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Abstract: In this study, we investigated the therapeutic potential and medical applications of Sparassis
crispa (S. crispa) by conducting a systematic review of the existing literature and performing a
meta-analysis. The original efficacy treatment of the mushroom extract is considered primarily and
searched in electronic databases. A total of 623 articles were assessed, 33 randomized controlled
experiments were included after the manual screening, and some papers, review articles, or editorials
that did not contain data were excluded. A comparative standard means difference (SMD) and a
funnel plot between control and S. crispa groups were used as parameters to demonstrate the beneficial
effects of S. crispa for diabetes and cancer treatment, as well as anti-inflammatory, anti-fungal
and antioxidant activities. The meta-analysis was carried out using Review Manager 5.1 software.
Although for therapeutic diabetes there was heterogeneity in the subgroup analysis (I2 = 91.9%),
the overall results showed statistically significant SMDs in major symptoms that decreased serum
insulin levels (SMD = 1.92, 95% CI (1.10, 2.75), I2 = 0%), wound rates (SMD = 3.55 (2.56, 4.54),
I2 = 40%) and contributions to an increase in nutrient intake content (SMD = 0.32 (−0.15, 0.78),
I2 = 0%). Simultaneously, the study confirmed the utility of S. crispa treatment in terms of not
only anti-cancer activity (reduction of tumor activity and survival of cancer cells I2 = 42 and 34%,
respectively) but also anti-inflammatory, anti-fungal and antioxidant activities (I2 = 50, 44, and 10%,
respectively). Our findings suggest that S. crispa extracts are useful for prevention and treatment of
human diseases and might be the best candidates for future medicines.

Keywords: Sparassis crispa; diabetes treatment; cancer therapeutic; anti-inflammatory; anti-fungal;
antioxidant activity; meta-analysis

1. Introduction

Medical mushrooms have been approved as cures in traditional East Asian therapies [1,2].
Scientists around the world have verified the unique properties of compounds extracted from
mushrooms in the prevention and treatment of cancer and other chronic diseases [3].

Sparassis crispa (S. crispa) is a species of fungus belonging to the genus Sparassis, known
as Cauliflower mushroom or Sparassis latifolia; also called by other names such as Hanabiratake
in Japanese [2–4]. S. crispa is not only an edible mushroom but also a well-known medicinal
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mushroom that has many medical applications [3,5] (e.g., anti-tumor and anti-carcinogenic properties;
anti-inflammatory, antiviral, anti-hypertensive, anti-allergic, anti-diabetic activities, and cytokine
induction [1–3,6,7]). Recently, this mushroom has been widely utilized in Japan and Korea [3,7,8].

S. crispa contains highly active biological and pharmacological ingredients (e.g., β-glucan,
anti-fungal compounds (sparassol, methyl-2,4-dihydroxy-6-methylbenzoate, and methyl-
dihydroxymethoxy-methylbenzoate), ergosterol peroxides, and benzoate derivatives) that are
useful in the treatment of human disease [3,5,9–11]. In particular, β-glucan can prevent and heal
common health problems such as diabetes, cancer, wound healing, as well as immune system and
cytokine induction [1,6,12–15]. In addition, phenolic compounds, anti-fungal substances, and other
S. crispa extracts may be used as anti-oxidant or anti-fungal agents [3,16–19].

Several studies have indicated, through tests on either mice or human cell lines, that S. crispa
is a potential natural source of medicinal ingredients that can contribute to the limitations and even
prevention of human disease (e.g., cancer, allergies, and especially diabetic disease) [12,13,19,20]
However, in individual studies, scientists have not focused on the overall assessments of the benefits of
S. crispa in human health as a systematic review. Thus, this study reviewed randomized and controlled
trials, also conducted a systematic review and meta-analysis to evaluate the statistically significant
benefits of S. crispa in therapeutic approaches.

2. Results

2.1. Characteristics of Included Studies

Figure 1 shows the flow of candidate and eligible articles. Our searches in databases yielded a
total of 623 different publications whose titles and abstracts were screened and 270 were considered
relevant only by title and abstract. After reviewing these 270 full-text articles on the efficiency of
S. crispa extracts for human-disease treatment, thirty-three articles were considered eligible and,
therefore, included in the quantitative meta-analysis. One of those articles was written in Japanese [21],
seven in Korean [19,22–27], and the remaining in English. Among them, some studies demonstrated
more than two healing effects of the mushroom [7,26,28–30]. Simultaneously, the anti-diabetic,
anti-tumor, anti-inflammatory, anti-fungal, and antioxidant activities of S. crispa were reported
in seven [6,12,14,28–31], nine-teen [7,13,15,21,23,24,26,28,30,32–41], four [7,22,30,42], three [19,29,43],
and six [8,25–27,44,45] studies, respectively.
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All these thirty-three studies estimated the S. crispa benefits based on rats, diabetic mice, and cancer
cell test (see Table 1), and provided raw data for a standardized mean difference (SMD) estimation.

Table 1. Summary of the characteristics of the studies included in this work.

Reference Characteristic of
Object

S. crispa
Extract

Compound

Medical
Therapeutic n Dosage Location

[6] Kwon et al., 2009 Mice β-glucan Anti-diabetic 10 100 µg/mL
β-glucan Korea

[32] Kim et al., 2010 Dendritic cell β-glucan Anti-tumor 3 100 µg/mL
β-glucan Korea

[31] Yoshitomi
et al., 2011 Mice β-glucan Anti-diabetic 8 100 µg/mL

β-glucan Japan

[33] Lee et al., 2010 RAW 264.7 cell β-glucan Anti-tumor 3 250 µg/mL
β-glucan Korea

[34] Choi et al., 2016 Human fibrinogen Wulfase Anti-tumor 3 200 µg/mL
Wulfase Korea

[15] Harada et al.,
2002a

CD 41 and CD 81
cell β-glucan Anti-tumor 3 200–250 µg/mL

β-glucan Japan

[35] Harada et al.,
2003 Mice β-glucan Anti-tumor 4 25 µg/mL

β-glucan Japan

[28] Yamamoto
et al., 2009

C57BL/6J
cell/Mice cell line β-glucan Anti-diabetic

Anti-tumor 10 160 µg/mL
β-glucan Japan

[7] Yoshikama
et al., 2010 RAW 264.7 cell Phthalide

compounds Anti-tumor 3–4
100 µg/mL
phthalide

compound
Japan

[21] Yamamoto
et al., 2007 Sarcoma180 cell S. crispa

extract Anti-tumor 3 35 µg/mL
β-glucan Japan

[14] Yamamoto
et al., 2010 Mice S. crispa

extract Anti-diabetic 6–8 100 µg/mL
β-glucan Japan

[29] Jeong
et al., 2017 Mice β-glucan Anti-diabetic

Anti-fungal 12 100 µg/mL
β-glucan Korea

[22] Choi et al., 2013 RAW 264.7 cell β-glucan Anti-inflammatory 3 200 µg/mL
β-glucan Korea

[23] Choi et al., 2014
A529 cell

HepG2 cell
AGS cell

β-glucan Anti-tumor 12 250 µg/mL
β-glucan Korea

[30] Kimura T. 2013

Sarcoma 180 cell
Mice

Colon cancer cell
F3444N/Rat

β-glucan
Anti-diabetic
Anti-tumor

Anti-inflammatory
3–5 100 µg/mL

β-glucan Japan

[42] Kim et al., 2012 Mast cell (HMC-1) S. crispa
extract Anti-inflammatory 3 200 µg/mL

S. crispa extract Korea

[36] Hu et al., 2016 PC12 cell β-glucan Anti-tumor 6 250 µg/mL
β-glucan China

[44] Puttaraju
et al., 2006 Mice S. crispa

extract Antioxidant 3 30 µg/mL
β-glucan India

[8] Kim et al., 2008 Mice or cell S. crispa
extract Antioxidant 3 100 µg/mL

S. crispa extract Korea

[43] Woodward
et al., 1992 Botrytis cinerea Antibiotic

compounds Anti-fungal 10
100 µg/mL
antibiotic

compound

United
Kingdom

[13] Ohno
et al., 2000 Mice S. crispa

extract Anti-tumor 10 250 µg/mL
S. crispa extract Japan

[12] Yamamoto
et al., 2014 Mice β-glucan Anti-diabetic 10–18 250 µg/mL

β-glucan Japan

[19] Lee et al., 2013a Soybean S. crispa
extract Anti-fungal 3 125 µg/mL

S. crispa extract Korea

[24] Kim et al., 2013 Raw 264.7 cell β-glucan Anti-tumor 5 100 µg/mL
β-glucan Korea

[37] Harada
et al., 2002b Mice β-glucan Anti-tumor 5 100 µg/mL

β-glucan Japan
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Table 1. Cont.

Reference Characteristic of
Object

S. crispa
Extract

Compound

Medical
Therapeutic n Dosage Location

[38] Harada
et al., 2004 Mice β-glucan Anti-tumor 3 100 µg/mL

β-glucan Japan

[39] Harada
et al., 2006 Mice β-glucan Anti-tumor 3 100 µg/mL

β-glucan Japan

[40] Nameda
et al., 2003 Mice β-glucan Anti-tumor 3 50 µg/mL

β-glucan Japan

[41] Yao et al., 2008 Mice β-glucan Anti-tumor 10 120 µg/mL
β-glucan China

[25] Lee et al., 2016a Soybean β-glucan Antioxidant 3 200µg/mL
β-glucan Korea

[26] Park et al., 2016 Mice S. crispa
extract Antioxidant 6 200 µg/mL S.

crispa extract Korea

[27] Lee et al., 2016b Cell S. crispa
extract Antioxidant 3 50 µg/mL

β-glucan Korea

[45] Lee et al., 2013b Mice Phenolic
compounds Antioxidant 3

200 µg/mL
phenolic

compounds
Korea

2.2. Risk of Bias

To explore the validity of eligible randomized studies, the quality of bias assessment of the
included studies was determined by evaluating the bias of the random sequence generation, allocation
concealment, selective reporting, blinding of participants and outcome assessment, and incomplete
outcome data based on three levels following the Cochrane guideline (low and high risk of bias that
may indicate either lack of information or uncertainty over the potential for bias) [46]. According
to Table 2 and Figure 2, almost all criteria showed a low risk of bias, especially in studies where
homogeneity in the random sequence generation criteria was used. Resulting in an evident enhanced
of the statistical significance of the meta-analysis.

Table 2. Risk of bias rating of each study.

Study
Random
Sequence

Generation

Allocation
Concealment

Selective
Reporting

Blinding of
Participants

Blinding of
Outcome

Assessment

Incomplete
Outcome

Data
[6] Kwon et al., 2009
[32] Kim et al., 2010

[31] Yoshitomi et al., 2011
[33] Lee et al., 2010

[34] Choi et al., 2016
[15] Harada et al., 2002a
[35] Harada et al., 2003

[28] Yamamoto et al., 2009
[7] Yoshikama et al., 2010
[21] Yamamoto et al., 2007
[14] Yamamoto et al., 2010

[29] Jeong et al., 2017
[22] Choi et al., 2013
[23] Choi et al., 2014
[30] Kimura T. 2013
[42] Kim et al., 2012
[36] Hu et al., 2016

[44] Puttaraju et al., 2006
[8] Kim et al., 2008

[43] Woodward et al., 1992
[13] Ohno et al., 2000

[12] Yamamoto et al., 2014
[19] Lee et al., 2013a
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Table 2. Cont.

Study
Random
Sequence

Generation

Allocation
Concealment

Selective
Reporting

Blinding of
Participants

Blinding of
Outcome

Assessment

Incomplete
Outcome

Data
[24] Kim et al., 2013

[37] Harada et al., 2002b
[38] Harada et al., 2004
[39] Harada et al., 2006
[40] Nameda et al., 2003

[41] Yao et al., 2008
[25] Lee et al., 2016a
[26] Park et al., 2016
[27] Lee et al., 2016b
[45] Lee et al., 2013b

Risk of bias rating Low risk of
bias

High risk of
bias Unclear
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2.3. Diabetes Treatment

Anti-diabetic activity was evaluated by seven studies [6,12,14,28–31] (Figure 3 and Table 3).
Most of the assays were performed in diabetic rat and mouse cells, and the treatment was assessed
in five aspects: serum glucose levels (mg/dL), serum insulin levels (mg/dL), nutrition intake (mL),
body weight (g) of mice or tissues before and after treatment, as well as wound healing ability (%).
In addition, some individual studies have identified and demonstrated the beneficial effects of S. crispa
in several healing aspects, so they were evaluated in various separate analyses. For instance, Yamamoto
et al. showed that S. crispa could prevent human diabetes by reducing serum glucose levels, insulin
levels, and increasing the body weight of diabetic mice [14]. In addition, Jeong et al. indicated the
capability of S. crispa in four aspects including serum glucose and insulin levels, nutrition intake,
and body weight [29].
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A subgroup analysis was conducted to quantify the effect of S. crispa in all therapeutic approaches
comparing to the control group. Anti-diabetic activity was significantly higher in the S. crispa
group than in the control group, and results showed a significant effect of S. crispa in the treatment
(SMD = 1.29, 95% confidence interval (CI) (0.47, 2.11), p < 0.00001), although a heterogeneity was



Int. J. Mol. Sci. 2018, 19, 1487 7 of 17

observed in the subgroup analysis (heterogeneity X2 = 50.24, p < 0.00001, I2 = 91.9%). However,
when was considered each aspect of the diabetes treatment, the comparison between serum insulin
levels and wound healing rates showed significant homogeneities in all reported symptoms and
presented a large SMD between the two groups ((SMD = 1.92, 95% CI (1.10, 2.75), I2 = 0%)
and (SMD = 3.55, 95% CI (2.56, 4.54), I2 = 40%), respectively). Neither nutrition intakes showed
heterogeneity SMD (SMD = 0.32, 95% CI (−0.15, 0.78), I2 = 0%). Nevertheless, serum glucose levels
and body weights of rats showed high heterogeneity (I2 = 94% and I2 = 78%, respectively).

2.4. Cancer Treatment

From nine-teen studies [7,13,15,21,23,24,26,28,30,32–41], seven reported an anti-tumor activity,
five showed an inhibition of cancer cell viability, and nine indicated IFN-γ induction of S. crispa extracts.
On the other hand, there are several reports which showed appropriate data in many respects [3,7].
In addition, when considering the capability of healing, researchers performed experiments to describe
the effect of S. crispa extract in various types of cells [3,15,23] or to determine the therapeutic potential
of different S. crispa extracts on a cell type [7]. Therefore, these studies have been evaluated and
appeared multiple times in a comparison of this analysis. An individual analysis was applied to two
groups for each of those aspects, showing significant inter-group differences (see Figures 4–6).
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A comparison between the control and S. crispa group showed a lower tumor cell activity
(SMD = 2.22, 95% CI (1.69, 2.75), p < 0.00001); that reduction was relevant to the homogeneity in
seven studie [7,13,15,24,30,34,35] (X2 = 24.27, I2 = 42%). Additionally, the heterogeneity was not
significant for the survival of cancer cells (X2 = 12.11, I2 = 34%) in five studies [7,23,30,33,36], resulting
in a dramatical decrease in the cancer cell viability after exposure to S. crispa (SMD = 21.36, 95% CI
(17.91, 24.81), p < 0.00001). The SMD between these two groups did not show a significant of the IFN-γ
induction aspect (SMD = −0.34, 95% CI (−0.37, −0.31), X2 = 1168.88, I2 = 99%).

2.5. Anti-Inflammatory Activity

Data about anti-inflammatory activities of S. crispa extracts were reported in four
studies [7,22,30,42]. According to SMDs (Figures 7 and 8, and Table 3), those results demonstrated that
S. crispa reduced inflammatory cells survival (SMD = 9.03, 95% CI (0.80, 17.27), X2 = 3.74, I2 = 47%).
The heterogeneity did not exist when was compared the NO production potential between control and
S. crispa groups, with a large effect (SMD = 4.81, 95% CI (3.30, 6.33), X2 = 4.01, I2 = 50%).
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Anti-fungal compounds are produced by S. crispa in cultures and in wood decomposed naturally,
as reported in three studies [19,29,43]. According to these studies, results of the meta-analysis (Figure 9)
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there was a favorable effect in the S. crispa group; the numbers of bacteria and fungi were reduced in
the treatment group compared with the control group. A significant difference was found between
these two groups (SMD = 0.20, 95% CI (−0.23, 0.62), X2 = 8.86, I2 = 44% < 50%).
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2.7. Antioxidant Activity

According to six studies [8,25–27,44,45], the antioxidant activity was performed through DPPH
(2, 2-diphenyl-1-picrylhydrazyl radical scavenging activity and the oxidative-inhibitory capacity of
phenolic compounds derived from S. crispa. In both cases, the S. crispa group reported a higher
level of oxidative protection than the control group, with evidence of improving antioxidant activity
(Figures 10 and 11). The inhibitory activity indicated a significant homogeneity with I2 = 0% and
X2 = 1.10 (SMD = −7.72, 95% CI (−10.96, −4.49), p < 0.00001), while the DPPH activity showed a very
high statistical significance in the inter-group comparison of four relevant studies (SMD = −26.50,
95% CI (−38.35, −14.64), p < 0.00001, X2 = 3.32, I2 = 10%).
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of cancer cells after anti-tumor activity were analyzed (Figures 12 and 13). All cases showed a high
homogeneity and a high reduction of the percentages of cancer cells (SMD = 16.08 (1.83, 27.32), I2 = 0%),
as well as an improved wound healing ability of the objects (SMD = 2.89 (1.87, 3.90), I2 = 13%) after
treatment with S. crispa.
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2.9. Bias Analysis

Funnel plots were drawn to assess the publication bias of studies on the medical applications
of S. crispa. Figures 14 and 15 are approximately symmetrical but small studies showing diabetes
and cancer treatment effects of S. crispa remain unpublished. In contrast, Figure 16 estimated that the
most important studies on anti-inflammatory activity of S. crispa have been missing, so the outcomes
of the anti-inflammatory treatment were not highly significant statistically. Even though the funnel
plots in Figures 17 and 18 also demonstrated that many relevant studies have not been published
yet, all the published data were statistically significant for the anti-fungal and antioxidant activity of
S. crispa extracts.
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3. Discussion

In this systematic review and meta-analysis of thirty-three studies on the medical application of
S. crispa extracts were confirmed that S. crispa is not only an edible mushroom but also a medicinal
mushroom that has been increasingly cultivated because of its potential value in traditional medicine.
Indeed, S. crispa contains highly physiological active substances (e.g., β-glucan, phenolic compounds,
chloroform extract, and some antibiotic compounds) that can support a healthy level of blood-sugar
and recovery of the normal cellular immunization [3]. The beneficial effects have been demonstrated
by anti-diabetic, anti-tumor, anti-inflammatory, anti-fungal, and anti-oxidant activities [1,3,11,20,47];
almost all of the typical therapeutic effects of S. crispa showed significant differences, relative to the
control groups.

As an immunomodulating substance, β-glucan plays an important role in most healing
modalities [48]. Mainly, involving an enhance of the immune response against cancer and stimulating
the cells of the innate immune system [48–51]. The discovery of specific receptors for glucans in
cells, as well as interactions with other receptors mainly expressed by innate immune cells, have been
reported as the primary mechanism of β-glucan for regulation of anti-tumor therapy and some
associated medical treatments [51]. Our meta-analysis indicated that S. crispa extracts had a large
influence in reducing significantly cancer cells viability and tumor cells suppression (Figures 4 and 5).
Although, here there was not a high homogeneity in the IFN-γ production aspect (Figure 6). Moreover,
the estimate as clinical evidence for a relationship between structure and activity, suggested the
contributions of multiple receptor-ligand interactions in glycan-mediated immunopotentiation.

Diabetes that has been caused by a single high dose of streptozotocin is typically accompanied
by symptoms such as weight loss, polyuria, hyperglycemia, and neuroendocrine dysfunction [6,14].
On the other hand, whereas wound healing progresses at an optimal rate in healthy individuals,
patients with diabetes usually exhibit delayed or impaired wound healing, which is a serious
high-blood-glucose-related clinical problem [52]. The present subgroup analysis did not report
any significant difference (I2 = 91.9%) between S. crispa and control groups (Figure 3 and Table 3),
suggesting that mushroom extracts have not had complete effects on all the diabetes symptoms.
However, an individual analysis for each aspect, two topical therapy symptoms (incidence of wounds
and serum insulin levels in the blood) were eliminated after treatment with S. crispa. In summary,
S. crispa showed a slightly beneficial influence on diabetes therapeutics. Meanwhile, we expect that
additional studies on S. crispa treatments will improve the accuracy of the analysis.
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Additionally, the mushroom has shown an anti-inflammatory activity [1,2,47]. The present
analysis estimates (Figures 7 and 8, and Table 3) that studies on anti-inflammatory therapy were
statistically significant, achieving a small homogeneity in the analysis. Furthermore, results also
demonstrated that S. crispa extracts played an inhibitory role in inflammatory responses via regulation
of NO production; suggesting a potential role as a component of inflammatory drugs.

Recently, some evidence has suggested that the biological actions of phenolic compounds are
associated with their antioxidant capacity based on their ability to chelate metals and lipoxygenase
inhibitors [19,26]. The present survey also considered and evaluated antioxidant activities of the
medical mushroom by meta-analysis (Figures 10 and 11). According to the coefficient of heterogeneities
of the analysis (I2 = 0% and 10%), it was confirmed that phenolic compounds and other S. crispa extracts
could significantly contribute to antioxidant properties; explaining the relationship between phenolic
compounds and antioxidant activities, as well as anti-fungal ability.

Finally, anti-bacterial and anti-fungal compounds have been identified in S. crispa [43], though
their utilities were reported in only three studies [19,29,43]. The analysis showed that after exposure to
S. crispa extracts the numbers of bacteria and fungi were reduced, indicating that the mushroom, as a
component of pharmaceuticals, can protect humans from bacterial and fungal contamination.

4. Materials and Methods

4.1. Methods

The study followed the Cochrane Collaboration method [46], as well as the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [53] to report a systematic
review and meta-analysis. Also, this work was based on the protocols and reviews on medical
applications of S. crispa. It included all the researches that assessed the ability of S. crispa
extracts on human health treatment (i.e., diabetes and cancer treatment, anti-fungal, antioxidant,
and anti-inflammatory activity). It excluded ineligible studies such as studies of the effects of
mushroom in other application fields and contained inappropriate data for the analysis. It compared
and analyzed the statistical significance of individual studies of the same effect of S. crispa for
the specific therapeutics using meta-analysis. Outcomes provided an overview and a systematic
assessment about the clinical efficacies of S. crispa based on comparing SMDs between control and
S. crispa groups, as well as the heterogeneity coefficient (I2) of each analysis [54].

4.2. Literature Search and Data Extraction

4.2.1. Database Research Strategy

The searched literature on medical applications of S. crispa extracts was performed in the databases
PubMed (National Library of Medicine, Bethesda, MD, USA), EMBASE (Excerpta Medica database,
Amsterdam, Netherlands), Elsevier (Information and Analytics, Amsterdam, Netherlands), CENTRAL
(Cochrane Central Register of Controlled Trials, New York, NY, USA), and Web of Science (Institute of
Scientific Information and Clarivate Analytics, Philadelphia, PA, USA), considering articles published
between 1990 and 2018. Also, we made a hand searching for important conference papers, as well as
checking reference lists. Combinations of the following keywords were used: S. crispa, Sparassis Latifolia,
Cauliflower mushroom, Hanaratake, medical applications, immune stimulating activity, anti-tumor,
anti-cancer, anti-microbial, anti-melanin, anti-metastatic, anti-inflammatory, anti-fungal, antioxidant,
anti-viral, anti-diabetic, and anti-hypertensive activity. The respective reference lists of the identified
papers also were searched. All articles were written in English, Korean or Japanese.

4.2.2. Data Extraction

The bibliographic reference list was screened and manually selected from eligible studies from
the electronic database for the meta-analysis, according to the criteria of associations between medical
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applications of S. crispa and human therapeutics. The following information from each article was
obtained: article title, the name of first author, location, study year, publication year, study design,
number of participants, dosage and administration, type of treatment and outcomes. These items
were selected based on the presence and short descriptions of important study characteristics (e.g.,
title, abstract, study design, experimental object, and kind of medical application). The criteria
included in the quantitative meta-analysis were empirical data that could be used to calculate the
SMDs of treatments.

4.2.3. Exclusion Criteria

Articles were excluded based on the following criteria: no data presentation (e.g., review articles
and editorials), incomplete data, repeated and similar studies.

4.3. Meta-Analysis

For each analysis, we determined the effect size (SMD) and 95% CI for the comparison between
control and S. crispa groups. The SMD was obtained by dividing the mean difference between the
two groups by the pooled variance, with adjustment for small samples. We considered SMDs about 0.2
or less as small values, 0.5 as moderate values, and 0.8 or greater values as large [54]. We quantified
the extension to which the observed variability between studies was due to true differences between
studies using the I2 statistic. Heterogeneity was considered to be small when I2 was less than 25%,
moderate when 25–50%, and large when greater than 50% [54]. The subgroup analysis assessed the
overall effects in the subgroups according to the model type, kind(s) of treatment(s), and symptoms.
The value of p < 0.05 was considered statistically significant, and bias was examined using a funnel plot.

All these analyses were performed using Review Manager [46] (version 5.3, Copenhagen:
The Nordic Cochrane Centre, The Cochrane Collaboration, 2014).

5. Limitation of Study

The limitation of this study is the number of individual studies, which are not as large as our
expectation in some respect (i.e., anti-inflammatory, anti-fungal, and antioxidant activity) leading
to estimations not highly significant. Especially in the sensitivity assessment, the results might be
not high accuracy because of a very small quantity of those that have the same test conditions for
consideration of the sensitivity.

6. Conclusions

Briefly, this investigation determined that S. crispa is useful in medical therapeutics, each extract
showed their properties and specific applications. Particularly, a meta-analysis revealed that β-glucan,
which is known as the primary ingredient of S. crispa extract, plays an important part in the treatment
of cancer and diabetes. Additionally, the analysis confirmed that β-glucan and other constituents
(i.e., phthalide compounds, low-molecular-weight ingredients, and anti-bacterial substances) are used
in anti-inflammatory activities, as well as antioxidant and anti-fungal immunotherapies. However,
recent studies have focused on the clinical application of S. crispa [3,12,13,26,31,35,44]. To support our
analysis, further studies to improve the statistical significance is necessary.
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