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ABSTRACT: Hepatic steatosis (fatty liver) is a severe liver
disease induced by the excessive accumulation of fatty acids in
hepatocytes. In this study, we developed reliable in silico models for
predicting hepatic steatosis on the basis of an in vivo data set of
1041 compounds measured in rodent studies with repeated oral
exposure. The imbalanced nature of the data set (1:8, with the
“steatotic” compounds belonging to the minority class) required
the use of meta-classifiersbagging with stratified under-sampling
and Mondrian conformal predictionon top of the base classifier
random forest. One major goal was the investigation of the
influence of different descriptor combinations on model perform-
ance (tested by predicting an external validation set): phys-
icochemical descriptors (RDKit), ToxPrint features, as well as
predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including
physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining
physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to
0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal
prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.

■ INTRODUCTION

Hepatic steatosis (HS; also termed “fatty liver”) is a well-
known and often observed condition in the human population
and characterized by the accumulation of lipids/fat in the liver.
HS can progress to steatohepatitis and irreversible stages of
liver disease including fibrosis, cirrhosis, hepatocellular
carcinoma, and death.
Alcoholic liver disease (ALD), directly caused by alcohol

misuse, is the primary cause of fatty liver disease, and the
second leading cause is nonalcoholic fatty liver disease
(NAFLD). NAFLD can result from different exposure
conditions such as high-fat diets, exposure to industrial
chemicals and environmental pollutants,1 or pharmaceuti-
cals.2,3 The progression of NAFLD might also be a result of
insulin resistance, changes in microbiota, or predisposing
genetic variants resulting in a disturbed lipid homeostasis.4

Typically, the pathological manifestation of HS is charac-
terized by an excessive accumulation of triglycerides in
vacuoles in the cytosol of hepatocytes, leading to macro-
vesicular or microvesicular steatosis. Macrovesicular steatosis
usually shows single large vacuoles in the cytoplasm of
hepatocytes with nuclear displacement, whereas microvesicular
steatosis is characterized by small diffuse lipid droplets.5

Several mechanisms are in discussion to be involved in fatty
degeneration of the liver. Recently, Angrish et al. summarized
these mechanisms as an imbalance between four key events
(KEs), namely hepatic fatty acid (FA) uptake, increased de
novo FA and lipid synthesis, decreased hepatic FA oxidation,
and/or decreased hepatic secretion of very low-density
lipoproteins.6

Drugs like valproic acid, for example, impair mitochondrial
β-oxidation by binding to coenzyme-A, which leads to a
disruption of lipid metabolism and finally results in micro-
vesicular steatosis.7,8 In extreme cases, drug withdrawals due to
hepatic toxicity can be the consequence.9

Several nuclear receptors like peroxisome proliferator-
activated receptor (PPAR) α are in discussion to be involved
in the development of steatosis as well as mitochondria-derived
oxidative stress.10 The information on which molecular
initiating events (MIEs) lead to an adverse outcome (AO)
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via one or several key events (KE) is stored in so-called adverse
outcome pathways (AOPs).11 Such modular assemblies of KEs
and key event relationships (KERs) in the framework of an
AOP also allow to fuse several independent AOPs into a more
comprehensive, integrated, and biologically realistic AOP
network. It is, however, not in the scope of this article to
review all potential mechanisms and KEs that trigger HS, and
reference is given to the AOP-Wiki,12 WikiPathways13

(WP4011), and recent reviews.14−16

Recently, the information on involved MIEs from a
comprehensive AOP network (a synthesis of six different
AOPs for steatosis) was utilized to build quantitative
structure−activity relationship (QSAR) models for the
MIEs17 based on in vitro data extracted from ToxCast.18 In
total, sufficient data for six nuclear receptors, peroxisome
proliferator-activated receptors (PPAR α and γ), pregnane X
receptor (PXR), aryl hydrocarbon receptor (AhR), liver X
receptor (LXR), and nuclear factor (erythroid-derived 2)-like 2
(Nrf2), are available in the open domain and could be
leveraged for this purpose.17

Other predictive models estimating the potential of a
compound to cause liver toxicity have been reported
previously, for example, addressing hyperbilirubinemia19 or
drug-induced liver injury (DILI).20

One possibility is to focus on liver transporters, which have
been reported to be involved in drug−drug interactions and
liver toxicity, such as P-glycoprotein (P-gp), breast cancer
resistance protein (BCRP), MRP2-4, bile salt export pump
(BSEP), and hepatic organic anion transporting polypeptides
(OATP1B1, OATP1B3, and OATP2B1). Models predicting
the potential of a compound to interact with one of these
transporters are available from, for example, the Vienna
LiverTox Workspace.21

Very recently, other groups have published in silico models
to predict hepatic steatosis, but based on relatively small data
sets or with a focus on drugs/drug metabolites only. For
example, the models developed by Cotterill et al.22 are based
on a relatively small data set of 207 compounds measured in
vivo (half of which have been annotated as in vivo steatosis
positive). Shin et al.23 used a list of 165 drugs and 223 drug
metabolites with toxicity annotations retrieved from Pharma-
Pendium,24 Elsevier’s collection of drug approval documents,
and extracted data for informing drug development decisions.
The main objective of the presented study was the

development of QSAR/machine learning (ML) models
which predict the potential of a given compound to cause
liver steatosis in the human organism based on in vivo data and
covering a large chemical space. The development of QSAR
models requires large training data sets (TR) and test data sets
(TS), including steatotic and nonsteatotic compounds. As
human in vivo data were not available, we extracted this
information from high-quality databases comprising in vivo
animal studies with repeated oral exposure. Information on
chemicals/pesticides were obtained from the RepDose,25

ToxRefDB,26 and Hazard Evaluation Support System
(HESS) database.27 The apical adverse effects described in
these preclinical studies did not allow to distinguish between
marcrovesicular or microvesicular liver steatosis nor indicate
the underlying mechanism.
The envisaged models should therefore be able to generalize

and allow reliable predictions independent of the concrete
MIE(s) and KE(s) being triggered by a particular compound.
Due to the high structural diversity of the data set, the

extraction of relevant features that can well separate the active
from the inactive class is aggravated. Another challenging
aspect in this study is caused by the imbalanced nature of the
in vivo data set, comprising an imbalance ratio of approximately
1:8 with the active (steatotic) class being the minority class.
We tackled this challenge by applying both bagging with
stratified under-sampling (hence called “stratified bagging”;
SB) as well as Mondrian conformal prediction (CP) as meta-
classifiers (an additional processing step that is performed
before and after the actual base-classifier sees the data,
respectively; SB and CP are both explained in more detail in
the Data and Methods section).
Most importantly, in this study the influence of the inclusion

of mechanistic information (from the steatosis AOP and
literature knowledge) on model performance was inspected. By
training models with/without predictions from nuclear
receptor (NR) models and/or transporter models as part of
the features for model building, it should be possible to
prioritize certain feature blocks and consequently determine
the influence of specific protein targets in mediating HS. The
models were trained in an automated fashion via iterative
combination of descriptor blocks. KNIME workflows and
python scripts are publicly available from https://github.com/
BZdrazil/Steatosis_prediction.

■ RESULTS

Composition of the Data Sets and Chemical Space
Analysis. The initial data set of in vivo measurements for HS
in rodents (collected from RepDose,25 ToxRefDB,26 and
HESS DB27) is composed of 120 active and 921 inactive
compounds after data curation, representing an imbalance ratio
of 1:8. By splitting off a validation set/test set (TS) composed
of 30% of the data set entries and maintaining the ratio of the
active vs inactive class (stratified sampling), the final training
set (TR) was made up of 727 compounds (86 in vivo steatosis
positives/641 in vivo steatosis negatives; Figure 1). Visualizing
TR vs TS in a two-dimensional t-distributed stochastic
neighbor embedding (t-SNE)28 plot helped to verify that the
TS compounds have been selected in an unbiased way,

Figure 1. Composition of the data sets used in this study. The in vivo
data set for repeated dose toxicity was split into training and test sets
by maintaining the relative distribution of active vs inactive
compounds.
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representing the full range of chemical space like the TR
compounds (Supplementary Figure S1).
Manual inspection of the training and test set compounds

revealed a great structural diversity of the compounds within
the in vivo steatosis data set. With the aim to quantify as well as
qualitatively describe this structural diversity, we performed a
similarity analysis of test vs training set compounds and an
analysis of feature distribution among the active vs inactive
class of compounds as well as an analysis of enriched scaffolds
in the data set.
Checking for similarity of each test set compound to the

closest similar compound in the training set revealed that
>85% of the test set compounds do possess a very low
similarity to training set compounds (Tanimoto coefficient
<0.6; Supplementary Figure S2). This is an important finding
since it suggests robustness of the established models when
applied to new chemical matter (that will likely be also
dissimilar to the training set compounds).
Notably, the inactive class of compounds seems to be the

main contributor to high chemical diversity in our data set,
since the range of values for seven out of eight calculated
common physicochemical properties (partition coefficient/
lipophilicity, topological polar surface area, molecular weight,
number of rotatable bonds, number of hydrogen-bond donors
and acceptors, and number of aromatic rings) appears to be
much larger for this class (Figure 2). However, visually
inspecting the difference of the mean and median values of the
active vs inactive class of the inspected properties (Figure 2,

Supplementary Table S1) as well as testing for statistical
significance of the distributions by the Kolmogorov−Smirnov
test revealed that only for SlogP and atomic molecular weight
(AMW), the two classes are actually statistically different (p-
value <0.05).
Regarding the general features related to oral bioavailability,

steatosis positive compounds appear to be on average more
lipophilic (median SlogP: 2.7 vs 2.2 for positives vs negatives),
to possess a higher molecular weight (median AMW: 293 vs
206), to show a higher number of rotatable bonds/greater
flexibility (median RotB: 3 vs 2), a lower number of hydrogen-
bond donor (HBD) (median HBD: 0 vs 1), and a higher
number of hydrogen-bond acceptor (HBA) (median HBA: 3
vs 2) than the larger class of steatosis negative compounds
(Supplementary Table S1).
The mean and median values for the number of aromatic

rings (AromRings) and the fraction of hybridized carbon
atoms (Fsp3) are in the same range for both classes
(Supplementary Table S1), but AromRings in some cases
show much more extreme values (up to 10 aromatic rings) for
the inactive class. In general, the data set (both classes) shows
a relatively high degree of aromaticity and thus higher planarity
of the compounds (also demonstrated by the relatively low
mean and median Fsp3 values (around 0.4) for both classes
(Supplementary Table S1).
Looking a bit closer into the class of steatosis positive

compounds (120 compounds) also reveals that most of the
positive compounds appear as drug-like according to the rule-

Figure 2. Violin plots showing the physicochemical property distribution in the in vivo steatosis data set (including TR and TS). The distributions
for steatosis negative and positive compounds are plotted separately (0, steatosis negative; 1, steatosis positive). SlogP, partition coefficient; TPSA,
topological polar surface area; AMW, atomic molecular weight; RotB, number of rotatable bonds; HBD, number of hydrogen-bond donors; HBA,
number of hydrogen bond acceptors; Fsp3, fraction of sp3-hybridized carbons; AromRings, number of aromatic rings; QED, quantitative estimate of
drug-likeness.
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of-five, since the interquartile ranges appear below the R5
thresholds (MW < 500; logP ≤ 5; HBD ≤ 5; HBA ≤ 10;
Supplementary Figure S3). Calculating the quantitative
estimate of drug-likeness (QED) as defined by Bickerton et
al.29 also reflects this trend of a relatively high drug-likeness in
the data set with both the mean and median QED values being
around 0.54 for both the steatotic and nonsteatotic class
(Supplementary Table S1).
An orthogonal measure for the structural diversity of a

chemical data set is delivered by analyzing the frequency of
core scaffolds. By applying the Murcko scaffold algorithm,30

316 different Murcko scaffolds were identified within the in
vivo data set made up of 1041 compounds in total. This
translates into an average scaffold-to-compound ratio of 0.30,
indicating a very large structural diversity of the data set. A
more detailed analysis of scaffold frequency is presented in
Figure 3, showing the most frequent scaffolds in our data set
(occurring in at least 20 different compounds). Strikingly, only
the benzene scaffolds can be found with very high frequency
(approximately 58% of the data set compounds), but any other
scaffold is not more prevalent than in 5% of compounds at
maximum, indicating again a high structural diversity of the
training and test set (Figure 3). With respect to the nature of
those relatively enriched scaffolds, most of them contain
aromatic ring systems (pyridine, biphenyl, pyrimidine,
diphenyl ether, naphthalene, and 1,3,5-triazine), which
confirms the finding of a high degree of planarity/aromaticity
within the data set.
Development of In Silico Profilers for Hepatic

Steatosis. In order to provide an unbiased summary of

enriched chemical (sub)structures in the steatosis positive class
which probably could serve as in silico profilers (structural
alerts) for HS, we carried out enrichment analyses of scaffolds
and ToxPrint chemotypes31 in the positive vs negative class of
the curated in vivo data set (including both TR and TS).
The enrichment analyses accounted for the imbalance of the

data set by calculating the relative frequency of a certain
scaffold/substructure. Fisher’s exact test was used for extracting
the statistical significance of the different frequencies in the
active vs inactive class.
Applying such frequency analysis at the level of Murcko

scaffolds (as described by Türkova et al.)32 revealed that only
three scaffolds appear to be significantly enriched (p-value
≤0.05). However, for these cases, the number of compounds
possessing the respective scaffold in the active class is rather
small, with 1-(2-phenylethyl)-1H-1,2,4-triazole occurring most
often (five unique compounds; Supplementary Table S2).
At the level of substructural fragments by using the

ChemoTyper program,31 21 structural fragments are statistically
significantly (p-values ≤0.05) enriched in the positive class vs
the negative class (Supplementary Table S3) when considering
only fragments with an occurrence in at least 5 active
compounds (92 ToxPrint chemotypes). Eight of these
structural alerts are at the same time occurring in at least
10% of compounds in the active class. Interestingly, and six of
these eight highlighted substructural patterns include halogens
(see Supplementary Table S3).
Halo-alkanes and halo-alkenes have the potential to induce

toxicity and cancer depending on how well they can form a
stable carbon-centered radical. The more halide groups they

Figure 3. Bar plot showing the most frequent Bemis−Murcko scaffolds (occurring in at least 20 compounds) in the in vivo steatosis data set (TR
and TS). Absolute numbers of compounds possessing the respective scaffold (upper numbers) and relative percentages of frequencies within the
data set (lower numbers) are indicated. The proportion of acyclic compounds in the data set is indicated by the outer right bar.
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possess, the more likely a radical formation will occur since the
electron-withdrawing capacity from the carbon center will
increase. Reactive intermediates can further bind to macro-
molecules and disrupt lipid metabolism leading to HS.33

Iterative Descriptor Combination via a Semiauto-
matic Machine Learning Pipeline. The main aim of this
study was the generation of a highly predictive binary
classification model for predicting HS of chemicals with
unknown toxicity. In order to find the most favorable
amalgamation of features which would give the “best model”,
we built a KNIME workflow which allows iterative
combination of different descriptor sets in an automated
fashion. In addition, model generation and validation (based
on internal and external validation) were fully automatized as
part of this workflow, delivering a summary table of the
respective model parameters for assessing the different model
accuracies (such as sensitivity, specificity, balanced accuracy,
and Matthews correlation coefficient) (Figure 4). The
workflow includes an in house established meta-node for
performing SB in an iterated and automated fashion as a
technique to overcome problems of an imbalanced data set
distribution (of actives and inactives). The workflow is openly
available from https://github.com/BZdrazil/Steatosis_
prediction and can be adjusted for other use cases.
Importantly, testing different descriptor types was also used

for evaluating the potential influence of a particular descriptor
block for predicting steatosis. In the case of the use of
predictions from transporter and NR models as feature blocks,
a potential mechanistic role of these proteins in triggering the
onset or development of steatosis could be deduced if the
differences in predictive power were significant (see next
subchapter for concrete results).
Predictive Models for Hepatic Steatosis: Stratified

Bagging and Conformal Prediction as Valuable Strat-
egies to Deal with Highly Imbalanced Data Sets. A
random forest (RF) classifier34 was trained on a set of 727
compounds (= TR) with associated class labels (in vivo

steatosis positive or negative) by using different combinations
of descriptor blocks: 26 RDKit physicochemical properties,35

ToxPrint substructure fingerprints,31 predictions from in vitro
NR, and hepatic transporter models. The incentive to include
information from in vitro models by using their binary
predictions as a feature vector (in the form of a bit string) is
to investigate if a potential mechanistic link of these protein
targets to the development of HS exists. A set of transcription
factors has been previously identified as MIEs linked to the
discussed AO, and efforts to model steatosis by using a
consensus of in vitro NR models were reported in literature.17

Since NR proteins have been shown to be involved in the
transcription of drug transporters,36 alteration in nuclear
transcription factor activation may result in altered expression
of transporters.37 In addition, direct impairment of a liver
transporters’ function (e.g., through inhibition of the trans-
porter by small molecules) might induce liver toxicity (such as
hepatosteatosis, nonalcoholic fatty liver disease, cholestasis,
etc.). A similar approach was already tested for predicting
hyperbilirubinemia by including the information from in vitro
inhibition models for OATP1B1 and OATP1B3.19 Since in
this previous work no improvement of the predictive models
could be observed in terms of model accuracy, we tested here
the inclusion of additional transporter models (especially ABC
transporter models) as well as NR models.
All descriptor combinations were tested iteratively and with

two different methods for handling the imbalanced distribution
of steatotic vs nonsteatotic compounds in our data set: bagging
with stratified under-sampling (SB) and conformal prediction
(CP). In addition, our validation procedure was performed in a
two-step fashion: including internal validation and the
prediction of a TS that was split off from the TR data set
before model building. Since the combination of the base
classifier (RF) with SB or CP allows it, we sampled this
procedure 64 and 100 times, respectively, and calculated the
average and median predictions, respectively, from these
independent runs.

Figure 4. Illustration of the semiautomatic KNIME workflow used for model generation with the SB modeling framework.
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The necessity of including algorithms to counterbalance
problems occurring when performing ML with (highly)
unbalanced data sets is demonstrated by the performance
achieved for the baseline model (RF classifier, RDKit
descriptors; see Table 1). Whereas the specificity (true

negative rate) of the model is extremely high (0.98 and 0.99
for TR and TS predictions, respectively), it completely fails to
predict the toxic class (sensitivity: 0.02 and 0.09 for TR and
TS). It is therefore important to not rely on merely decent
balanced accuracies (BA) of the generated models, but in
addition to always study the true positive and true negative rate
separately.
Stratified Bagging Models. With respect to overall model

performances, balanced accuracies for TS predictions with the
SB models are ranging from 0.53 (MCC = 0.04; models built
with NR predictions as descriptors) to 0.70 (MCC = 0.28) for
the different models built upon different descriptor combina-
tions (for TR predictions BAs range from 0.52 to 0.64).
Whereas the sole use of NR predictions, ToxPrint features, or
transporter predictions as descriptors does not give good

model performances, the combination of these features with
physicochemical descriptors (RDKit) leads to good model
performances, with the best model being achieved by
combining RDKit descriptors with transporter predictions
(BA = 0.70). However, a model built on the basis of RDKit
descriptors alone is performing reasonably well overall (TS
predictions: BA = 0.69/MCC = 0.27), and the observed
performance differences are not statistically significant, though
it can be observed that there is a tendency that best performing
models include transporter predictions. Looking closer at the
predictive capacities of the SB models for the separate classes,
it becomes obvious that the SB models generally are still better
at predicting the nonsteatotic class, but that some descriptors/
descriptor combinations seem to better be suited for achieving
good sensitivities. Interestingly, the best overall performing SB
modelRDKit, features in combination with transporter
predictionsis also the one with the highest sensitivities for
both TR predictions (sensitivity = 0.54) and TS predictions
(sensitivity = 0.64).
Further, the contribution of the predictions of the individual

transporter inhibition models was investigated. Because the
influence of an individual transporter feature block to the
overall model performance would be hard to detect if a large
number of other descriptors are being deployed, only the five
most important physicochemical descriptors were filtered out
and combined with individual transporter predictions. An
analysis of descriptor importance and intercorrelation of
features, combined with knowledge gained previously by
analyzing the mean and median values of the respective
features comparing the inactive (nonsteatotic) and active
(steatotic) class, revealed that a combination of SlogP
(lipophilicity), molecular weight (AMW), number of rotatable
binds (NumRotatableBonds), HBDs, and topological polar
surface area (TPSA) delivers a reasonable reduced descriptor
set (TS prediction for the SB model: BA = 0.65/MCC = 0.21).
Combining these five features with the predictions of any of
the transporter models increases model performance up to a
BA of 0.66−0.68 (MCC = 0.23−0.25; see Supplementary
Table S4) with none of the individual transporters out-
performing the others.

Conformal Prediction Models. The CP models at the
significance level 0.3 (30% errors accepted) are valid (meaning
that the number of errors it commits does not exceed the
chosen confidence level) for all models accounting for small
statistical fluctuations except for TS predictions of four models.
For the model based on ToxPrint features combined with NR
predictions (steatotic class), the respective validity reached
only a value of 0.68. Models based on ToxPrint features alone,
in combination with Transporter predictions, as well as the
model based on transporter and NR predictions in
combination show a validity for the nonsteatotic class of
0.69, respectively (Table 2 and Supplementary Figure S4).
Evaluating the performances of the models on the basis of

BA and efficiency (only single label predictions), just three
models show poor performances, namely models built with NR
predictions as features or transporter predictions as features, or
the combination of both (see Table 2 and Supplementary
Figure S5). For models built on the basis of ToxPrint features,
BAs for the TR and TS are not overwhelming (0.63 and 0.6),
but the efficiency is generally reaching higher values than for
the other just mentioned descriptor sets (0.71 and 0.74). All
other models are performing comparably well with not much
difference regarding their predictive performances. Like in the

Table 1. Results from SB Models Compared to the Baseline
Model (RDKit_baseline)a

descriptors
validation

set sensitivity specificity BA MCC

RDKit_baseline
TR 0.02 0.98 0.50 0.02

TS 0.09 0.99 0.54 0.18

RDKit
TR 0.51 0.74 0.63 0.18

TS 0.62 0.77 0.69 0.27

5 selected RDKit
TR 0.50 0.73 0.61 0.16

TS 0.52 0.78 0.65 0.21

ToxPrint
TR 0.43 0.80 0.61 0.17

TS 0.47 0.78 0.63 0.19

transporter prediction
TR 0.39 0.73 0.56 0.09

TS 0.52 0.76 0.64 0.20

NR prediction
TR 0.41 0.63 0.52 0.03

TS 0.46 0.61 0.53 0.04

RDKit + ToxPrint
TR 0.51 0.77 0.64 0.20

TS 0.57 0.79 0.68 0.26

RDKit + transporter
prediction

TR 0.54 0.74 0.64 0.20

TS 0.64 0.76 0.70 0.28

RDKit + NR prediction
TR 0.53 0.75 0.64 0.20

TS 0.58 0.78 0.68 0.25

ToxPrint + transporter
prediction

TR 0.45 0.80 0.62 0.19

TS 0.54 0.79 0.67 0.24

ToxPrint + NR prediction
TR 0.41 0.80 0.61 0.16

TS 0.48 0.78 0.63 0.19

transporter prediction +
NR prediction

TR 0.48 0.64 0.56 0.08

TS 0.52 0.63 0.58 0.10

RDKit + ToxPrint +
transporter prediction

TR 0.51 0.78 0.64 0.21

TS 0.59 0.79 0.69 0.27

RDKit + transporter
prediction + NR
prediction

TR 0.53 0.74 0.64 0.20

TS 0.60 0.78 0.69 0.27

ToxPrint + transporter
prediction + NR
prediction

TR 0.43 0.80 0.62 0.18

TS 0.51 0.80 0.65 0.23

RDKit + ToxPrint + NR
prediction

TR 0.50 0.78 0.64 0.21

TS 0.53 0.81 0.67 0.25

RDKit + ToxPrint +
transporter prediction +
NR prediction

TR 0.49 0.79 0.64 0.21

TS 0.57 0.80 0.69 0.27

aPerformances on training set (TR) and test set (TS) are shown. BA
is balanced accuracy, and MCC is Matthews correlation coefficient.
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case of SB models, the best model performances overall are
achieved by combining RDKit features with other features,
such as the “RDKit + ToxPrint model” and the “RDKit +
ToxPrint + transporter model”, which are both showing the
best combination of values for efficiency and BA (0.82 and
0.68, respectively). This example also shows the usefulness of
CP per se, since the method allows to detect the influence of
ambiguous compounds which are assigned to the “both” or
“empty” class, respectively. Whereas no real difference in
performances can be detected on the basis of the BAs
comparing, for example, models built on the basis of the five
selected RDKit features and the just mentioned best
performing models (“RDKit + ToxPrint model” and the
“RDKit + ToxPrint + transporter model”), we can see much
better performances for the best models when inspecting the
respective efficiencies (0.71 for the “5 selected RDKit model”
vs 0.82 for the TS predictions of these best models). Refining
the models by these additional features obviously helped to
increase the percentage of unambiguous class assignments
(single class predictions).
Analyzing the distribution of compounds with different class

assignments (steatotic, nonsteatotic, and both) in chemical
space by performing a t-SNE projection in two-dimensions on
the basis of the RDKit descriptors shows a fair separation of
the steatotic (“high”) and nonsteatotic (“low”) classes in

chemical space (Figure 5 and Supplementary Figure S6).
Compounds predicted as belonging to the “both” category
tend to be closer positioned to instances from the steatotic
class. This shows that the classifier is missing information for
those compounds (assigned to the “both” class) needed to
assign a single label to these instances, but would rather assign
them to the steatotic class if a better discriminative power was
given.
Avoiding an unreasonably high number of compounds

belonging to the “both” class can also be achieved by the set
significance level that the model is supposed to achieve.
Accepting a lower error rate (as in the case of significance
levels lower than 0.3) leads to a steady increase of compounds
being assigned to the “both” class for the TR as well as the TS
data set (Supplementary Figure S7).
Interestingly, although leading to poorly performing models

overall, models built on the basis of only transporter
predictions are showing the highest sensitivities (0.76 and
0.82 for TR and TS) and steatotic class validities (0.86 and
0.88 for TR and TS) among all CP models. This behavior
might also explain the benefits of including transporter
predictions, however this effect is not clearly visible from a
statistical standpoint when comparing model performances.
Compared to the SB models, CP models are in general

showing higher sensitivities: 0.39−0.64 for the various SB

Table 2. Results from CP Models at the Significance Level 0.3a

descriptors
validation

set
validity steatotic

class
validity

nonsteatotic class efficiency sensitivity specificity BA MCC

RDKit
TR 0.73 0.72 0.69 0.62 0.59 0.61 0.14
TS 0.74 0.71 0.75 0.67 0.61 0.64 0.18

5 selected RDKit
TR 0.77 0.73 0.71 0.67 0.61 0.64 0.18
TS 0.76 0.79 0.71 0.67 0.7 0.69 0.24

ToxPrint
TR 0.77 0.71 0.71 0.67 0.59 0.63 0.17
TS 0.71 0.69 0.74 0.63 0.57 0.6 0.13

transporter prediction
TR 0.86 0.72 0.41 0.76 0.28 0.52 0.03
TS 0.88 0.76 0.44 0.82 0.43 0.62 0.18

NR prediction
TR 0.76 0.72 0.52 0.57 0.46 0.52 0.02
TS 0.79 0.74 0.5 0.61 0.48 0.54 0.06

RDKit + ToxPrint
TR 0.78 0.73 0.69 0.68 0.61 0.64 0.19
TS 0.74 0.71 0.82 0.71 0.65 0.68 0.24

RDKit + transporter prediction
TR 0.73 0.73 0.69 0.63 0.6 0.62 0.16
TS 0.74 0.71 0.77 0.69 0.62 0.65 0.2

RDKit + NR prediction
TR 0.74 0.72 0.69 0.65 0.6 0.62 0.16
TS 0.76 0.74 0.73 0.71 0.63 0.67 0.23

ToxPrint + transporter prediction
TR 0.78 0.71 0.72 0.7 0.6 0.65 0.2
TS 0.74 0.69 0.77 0.67 0.6 0.63 0.17

ToxPrint + NR prediction
TR 0.8 0.73 0.69 0.71 0.61 0.66 0.2
TS 0.68 0.71 0.76 0.61 0.62 0.61 0.15

transporter prediction + NR prediction
TR 0.8 0.72 0.54 0.61 0.48 0.55 0.06
TS 0.79 0.69 0.6 0.73 0.47 0.6 0.14

RDKit + ToxPrint + transporter prediction
TR 0.81 0.71 0.69 0.72 0.58 0.65 0.2
TS 0.74 0.72 0.82 0.71 0.65 0.68 0.24

RDKit + transporter prediction + NR prediction
TR 0.77 0.74 0.67 0.67 0.61 0.64 0.18
TS 0.71 0.73 0.76 0.67 0.64 0.65 0.21

ToxPrint + transporter prediction + NR prediction
TR 0.79 0.71 0.71 0.71 0.59 0.65 0.20
TS 0.71 0.70 0.80 0.66 0.62 0.64 0.18

RDKit + ToxPrint + NR prediction
TR 0.76 0.71 0.73 0.66 0.61 0.63 0.17
TS 0.74 0.74 0.79 0.69 0.67 0.68 0.24

RDKit + ToxPrint + transporter prediction + NR
prediction

TR 0.78 0.72 0.7 0.65 0.61 0.63 0.17
TS 0.74 0.73 0.8 0.7 0.65 0.68 0.23

aPerformances on training set (TR) and test set (TS) are shown. BA is balanced accuracy, and MCC is Matthews correlation coefficient.
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models (mean sensitivity = 0.51) and 0.57−0.82 for CP
models (mean sensitivity = 0.68). Since in Mondrian CP the
conformity function is applied to the calibration instances
separately for the active and inactive class, validity can be
guaranteed for each separate class label. Thus, the CP
framework works well for highly imbalanced data sets and
gives good predictive power also for the minority class.
From a statistical standpoint, although there are slight

variations among the CP models, no descriptor set is
performing significantly better than another at a 95%
confidence interval (with Bonferroni correction; see Supple-
mentary Figure S8).

■ DISCUSSION
In this paper, the generation of reliable ML models for
predicting HS based on small molecules tested in vivo in
rodents is described. The best performing models developed in
this investigation enable the classification of chemicals with
unknown toxicity into “steatotic” or “nonsteatotic” compounds
with a balanced accuracy of up to 0.7 (MCC = 0.28). Models
built within the CP framework in addition allow compounds to
be classified as ambiguous (by falling into the “both” category).
To the best of our knowledge, these are the first published
models built on basis of in vivo data for predicting HS.
The integration of in vitro data into these models has been

tested by utilizing predictions from in silico models (that were
built on basis of in vitro data) for certain protein targets which
have been recognized as being linked to HS. Combining

different feature blocks, including predictions from several NR
models and transporter models, did not allow to select one
model that statistically outperforms others, but identified a few
poorly performing models (models with features made up of
solely NR or transporter predictions). Including physicochem-
ical properties as part of the feature set seems beneficial as well
as adding predictions from the transporter in vitro models as
features, since all of the (numerically) “best” models are
including this combination.
Since the in vivo data set possesses a very broad chemical

diversity of compounds, it is very difficult to identify a
definitive list of important descriptors able to well separate
steatotic from nonsteatotic compounds. Since this is a target-
agnostic data set, potentially including steatotic compounds
triggering diverse branches of the steatosis AOP, it is likely that
multiple modes of action are being leveraged contributing to
the chemical diversity of the data set. Several MIEs were
identified to be involved in the published AOP, including
mainly the activation of NR by small molecules.
Although observed performance differences are statistically

insignificant, our investigations suggest to further inspect the
role of transporters in causing HS and eventually include them
into newer AOPs for HS.
Investigations on class membership of model predictions

and chemical space analysis indicate that substantial
information is still missing for the classifier to reliably assign
single labels to a substantial number of the compounds, which
are predicted to fall into the “both” category. Such information

Figure 5. Two-dimensional t-SNE projection of the in vivo steatosis data set (TR and TS compounds): The chemical space projection is based on
26 physicochemical RDKit descriptors. The color code indicates compounds which have been predicted by the CP framework based on these
RDKit features (at significance level 0.3) to belong to either the “high” (= steatotic), “low”(= nonsteatotic), or “both” classes (colored in light blue,
green, and brown, respectively).
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can be easily added, once more knowledge about the more
precise AOP becomes available. The modular structure of the
developed KNIME workflows allows for an easy addition of
features (and also the python scripts for CP models are easily
adaptable).
This finding is, however, also an indication for a preferential

use of CP as the method of choice for such challenging
classification tasks where (a) an in vivo toxicity end point is to
be predicted, (b) classes are not represented equally, and (c)
the known mechanistic information (e.g., AOP) indicate
multiple (branches of a) regulatory pathway(s) to be involved.
In conclusion, we have observed that both meta-classifiers

(SB and CP) are proving useful for handling the highly
imbalanced nature of the toxicity data set, but the CP
framework allows for “predictions with confidence”, which are
of particular relevance in the field of predictive toxicology
where the guaranteed error level allows firm decisions to be
made about the toxicity of a chemical compound.

■ DATA AND METHODS
TR and TS Preparation. In vivo data from rodent studies with

repeated oral exposure were extracted from RepDose,25 ToxRefDB,26

and HESS database27 (as being available from the OECD toolbox).
Compounds were classified as steatotic positive in cases where liver
steatosis was reported in at least one high-quality preclinical rodent
study with repeated exposure and oral application. Study types
include subacute to chronic duration. Subsequently, the data set
underwent some chemical curation using the following protocol:

• Removal of all inorganic compounds according to chemical
formula in MOE 2014.0938

• Removal of salts and compounds containing metals (organo-
metallic compounds)

• Removal of compounds having atoms for which some
descriptors cannot be calculated (such as tellurium or
selenium) were identified and discarded using an in-house
MOE SVL script

• Standardization of chemical structures using the Atkinson
standardization protocol (available at https://github.com/
flatkinson/standardiser)

• Removal of duplicates and permanently charged compounds
using MOE 2014.0938

The final data set consists of 1041 unique compounds (120
steatosis positives and 921 steatosis negatives). The data set was
further randomly split into a 70% training set (TR; 727) and 30% test
set (TS) while retaining the initial ratio of in vivo positive/negative
compounds in the two sets (stratified sampling). The TR consists of
86 steatosis positive and 641 steatosis negative compounds, whereas
the TS is composed of 34 positive and 280 negative compounds.
T-Distributed Stochastic Neighbor Embedding. Two-dimen-

sional t-SNE plots were generated in KNIME by using the “t-SNE (L.
Jonsson)” node and choosing the following parameters: iterations:
3000; θ: 0.5; and perplexity: 100. Visuals were created with the
“Scatter Plot” node. Prior to dimensionality reduction, the 26 RDKit
physicochemical features were subjected to a Z-score normalization
(“Normalizer” node).
Analysis of Feature Distribution. Physicochemical descriptors

were calculated in KNIME39 (“RDKit Descriptor Calculation” node),
and violin and box plots were generated in R40 (v3.5.2).
Analysis of Drug-likeness. The quantitative estimate of drug-

likeness (QED)29 was caluculated in KNIME by using the “Qed
caculator” node of the “Silicos-it” nodes package.41

Kolmogorov−Smirnov Test. The statistical significance of the
differences of the distribution of physicochemical properties of the
active vs inactive class compounds was analyzed by performing a two-
sample Kolmogorov-Smirnow Test in R40 (v3.5.2) with the “ks.test”
function.

Frequency Analysis of Substructural Patterns. The preva-
lence of scaffolds and chemical substructures in the active class of the
data set was analyzed by extracting Bemis−Murcko scaffolds30 as well
as ToxPrint31 fingerprints from the compounds in the in vivo steatosis
data set. For the extraction and frequency analysis of scaffolds, a
workflow published in Türkova ́ et al.32 was utilized. ToxPrint is a
public set of chemotypes encoded in the XML-based substructure
definition language CSRML.42 Statistical significance of the enrich-
ment of a particular scaffold or ToxPrint chemotype in the active class
was calculated by applying Fisher’s exact test for count data,
calculated in R40 (v3.5.2) with the “fisher.test” function.

In Vitro data for NR Activation/Deactivation. In vitro data sets
for nuclear receptor (NR) activation or deactivation were kindly
provided by Gadaleta et al. and described in ref 17. Nine different
NRs were identified as potential MIEs upstream of the adverse effect
(i.e., hepatic steatosis), including the peroxisome proliferator-
activated receptors (PPARα, PPARβ, PPARγ), the constitutive
androstane receptor (CAR), the pregnane X receptor (PXR), the
aryl hydrocarbon receptor (AhR), the liver X receptor (LXR), the
nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and the farnesoid X
receptor (FXR) by collecting data from AOP-Wiki. Out of these
MIEs, only those providing a sufficient amount of high-quality data
and weight of evidence supporting them were modeled, and up- and
down-regulation assays (for evaluating agonistic and antagonistic
activity) were considered separately. Thus, nine different in vitro data
sets were finally extracted from ToxCast18 and used in this study for
modeling NR activation or deactivation: PXR_up, PXR_down,
AhR_up, AhR_down, LXR_up, LXR_down, PPARgamma_up,
PPARalpha_up, and Nrf2_up.

In the respective NR data sets, approximately 500−600 compounds
were overlapping with the in vivo steatosis data set (TR and TS) and
were therefore removed from the NR data sets. The resulting number
of compounds used for modeling the NR end points can be found in
Supplementary Table S5.

In Vitro NR Models and Transporter Models. The nine NR
data sets served as building predictive models by using different basic
descriptor sets: RDKit35 physicochemical properties, ECFP6 circular
fingerprints (both available from KNIME), and ToxPrint chemo-
types.42 As most of these data sets are highly imbalanced
(Supplementary Table S5), we used the SB approach as the meta-
classifier in combination with RF as a base classifier (as described in
the Machine Learning Algorithms and Unbalanced Learning
Techniques section) to build predictive models for the nine NR
data sets. Model statistics for the different descriptor sets and the nine
NR models are provided in Supplementary Table S6. The best model
(highlighted in Supplementary Table S6) was chosen respectively for
predicting compounds from the in vivo steatosis data set as NR
positive or negative, and the binary string (9 bits) further served as
one of the descriptors for building the in vivo steatosis models in the
subsequent step.

Transporter models including a P-gp, BCRP, BSEP, MRP3, and
MRP4 inhibition model were provided by the Vienna LiverTox
Workspace (https://livertox.univie.ac.at/). A general hepatic OATP
inhibition model (including inhibition data for OATP1B1, OATP1B3,
and OATP2B1) was taken from Türkova ́ et al.32 These models also
served for predicting compounds from the in vivo steatosis data set,
and the predictions were taken as a combined binary string to be used
as input features for model generation of the same.

Molecular Descriptors for In Vivo Steatosis Models. We
employed four sets of molecular descriptors: physicochemical
descriptors (RDKit),35 ToxPrint chemotypes,42 predictions from the
nine nuclear receptor models, and predictions from hepatic
transporter models (as described in the previous section). The
RDKit feature block includes the following 26 physicochemical
properties: SlogP, SMR, LabuteASA, TPSA, AMW, ExactMW,
NumLipinskiHBA, NumLipinskiHBD, NumRotatableBonds,
NumHBD, NumHBA, NumAmideBonds, NumHeteroAtoms, Num-
HeavyAtoms, NumAtoms, NumRings, NumAromaticRings, NumSa-
turatedRings, NumAliphaticRings, NumAromaticHeterocycles, Num-
SaturatedHeterocycles, NumAliphaticHeterocycles, NumAromatic-
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Carbocycles, NumSaturatedCarbocycles, NumAliphaticCarbocycles,
and FractionCSP3.
These different descriptor blocks were further iteratively combined

by employing all possible combinations (each descriptor block
individually, combinations of two or three descriptor blocks, and all
descriptor blocks together).
Machine Learning Algorithms and Unbalanced Learning

Techniques. Random Forest (RF)34 was used as a base-classifier for
SB and CP models developed in this study. The number of trees was
arbitrarily set to 100 (default), since it has been shown that the
optimal number of trees is usually 64−128, while further increasing
the number of trees does not necessarily improve the model’s
performance.43

In order to overcome the problem of data imbalance, we used
bagging with stratified under-sampling (SB)44,45 and Mondrian CP.46

These methods have proven to be among the best performing
methods for dealing with imbalanced data sets.47,48 SB is a ML
technique that is based on an ensemble of models developed using
multiple training data sets sampled from the original training set. It
uses minority class samples to create the training set of positive
samples using a traditional bagging approach (resampling with
replacement), and after that, randomly selects the same number of
samples from the majority class. Thus, the total bagging training set
size was double the number of the minority class molecules. Several
models are then built and predictions averaged in order to produce a
final ensemble model output. Because of random sampling, about 37%
of the molecules are not selected and left out in each run. These
samples create the “out-of-the-bag” sets, which are used for testing the
performance of the final model.49 Although a small set of samples are
selected each time, a majority of molecules contributed to the overall
bagging procedure, since the data sets were generated randomly.
Further, an earlier study by Tetko et al.49 showed that larger numbers
of models per ensemble (e.g., 128, 256, 512 and 1024) did not
significantly increase the balanced accuracy of models. Thus, in this
study, we built a total of 64 models per ensemble. All models using RF
in combination with SB were developed and deployed by using the
data analytics platform KNIME.39

Mondrian CP on the other hand, belongs to a group of predictors
called confidence predictors.50 CP is a framework allowing the
incorporation of any ML algorithm that as output provides a ranking
of the investigated compounds.50 An attractive feature of CP is that,
provided the data set fulfills the exchangeable criterion, the output is
always valid for which there exists a mathematical proof by Vovk et
al.50 This means that the user can set a level (percentage) of errors
that is acceptable and CP will return this level of errors at most. CP
will also, at the same time, provide the user with information for each
prediction, that is, for each compound, whether the prediction is
reliable or not.
For a classification problem, a set of class labels is assigned to new

compounds through comparison to a calibration set with known
labels (experimental classes). In this study with two classes (steatotic
and nonsteatotic), this means that two separate calibrations sets are
used. One set with experimentally known steatotic calibration
compounds and another set with experimentally known nonsteatotic
calibration compounds. If the outcome for the new compound is
higher than the set significance level and, thus, similar to the
prediction outcomes on either of the two calibration sets, the new
compound is assigned that class label and given a CP p-value for that
class. Consequently, for a binary classification problem, there are four
possible outcomes. A new compound can be labeled with either of the
two classes, or it could be assigned both labels (both classification) or
neither one (empty classification). For an illustrative example of how
conformal prediction is carried out, we refer the reader to Norinder et
al.51

We used RF34 as the underlying model for our predictors. CP
models were developed using Python, Scikit-learn52 version 0.17, and
the nonconformist package version 1.2.5 (https://github.com/
donlnz/nonconformist). Binary classification models were built
using the RandomForestClassifier in Scikit-learn with 100 trees, and
all other options set at default. Conformal predictions were performed

using the ProbEstClassifierNC and IcpClassifier functions in the
nonconformist package with options for class conditional (Mondrian)
conformal predictions enabled: icp = IcpClassifier(nc, condition =
lambda x: x[1]).

Model Performance Assessment. The performance of each
classification model was assessed on the basis of the sensitivity (true
positive rate; eq 1), specificity (true negative rate; eq 2), accuracy (eq
3), balanced accuracy (correct classification rate; eq 4), and MCC (eq
5) calculated for the TS (30% of initial in vivo data set). For a highly
imbalanced data set, accuracy may be misleading, thus we considered
balanced accuracy (which considers both sensitivity and specificity)
and MCC as a more appropriate performance measure to compare
different classifiers for their ability to handle imbalanced data sets.

=
+

sensitivity
TP

(TP FN) (1)

=
+

specificity
TN

(TN FP) (2)

= +
+ + +

accuracy
(TP TN)

(TP FP TN FN) (3)

=
+

+
+

i
k
jjjj

y
{
zzzzbalanced accuracy

1
2

TP
(TP FN)

TN
(TN FP) (4)

= { × − × }
{ + × + × + × + }

MCC
(TP TN) (FP FN)

(TP FP) (TP FN) (TN FP) (TN FN) 1/2

(5)

where TP is true positive, TN is true negative, FP is false positive, and
FN is false negative.

The performance of the conformal predictor was additionally
measured by its validity (percentage of correct classifications for each
class) and efficiency (percentage of single label classifications) when
employed on the TS. A conformal predictor is said to be valid if the
percentage of errors does not exceed the set significance level. Thus, a
prediction is considered correct if it includes the correct class label,
which means that both predictions are always correct and empty
predictions never are (i.e., always erroneous). Validity was determined
for the active (aka steatotic) and inactive (aka nonsteatotic) class
separately. In order to compare results from SB and CP, we have to
consider that validity includes the “both” classifications (since they are
per definition always correct), whereas sensitivity and specificity are
only calculated on single label predictions. In CP, there exists a trade-
off between the validity of the model and the efficiency. For the final
predictions from CP, we applied the aggregated conformal prediction
method described by Carlsson et al.53

The training set was randomly divided into a proper training set
and calibration set using 70% and 30% of the training data,
respectively. This whole process was repeated 64 times in case of
SB and 100 times in case of CP, each time storing the predictions on
the test compounds. For the SB, the consensus of all models was
chosen as a way to evaluate the test set (mean), and for CP models,
the median predicted CP p-value for each compound was calculated
and used for class assignment in accordance with the set significance
level.

Data, Code, and Model Availability. Precalculated descriptors
for the whole data set (1141 entries) and labels for steatotic positive
and negative compounds are provided as Supplementary File S1. For
the public fraction of the compound data set (512 compounds), CAS
registry numbers as well as chemical structures (in smiles format) are
provided in addition to the class label (Supplementary File S2). In
addition, we made all KNIME workflows and python scripts used to
build the herein discussed models publicly available in an open
GitHub repository (https://github.com/BZdrazil/Steatosis_
prediction) and are providing example models by using the SB and
CP meta-classifiers (based on 26 RDKit descriptors).

Glossary of ML Specific Terms. In supplements (Supplementary
Table S7) we provide a glossary describing specific terms used in this
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manuscript in order to make the methodology easily understandable
for a broader readership outside the cheminformatics community.
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