cCMV will be asymptomatic and never develop hearing
loss or other sequelae.42 With the poor positive predictive
value of physiologic hearing screening22 and high rate of
asymptomatic cCMV infections, most children with both
a positive cCMV test and an abnormal physiologic screen
will ultimately have normal hearing. Furthermore, the
requirement that a sample for PCR of cCMV be taken
within 2–3 weeks of birth44 removes the possibility of
waiting until a confirmatory ABR shows hearing loss
to test for the virus. As the second leading cause of
congenital deafness, it is reasonable to incorporate the
simultaneous collection of saliva or urine for cCMV PCR
along with collection of dried blood spot or saliva for tar-
geted genetic screening and performance of physiologic
hearing screening. Without concurrent data from genetic
testing and a confirmatory ABR, however, current data do
not justify antiviral treatment for a positive cCMV test in
an otherwise healthy newborn. A flowchart incorporat-
ing these three methods is described in Fig. 1.

Hearing amplification and cochlear
implantation

Early hearing detection and intervention (EHDI) is the
process by which children navigate from detection of
hearing loss via screening or clinician referral to an
individualized intervention program. When an infant
is confirmed to have hearing loss, a multidisciplinary
team is required for audiologic, medical, and educa-
tional management.90 This team includes, but is not
limited to, audiologists, pediatricians, otolaryngologists,
and genetic counselors. The strongest influence of suc-
cess in language development in deaf children is early
identification and therapy.91 Six months of age is the crit-
ical intervention period before which adequate habilita-
tion (including learning sign language) can allow for sim-
ilar outcomes to normal-hearing peers.92

For the development of spoken language in a deaf
child, current treatment options include hearing ampli-
fication and cochlear implantation. Hearing amplifica-
tion is an excellent option for children with mild-to-
moderate congenital sensorineural loss, as hearing aids
have a maximum gain of approximately 41–58 dB.93

With severe-to-profound hearing loss, use of conven-
tional hearing aids is limited by a small dynamic range
and potential for uncomfortable overamplification.94 In
children with diagnosed autosomal dominant forms of
hearing loss, audioprofiles are a useful tool for prognosti-
cation. For example, a child born with a pathogenic vari-
ant in KCNQ4 would be expected to progress to a severe
high frequency hearing loss between 20 and 40 years
of age. Conventional hearing amplification may suffice
prior to that point, but the family should be counseled on
the expected temporal course of hearing loss and avail-
able treatment options. A child with bi-allelic pathogenic
variants in STRC, however, would be expected to have a
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stable level of mild-to-moderate hearing loss and may
obtain satisfactory results for their entire life with hear-
ing aids alone.

Cochlear implants, the first effective treatment
for severe-to-profound deafness, have revolutionized
the field of otology over the past several decades.95

Genetic testing using a commercially available genetic
deafness panel offers useful pre-operative information
for cochlear implantation regarding the etiology and
expected benefit of the surgery. Some authors suggest
its implementation in the routine pre-operative workup
of all potential cochlear implant recipients.96,97 Patients
with pathogenic variants in genes involved in the struc-
ture and function of the spiral ganglion—OPA1, DIAPH3,
DFNB59, AIFM1, TBC1D24, MT-RNR1, and TMPRSS3—
perform significantly worse on post-operative speech
measurements compared with those who had other
deafness-associated pathogenic variants.98 Patients
with pathogenic variants in GJB2 and SLC26A4 have
been noted to have particularly successful results
after cochlear implantation,97,99 although positive
outcomes have also been reported with mutations in
other organ of Corti-associated genes such as MYH9100

and MYO15A.96,101 These differences in outcome based
on genetic etiology may explain the small subset of
deaf children that do not gain significant benefit from
cochlear implantation.101 Thus, another benefit of
early genetic diagnosis of deafness is earlier eligibility
and improved pre-operative counseling for cochlear
implantation.

Gene therapy

Alongside advancements in genetic sequencing technol-
ogy, significant progress has been made regarding our
knowledge of the molecular and biochemical pathways
interrupted in genetic deafness.102–104 After the first Food
and Drug Administration (FDA)-approved clinical pro-
tocol for human gene therapy was successfully imple-
mented in 1990,105 interest has risen in novel treat-
ments for various genetic diseases, including deafness.
Contemporary methods for gene therapy include gene
replacement, gene suppression, targeted gene editing,
and cell replacement.106 For deafness, the application of
these methods is made more challenging by difficulty in
accessing the inner ear and its encasing bony labyrinth,
which places limitations on the volume of vector that can
be delivered to the cochlea. Furthermore, the final com-
mon outcome of many types of deafness as audiometric
thresholds fall into the severe range, is irreversible dam-
age to the inner and outer hair cells. Nonetheless, sev-
eral deafness-associated genes have emerged as targets
potentially amenable to curative gene therapy.

Because of their favorable tolerance by the host
immune system, lack of pathogenicity, and excellent
transduction potential of many different cell types in
the cochlea, adeno-associated viruses (AAV) are the most
commonly studied and used vectors for gene therapy
delivery in deafness.106 As recently reviewed by Askew

and Chien,107 improvements in hearing threshold have
been demonstrated in murine models via AAV-mediated
inner ear gene delivery for Vglut3,108 Kcnq1,109 Tmc1,109,110

Whrn,111 Pjvk,112 Msrb3,113 Lhfpl5,114 Ush1c,115 Ush1g,116

Ush3a,117–119 Slc26a4,120 and Otof.121,122 Although these
results are promising, differences between murine and
human inner ear development limit the translational
applicability to humans. For example, most of the gene
therapies were administered to mice between P0 and P10
(0 and 10 days after birth) when the murine inner ear is
still immature.123 Equivalent experiments on a human
would need to be delivered in utero at ∼19 weeks’ ges-
tational age. Newer surgical techniques in mice in which
a second hole is made in the bony labyrinth have been
developed to allow gene therapy to be delivered to mice
at any age. This advance is important as it will help to
identify a series of candidate genes to move forward for
consideration in human trials based on murine data that
show benefit in preventing progression and even revers-
ing progression of specific types of genetic hearing loss.

Potential candidates for human trials include OTOF
and TMC1.121 The first clinical trials for gene therapy of
non-syndromic hearing loss will soon begin with OTOF.
Akouos, Inc. has issued patent US20190185864A1 in rela-
tion to its novel adeno-associated viral vector AK-OTOF,
with plans to begin recruiting for a clinical trial in 2020.124

Bi-allelic pathogenic mutations in OTOF, which encodes
for the otoferlin transmembrane protein, are associ-
ated either with prelingual severe-to-profound bilateral
sensorineural hearing loss or a normal-to-mild hear-
ing loss that progresses to severe or profound hearing
loss with fevers (temperature-sensitive nonsyndromic
auditory neuropathy).125 These phenotypes present in a
variant-dependent fashion and affect different compo-
nents of the auditory pathway, which may be important
for both the effectiveness of gene therapy and cochlear
implantation. This highlights the importance of obtain-
ing a specific diagnosis via MPS for both characterizing
phenotype and for guiding treatment.

Conclusions

Physiologic NBHS has improved the time to diagno-
sis and treatment of severe-to-profound hearing loss in
newborns. Unfortunately, many newborns with mild or
progressive forms of hearing loss remain undiagnosed
during their critical period of language development and
neuroplasticity. The time has come to expand NBHS to
include genetic and cCMV testing to maximize our abil-
ity to diagnose these patients. Advancing the diagno-
sis and care of congenital permanent hearing loss will
require development of a novel, economic method of
universal genetic screening. Providing patients with a
genetic diagnosis of hearing loss is useful for identifying
comorbid conditions, providing reproductive counseling,
and guiding treatments including cochlear implantation
and soon, gene therapy. With the use of targeted high
throughput MPS technology, genetic screening in new-
borns will soon become a reality. Its implementation will
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require a therapeutic alliance with clinicians and parents
in both the Deaf and hearing communities.
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