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Abstract

Background: Studies using medical images have shown that intraplaque
hemorrhage may accelerate plaque progression and may produce a stimulus for
atherosclerosis development by increasing lipid core and plaque volume and
creating new destabilizing factors. Image-based 3D computational models with fluid-
structure interactions (FSI) will be used to perform plaque mechanical analysis and
investigate possible associations between intraplaque hemorrhage and both plaque
wall stress (PWS) and flow shear stress (FSS).

Methods: In vivo MRI data of carotid plaques from 5 patients with intraplaque
hemorrhage confirmed by histology were acquired. 3D multi-component FSI models
were constructed for each plaque to obtain mechanical stresses. Plaque Wall Stress
(PWS) and Flow Shear Stress (FSS) were extracted from all nodal points on the lumen
surface of each plaque for analysis.

Results: The mean PWS value from all hemorrhage nodes of the 5 plaques
combined was higher than that from non-hemorrhage nodes (75.6 versus 68.1 kPa, P
= 0.0003). The mean PWS values from hemorrhage nodes for each of the 5 plaques
were all significantly higher (5 out of 5) than those from non-hemorrhage nodes (P
< 0.05). The mean FSS value from all hemorrhage nodes of the 5 plaques combined
was 30.4% higher than that from all non-hemorrhage nodes (15.0 versus 11.5 dyn/
cm2, P = 0.0002). However, the mean flow shear stress values from individual cases
showed mixed results: only one out of five plaques showed mean FSS value from
hemorrhage nodes was higher than that from non-hemorrhage nodes; three out of
five plaques showed that their mean FSS values from hemorrhage nodes were lower
than those from non-hemorrhage nodes; and one plaque showed that the difference
had no statistical significance.

Conclusion: The results of this study suggested that intraplaque hemorrhage nodes
were associated with higher plaque wall stresses. Compared to flow shear stress,
plaque wall stress has a better correlation with plaque component feature
(hemorrhage) linked to plaque progression and vulnerability. With further validation,
plaque stress analysis may provide additional stress indicators for image-based
vulnerability assessment.
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Introduction
Atherosclerotic plaque rupture is the primary cause of acute cardiovascular syndromes,

such as heart attack and stroke, and may occur without any warning [1-3]. Vulnerable

plaques often have a large necrotic core covered by a thin fibrous cap and may contain

intraplaque hemorrhage, calcification, and inflammation [3-5]. Currently, interventional

diagnosis is still mainly based on the degree of luminal stenosis/plaque severity as mea-

sured by angiography (X-ray, MRI, ultrasound, or computed tomography). However,

there is growing evidence suggesting that plaque severity alone is insufficient for iden-

tifying the critical condition [6].

From a mechanical point of view, plaque rupture is likely to occur when the

mechanical stress exceeds the material strength of fibrous cap. Therefore, it has been

hypothesized that critical stress conditions in the plaque may be closely related to pla-

que rupture and can be combined with current image-based assessment techniques for

more accurate plaque evaluation and vulnerability assessment [7,8]. Computational

models combing mechanical factors and morphologic information have been intro-

duced by several groups to perform plaque mechanical analysis and identify additional

critical mechanical indicators to improve the current histology and image-based plaque

assessment [9-25]. For structure-only models, Holzapfel et al. introduced multi-layer

anisotropic plaque models and showed that stress predictions from their models varied

from single-layer isotropic models by 50%-200% or more [9,10]. Li et al. performed 2D

structural analysis based on in vivo MRI of carotid arteries and found that wall stress

was higher in ruptured plaques than in non-rupture plaques [14]. Tang et al. intro-

duced the first multi-component FSI plaque model which integrates plaque morphol-

ogy, composition, fluid and structural forces together to provide more complete

mechanical stress analysis for vulnerable plaques, compared to fluid- or solid-only

models [11]. For the impact of specific plaque characteristics and components, Blue-

stein et al. investigated the effect of microcalcifications on vulnerable plaque mechanics

using FSI modeling [12]. Loree et al. studied effects of fibrous cap thickness and their

results indicated that reducing fibrous cap thickness dramatically increased peak cir-

cumferential stress in the plaque [15]. Sadat et al. investigate the impact of plaque

hemorrhage and its age on structural stresses in atherosclerotic plaques using biome-

chanical stress simulations [16]. Due to the importance of flow shear stress and artery

geometrical parameters, using flow-only models, Steinman et al. and Lee at al. investi-

gated influence of complex vessel geometry on flow behaviors using realistic plaque

geometries [17,18]. For coronary arteries, Zhu et al. also analyzed geometrical para-

meters of human coronary arteries for the potential of predicting coronary artery dis-

eases [19]. The influence of curvature dynamics and cyclic bending on coronary plaque

stress and flow behaviors was investigated by Prosi et al. and Tang et al. [20,21]. Suo

et al. studied blood flow patterns in the proximal human coronary arteries and

reported that low wall shear stress was co-located with increased incidence of lesions,

and higher wall shear stresses were associated with lesion-resistant areas [22]. Groen

and Wentzel et al. reported a follow-up case study showing high flow shear stress

region was associated with site of plaque rupture [23]. Tang et al. used image-based

FSI models to quantify critical mechanical conditions which may be related to plaque

rupture and progression [7,8,11,24-27]. In particular, they indicated that global maxi-

mum plaque stress often occur at healthy sites and that it is the critical plaque stress
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at vulnerable sites that may be more closely linked to plaque rupture [7,8]. In a more

recent paper using FSI models based on in vivo MRI of human carotid plaques with

and without rupture, they provided some initial evidence that higher plaque wall stress

were associated with plaque rupture [24]. Recent reviews of image-based computa-

tional modeling effort can be found in [24,28]

Growing evidence suggests that intraplaque hemorrhage is related to rapid plaque

progression and rupture may produce a stimulus for the atherosclerosis by increasing

lipid core and plaque volume and creating new destabilizing factors [29-31]. Intrapla-

que hemorrhage may contribute to the deposition of free cholesterol and macrophage

infiltration. Erythrocyte membranes from intraplaque hemorrhage into the necrotic

core are a source of free cholesterol and may become a driving force in the progression

of atherosclerosis. Multi-contrast MRI techniques have been shown to be able to non-

invasively characterize carotid intraplaque hemorrhage [32].

To date, the impact of intraplaque hemorrhage on plaque wall stress (PWS) and flow

shear stress (FSS) has not been analyzed considering the coupling of fluid and solid

mechanics forces. The goal of this study is to determine the potential association

between locations of intraplaque hemorrhage and mechanical plaque wall stress and

flow shear stress by building fluid-structure interaction (FSI) models of carotid athero-

sclerotic plaques containing intraplaque hemorrhage. 3D FSI models were constructed

based on in vivo MRI data acquired from 5 patients where intraplaque hemorrhage

was detected and validated with histological images.

Methods
MRI Data Acquisition

3D in vivo MR images of human atherosclerotic carotid plaques with hemorrhages

were acquired from 5 patients scheduled for carotid endarterectomy (age: 57 to 82,

mean = 67, all male) by the Vascular Imaging Laboratory (VIL) of the University of

Washington (UW) using protocols approved by UW Institutional Review Board with

patient consent obtained. Details of MRI acquisition protocols were previously

reported [24,33-35]. All images were obtained with the following parameters: 16 × 16

cm2 field-of-view, 256 × 256 matrix size, and 2 mm slice thickness. After interpolation,

the in-plane resolution was 0.31 × 0.31 mm2. The longitudinal coverage covered the

bulk region of each lesion.

MR images were segmented using custom-made analysis tools (CASCADE developed

at the Vascular Imaging Laboratory at University of Washington, and APIA, from

Washington University) to identify lipid-rich necrotic core (LRNC), loose matrix (LM),

calcification (Ca), thrombus, and intraplaque hemorrhage[32-37]. Figure 1 shows a

human atherosclerotic carotid plaque slice (S4) with hemorrhage validated by histology.

Figure 2 gives a set of 10 slices of T1-weighted MR images and segmented contour

plots.

FSI Computational Model

Both the artery wall and plaque components were assumed to be hyperelastic, isotro-

pic, incompressible and homogeneous. Blood flow was assumed to be laminar, Newto-

nian, viscous and incompressible. The unsteady incompressible Navier-Stokes

equations with arbitrary Lagrangian-Eulerian (ALE) formulation were used as the
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governing equations. A no-slip condition between all interfaces was assumed. Patient-

specific systolic and diastolic pressure conditions from the last hospital admission were

used as the maximum and minimum of a typical arterial pressure waveform at the

inlet of the artery. Pressure waveforms at the outlets were adjusted to obtain flow rates

within physiological range. The modified Mooney-Rivlin model was used to describe

the material property of each component in the plaque [11,24,38],

W = − + − + − −c I c I D D I1 1 2 2 1 2 1( ) ( ) [exp( ( )) ],3 3 3 1 (1)

Figure 1 TOF-, PD-, and T1-weighted MR images of a human carotid plaque sample with
hemorrhage validated by histology.

Figure 2 T1-weighted MR images and segmented contour plots showing Hemorrhage. (a) In vivo
MR-images; (b) Segmented contour plots showing plaque components; (c) 3D geometry showing
hemorrhage and other components.
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Where I C I I C Cii ij ij1 2 1
2= = −∑ , [ ]1

2 are the first and second strain invariants, C =

[Cij] = X
T

X is the right Cauchy-Green deformation tensor, X=[Xij] = [∂xi/∂aj], {xi} is

current position, {ai} is original position, ci and Di are material parameters chosen to

match experimental measurement [26,27]. In this paper, the following parameter values

were chosen: vessel/fibrous cap, c1 = 36.8 KPa, D1 = 14.4 KPa, D2 = 2; calcification, c1
= 368 KPa, D1 = 144 KPa, D2 = 2.0; lipid core/hemorrhage/ulcers, c1 = 2 KPa, D1 = 2

KPa, D2 = 1.5; loose matrix, c1 = 18.4 KPa, D1 = 7.2 kPa; D2 = 1.5. c2 = 0 was set for

all materials [16,26,27].

3D Re-Construction, Shrink-Stretch Process, and Mesh Generation Process

Under the in vivo condition, the arteries are axially stretched and pressurized. There-

fore, axial and circumferential shrinking should be applied to generate the no-load

starting shape for the computational simulations. The shrinkage in the axial direction

was 9% so that the vessel would regain its in vivo length with a 10% axial stretch. Cir-

cumferential shrinkage for lumen and outer wall was determined so that: 1) total mass

volume was conserved; and 2) plaque geometry after 10% axial stretch and pressuriza-

tion had the best match with the original in vivo geometry [39]. Because advanced pla-

ques have complex irregular geometries with component inclusions that are

challenging for mesh generation, a component-fitting mesh generation technique was

developed to generate mesh for these models. Using this technique, the 3D plaque

domain was divided into hundreds of small “volumes” to curve-fit the irregular plaque

geometry with plaque component inclusions [21]. Since hemorrhages usually occur

within the lipid rich necrotic core with very irregular shape, they were treated as the

same as lipid to reduce the model construction effort. The error caused by this simpli-

fication will be discussed in Section 4. 3D surfaces, volumes and mesh were created

with ADINA (ADINA R & D, Inc., Watertown, MA, USA). Each plaque model

required about 3600 small volumes to be created to fit the shape of wall and compo-

nents, and about 1000 small volumes for the corresponding fluid domain.

Solution Method

The coupled FSI plaque models were solved by a commercial finite-element package

ADINA. This software uses unstructured finite element methods for both fluid and

solid models. Nonlinear incremental iterative procedures were used to handle fluid-

structure interactions. The governing finite element equations for both the solid and

fluid models were solved by the Newton-Raphson iteration method. Details of the

models and methods are given in Tang et al. [11,24] and Bathe [38].

Plaque Stress/Strain and Flow Shear Stress Data Extraction

Data for PWS, and FSS were extracted from 3D FSI solutions for all integral nodes

(total: structure: 3245; fluid: 2828) on lumen surfaces of 5 plaque models for analysis.

For each nodal point, plaque maximum principal stress was used for PWS and maxi-

mum flow shear stress was used for FSS. Each node was assigned a node type (hemor-

rhage, lipid, calcification, and wall if the node was not covering any component)

according to its location and the component it was covering. Figure 3 gives a sche-

matic drawing demonstrating the node-type assignment method for nodal point on
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lumen surfaces. Node type for each node was defined as the closest component the

node was covering, or hemorrhage if it was inside the lipid as shown in Figure 3.

Statistical Analysis

Mean values of PWS and FSS for each node type were calculated for analysis and com-

parisons. A t-test was used for statistical analysis to compare PWS and FSS from the

hemorrhage and non-hemorrhage nodes of each group. A P-value of less than 0.05 was

deemed a significant difference.

Results
Figure 4 gives an overview of solution features from 3D FSI models using the plaque

sample given in Figure 2. Maximum principal stress (Stress-P1) and flow maximum

shear stress (FSS) on stacked cross-section slices, and a bifurcation cut (B-cut) surface

were presented. Maximum Stress-P1 was observed at the node which was a healthy site

due to the curvature. To analyze mechanical conditions (structural stress and flow

shear stress) on the lumen surface corresponding to different tissue types and to iden-

tify differences between hemorrhage and non-hemorrhage nodes, data were extracted

from the full 3D FSI solutions and mean values of PWS and FMSS of hemorrhage

(Hemo), lipid core, calcification (Ca), wall, and all non-hemorrhage nodes are summar-

ized in Tables 1 and 2. kPa and dyn/cm2 are used as the units for PWS and FSS,

respectively (1 kPa = 104 dyn/cm2).

Hemorrhage Nodes Were Associated With Higher PWS Values Compared to Non-

Hemorrhage Nodes

Table 1 shows that the mean PWS values from hemorrhage nodes of these 5 cases

were (unit: kPa) 67.8, 87.6, 109.4, 82.7, and 82.1, respectively, with an average of 85.9 ±

15.1; the mean PWS values from non-hemorrhage nodes of these 5 cases were 60.4,

61.0, 74.4, 67.1, 74.0, and 66.1, respectively, with an average = 67.4 ± 6.8. The mean

Figure 3 Schematic drawing demonstrating the node-type assignment method for nodal point on
lumen surfaces. Node type was defined as the closest component the node was covering, or
hemorrhage if it was inside the lipid. Zones 1 & 3 are lipid zones; Zone 2 is a normal wall zone; Zone 4 is
a hemorrhage zone.
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PWS values from hemorrhage nodes for each of the 5 plaques were all significantly

higher (5 out of 5) than those from non-hemorrhage nodes (P < 0.05). The mean PWS

value from all hemorrhage nodes combined from all the 5 plaques was 75.6 kPa, which

is 11.01% higher than the mean PWS value (68.1 kPa) from all non-hemorrhage nodes

combined from the 5 plaques (P = 0.0003).

Overall Results Showing Hemorrhage Nodes Were Associated With Higher FSS Values

Compared to Non-Hemorrhage Nodes, but Individual Cases Differ

Table 2 indicates that mean FSS from all hemorrhage nodes combined from the 5 pla-

ques (15.0 dyn/cm2) was 30.4% higher than that (11.5 dyn/cm2) from all non-hemor-

rhage nodes (P = 0.0002). However, mean FSS values for each individual plaque

showed mixed results. Of the 5 cases, one plaque showed mean FSS value of hemor-

rhage nodes was higher than that from non-hemorrhage nodes (23.7 versus 10.0, P <

0.0001); three plaques showed that mean FSS values from hemorrhage nodes (17.6,

11.2, 7.1) were less than mean FSS values from non-hemorrhage nodes (20.8, 15.2,

11.7), P < 0.05; and anther plaque showed mean FSS (14.3) was greater than that

(12.4) from non-hemorrhage nodes, but the difference was not statistically significant

(P = 0.3223).

Figure 4 Band plots of Plaque Wall Stress (Stress-P1) and Flow Shear Stress (FSS) for the plaque
sample given in Fig 1. (a) a stack view of PWS; (b) PWS plot on a longitudinal cut showing the
bifurcation; (c) FSS plot on a longitudinal cut.

Table 1 Summary of mean plaque Stress-P1 values of hemorrhage, lipid core,
calcification, wall, all nodes, and all non-hemorrhage nodes for the 5 plaque samples

Case Hemo Wall Lipid Ca All Nodes All Non-Hemo P-value

mean n mean n mean n mean n mean n mean n

P1 67.8 87 55.7 317 77.3 93 53.4 11 61.7 508 60.4 421 0.0197

P2 87.6 24 62.1 278 59.1 164 62.4 466 61.0 442 0.0204

P3 109.4 5 74.5 357 77.7 110 45.2 15 74.8 487 74.4 482 <0.0001

P4 82.7 75 72.4 416 54.9 111 30.4 23 69.5 650 67.1 550 <0.0001

P5 82.1 47 71.9 467 95.3 46 74.7 560 74.0 513 0.0473

All 5 p 75.6 238 68.2 1835 68.5 524 40.1 49 68.8 2671 68.1 2433 0.0003

The p-values are for the Hemorrhage vs. non-Hemorrhage. Unit: KPa.
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Discussion
Structural Stress Was Associated with Intraplaque Hemorrhage and May Be an Indicator

for Plaque Vulnerability Assessment

To our knowledge, this is the first 3D Fluid-Structure Interaction study that attempts

to quantify the differences of atherosclerotic structural stress and flow behaviors

between hemorrhage and non-hemorrhage locations with multiple in vivo patient data.

In all five cases, the mean PWS values of hemorrhage nodes are higher than other

non-hemorrhage nodes (10-50% higher, all statistically significant). Since intraplaque

hemorrhage has been reported to be involved in plaque progression and can be consid-

ered as a destabilizing factor of atherosclerosis plaques [13,29,40-42], analyzing the

association between intraplaque hemorrhage and biomechanical stresses might improve

the understanding of the role of the mechanical forces in the disease. The results

obtained provided some initial evidence that high plaque stresses are linked with pla-

que vulnerability. In vivo MRI-based computational simulations integrate the informa-

tion of plaque morphology, material properties of the plaque components, and local

flow patterns. The structural stress might have the potential to be an indicator for pla-

que vulnerability assessment in addition to plaque morphology assessment. However,

even with the indication that 3D structural stress is associated with plaque vulnerabil-

ity, large-scale longitudinal patient studies are still needed to further validate our

findings.

Association of Flow Shear Stress with Plaque Rupture

There has been great interest and a considerable effort spent investigating the relation-

ship between FSS and the progression and rupture of atherosclerotic plaque [43,44].

The overall results from this study support the hypothesis that a high flow shear stress

region is associated with plaque vulnerability. However, the individual results indicated

that only 1 out of 5 plaques show FSS from hemorrhage nodes higher than that from

non-hemorrhage nodes. Larger-scale studies are needed to further clarify the role of

FSS in plaque rupture progress. Keeping in mind that the mean value of FSS is 15.0

dyn/cm2, which is only 0.00198% of the mean value of PWS (75.6 kPa), contributions

from flow shear stress acting as a rupture trigger may be much smaller than that from

structural stress. However, high flow shear stress on the lumen surface may have long-

term effects leading to endothelial dysfunction and lumen surface weakening.

Table 2 Summary of mean Fluid shear stress values of hemorrhage, lipid core,
calcification, wall, all nodes, and all non- hemorrhage nodes for the 5 plaque samples.

Case Hemo Wall Lipid Ca All Nodes All Non-Hemo P-value

mean n mean n mean n mean n mean n mean n

P1 14.3 87 10.8 334 18.4 93 7.5 11 12.7 525 12.4 438 0.3223

P2 17.6 24 20.4 291 21.4 164 20.6 479 20.8 455 0.0103

P3 11.2 4 11.7 271 25.1 102 7.8 8 15.1 385 15.2 381 0.0014

P4 23.7 61 10.9 275 8.1 61 1.0 16 12.0 413 10.0 352 <0.0001

P5 7.1 44 12.2 477 7.2 49 11.4 570 11.7 526 <0.0001

All 5 P 15.0 212 10.9 1577 14.3 420 4.6 35 11.8 2244 11.5 2032 0.0025

The p-values are for the Hemorrhage vs. non-Hemorrhage comparisons. Unit: dyn/cm2.
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Limitations

In this paper, we treated intraplaque hemorrhages (which were contained in lipid

cores) the same as lipid to reduce model construction effort. To justify this modeling

approach, two models (called the lipid model and hemorrhage model, respectively)

were constructed for one plaque sample with and without the replacement simplifica-

tion. Figure 5 shows the comparison of PWS and FSS distributions obtained from the

two models using one cut surface showing the hemorrhage and lipid components. FSS

distributions obtained from these two models were almost identical on the cut surface.

The mean FSS value from the hemorrhage nodes was 17.56 ± 4.43 dyn/cm2 for the

hemorrhage model, which was almost the same as that from the lipid model (17.24 ±

4.36 dyn/cm2). The result is reasonable because the lipid model did not change the

fluid domain much. The PWS distributions from the two models were slightly different

in the hemorrhage region, as expected. However, the mean PWS value from hemor-

rhage nodes was 86.5 ± 49.9 kPa, which was 2.19% less than that from lipid model

(88.4 ± 49.3 kPa). This is because the material property of hemorrhage is similar to

that of lipid used in this study. The error for both PWS and FSS are less than 3%.

Therefore, the lipid model provided reasonable FSS and PWS results for our analysis.

It should be emphasized that the sample size (n = 5) is really too small to draw any

strong conclusions. This is especially true for the FSS results. Looking at Table 2, P4

data pushed the average FSS of hemorrhage from the 5 samples significantly larger

than that of all non-hemorrhage components (15 vs. 11.5, P = 0.0025). Combining that

with the fact that 3 out of the 5 cases had mean FSS from hemorrhage nodes lower

than those from non- hemorrhage nodes and one case with no significant difference,

we should say that our results for the role of FSS was mixed.

Other model limitations include: a) Patient-specific material properties were not

included due to the inability to measure these material properties using current

Figure 5 Comparison of PWS on a z-cut surface (Slice 8) from the model with hemorrhage and the
model where hemorrhage replaced by Lipid: (a) PWS on Z-cut, hemorrhage model;(b) PWS on Z-
cut, Lipid model; (c) FSS on Z-cut, hemorrhage model;(d) FSS on Z-cut, Lipid model.
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techniques; b) arm systole and diastole pressures taken at the past scan visit were used

to scale the pressure profile used in the simulations since pressure conditions at the

location of the plaque were not available; c) lumen surface inflammation and erosion

were not considered in this study since current in vivo MRI technology could not

accurately provide these data.

Conclusion
The associations between intraplaque hemorrhage and plaque wall stress and flow

shear stress were investigated using 3D in vivo MRI-based FSI models. All 5 cases stu-

died showed that intraplaque hemorrhage nodes were associated with higher plaque

wall stress (10-50% higher by mean value) compared with non-hemorrhage nodes. The

association of flow shear stress with hemorrhage showed mixed results when the cases

were considered combined and individually. The close association between plaque wall

stress and intraplaque hemorrhage indicates that plaque wall stress may be useful in

plaque vulnerability assessment. Large-scale studies are needed to further validate our

findings.
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