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Rapid Screening of Ellagitannins 
in Natural Sources via Targeted 
Reporter Ion Triggered Tandem 
Mass Spectrometry
Jeremiah J. Bowers1, Harsha P. Gunawardena2, Anaëlle Cornu3, Ashwini S. Narvekar1, 
Antoine Richieu3, Denis Deffieux3, Stéphane Quideau3 & Nishanth Tharayil1

Complex biomolecules present in their natural sources have been difficult to analyze using traditional 
analytical approaches. Ultrahigh-performance liquid chromatography (UHPLC-MS/MS) methods have 
the potential to enhance the discovery of a less well characterized and challenging class of biomolecules 
in plants, the ellagitannins. We present an approach that allows for the screening of ellagitannins by 
employing higher energy collision dissociation (HCD) to generate reporter ions for classification and 
collision-induced dissociation (CID) to generate unique fragmentation spectra for isomeric variants of 
previously unreported species. Ellagitannin anions efficiently form three characteristic reporter ions 
after HCD fragmentation that allows for the classification of unknown precursors that we call targeted 
reporter ion triggering (TRT). We demonstrate how a tandem HCD-CID experiment might be used to 
screen natural sources using UHPLC-MS/MS by application of 22 method conditions from which an 
optimized data-dependent acquisition (DDA) emerged. The method was verified not to yield false-
positive results in complex plant matrices. We were able to identify 154 non-isomeric ellagitannins from 
strawberry leaves, which is 17 times higher than previously reported in the same matrix. The systematic 
inclusion of CID spectra for isomers of each species classified as an ellagitannin has never been possible 
before the development of this approach.

The quality and composition of nutraceuticals derived from fruits and vegetables has been placed under greater 
scrutiny in recent years in part due to the willingness of health-conscious consumers to spend more for higher 
quality agricultural products. In addition to bioactive compounds such as vitamins E, C, sterols and carot-
enoids, the polyphenolic compounds in plants offer various degrees of antioxidant, anticancer, antimicrobial, 
anti-inflammatory, and anti-neurodegenerative benefits1–6. One specific group of polyphenolic metabolites that 
is of a higher nutraceutical and ecological value and is widely distributed in higher plants are ellagitannins7–13. 
In brief, plants first synthesize the molecular precursors of ellagitannins by enzymatic conversion of dehydro-
shikimic acid into gallic acid, then galloylated glucose forms are generated along the biosynthetic pathway until 
neighboring galloyl groups undergo oxidative coupling to form the hexahydroxydiphenoyl (HHDP) group14. 
The HHDP group has been leveraged in quantitative methods to measure ellagitannin content since hydrolysis 
liberates hexahydroxydiphenic acid that rapidly lactonizes into ellagic acid, irrespective of the chemical identity 
of the ellagitannin species15. However, this approach does not provide much insight into the structure of individ-
ual ellagitannins, which is critical since the nutraceutical value of ellagitannins are regulated by their molecular 
identity. Ellagitannins are one of the most diverse groups of plant phenolics and their complexity presents a major 
hindrance to structural elucidation efforts6,16,17.

Ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/
MS) is one of the more efficient approaches to characterize plant metabolites, including phenolics, in complex 
extracts18–22. Mass spectrometry is a robust technique for many phenolics, but ellagitannins present signifi-
cant and unique challenges to current analytical measurement techniques as different numbers of galloyl and 
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hexahydroxydiphenoyl subunits are esterified with glucose, which complicates fragmentation spectra and often 
requires manual interpretation23–25. Although each species generates reproducible fragmentation spectra, many 
first-generation product ions vary by isomeric form and automation of proposed structures to match existing 
spectral libraries becomes challenging without nuclear magnetic resonance (NMR) to offer complimentary 
structural confirmation26,27. More recently, the number of studies focusing on compound-specific fragmentation 
using multiple reaction monitoring (MRM) methods on triple-quadrupole mass spectrometers (QqQ-MS) has 
increased20–22,28–34. Although targeted assays are effective, unbiased discovery focused exclusively on ellagitan-
nins can be improved by incorporating compound-specific fragmentation for class association into new method 
designs. Focused large-scale discovery efforts to detect unknown ellagitannins have generally been unaddressed. 
This is the first attempt to rapidly screen ellagitannins and systematically catalogue unique fragmentation spectra 
of isomers for potential inclusion in spectral libraries.

Exponential increases in protein identification and reproducibility of peptide measurements in recent years is 
a direct consequence of substantial advances in mass spectrometer design35–41. The unique instrument architec-
ture of a quadrupole-Orbitrap-ion trap platform (Tribrid Orbitrap Fusion) has enabled proteomic applications 
with new measurement capabilities where multiple dissociation modes have been used in tandem42–45. Firstly, 
using refined and synthesized ellagitannin standards (Fig. S1), we leverage the high resolution and accurate mass 
capabilities of the Orbitrap mass analyzer to classify precursors with specific product ions generated from higher 
energy collision dissociation (HCD) as ellagitannins46–52. Further, we utilized collision-induced dissociation 
(CID) to generate unique fragmentation spectra of isomeric variants to differentiate between isomeric forms. 
Determination of constitutional or stereochemical isomerism was beyond the scope of this work and all isobaric 
species classified as ellagitannins with steric differences that resulted in unique CID fragmentation kinetics were 
retained under the label, isomer, although potential changes in conformational isomerism in the gas-phase can-
not be addressed at this time. We demonstrate how a tandem HCD-CID experiment might be used to screen 
natural sources for ellagitannins using UHPLC-MS/MS by application of 22 method conditions from which an 
optimized data-dependent acquisition (DDA) that classified 154 non-isomeric ellagitannins emerged.

Results
Fragmentation of Ellagitannins. The tandem HCD-CID screen employed multiple modes of fragmenta-
tion to minimize the number of discrete experiments required to classify precursors and then generate fragmen-
tation spectra for isomeric variants. Precursors were first subjected to HCD to generate characteristic product 
ions specific to ellagitannins (Fig. 1a–c) for classification without the need for sequential fragmentation inherent 
within traditional ion trap type CID MSn approaches. This was followed by CID as it was better suited to gen-
erate unique fragmentation spectra of any isomers observed given the inherent specificity of the method since 
only first-generation product ions were formed53–57. These two conditions formed the basis of the proposed tan-
dem HCD-CID screen designed to detect ellagitannins and acquire fragmentation spectra that could be used to 
develop annotated spectral libraries.

Infused standards were first subjected to CID to illustrate the disadvantage of selective excitation of precur-
sor ions to classify unknown compounds as ellagitannins. Although fragmentation of intact castalagin anions 
provided prominent 249/275/301 reporter ions (Fig. 1d), most of the other standards did not produce significant 
amounts of these reporters (Figs 1e and S2) and required subsequent MS3 of either 457 (Figs 1f and S3) or 487 
and MS4 of 465 (Fig. S4) to generate sufficient quantities of 249/275/301 ions. Tabular summaries of these results 
(Tables S1–S5) and MS2 spectra of lower charge states (Fig. S5) are available in the Supplemental Information. 
Given that precursor classification was driven by the detection of these reporter ions, an approach to maximize 
the abundance of these reporters within MS2 spectra of any ellagitannin was prudent to maximize method 
sensitivity.

Although in-source fragmentation has been employed previously for classification of ellagitannins based on 
observation of the ellagic acid 301 ion, that approach was less applicable since the isolation of precursor ions 
before fragmentation was found to be a more effective approach to properly associate unknown candidate species 
with the appearance of reporter ions given the potential coelution of different ellagitannins32. Modification of 
the linear ion trap (LIT) to maximize the formation of 249/275/301 ion populations in CID MS2 spectra through 
custom firmware was found to be impractal58–60. In contrast, HCD generated extensive fragmentation beyond the 
isolated precursor in MS2 spectra which maximized the accrual of all three reporter ions without any hardware 
or software modifications. Thus, discrete HCD fragmentation energies were applied to the [M-2H]2− of each 
infused ellagitannin (Fig. S6) and the abundance of 249/275/301 reporter ions was used to create plots (Fig. S7) to 
visualize the optimal normalized collision energy (NCE) for each standard. Doubly charged anions were initially 
selected given the relatively low abundance of triply or singly charged precursors available (Fig. S8) under chro-
matographically relevant conditions. No significant difference in the formation of reporter ions was observed for 
species with triply charged anions (Fig. S9) and chromatographic conditions were not altered to improve the ion-
ization of triply charged anions in later UHPLC-MS/MS experiments, as higher pH conditions adversely affected 
dianion ionization efficiencies.

Most ellagitannin species formed 301 more readily than 275 and 249, but fragmentation of grandinin and 
roburin E resulted in larger 249 product ion populations than 275 or 301. To minimize false-positive identifica-
tions, all three 249/275/301 ions were required to be present and within the top 10 most abundant peaks in each 
HCD spectrum to classify an unknown precursor candidate as an ellagitannin under targeted 3 reporter ion 
triggering (T-3RT). To optimize this assignment, the next step was to determine what NCE values would gener-
ate the largest cumulative ion populations of all three reporter ions. Sums of all three reporter ion abundances 
at each NCE value was normalized to the greatest total for each ellagitannin (Table S6) and no single NCE was 
observed to generate the largest total populations of 249/275/301 reporter ions. Although values of 25, 30, 35, and 
40 each had maximums for certain species, others had significantly reduced values. An NCE of 35 or 40 might be 
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adequate but the available stepped collision energy option for HCD allowed for the partitioning of precursor ions 
to be fragmented at three different collision energies and combined into a single scan.

Theoretical stepped NCE results were calculated (Table S7) from the empirical data (Table S6) to estimate 
that 40 +/− 10 was likely to provide the maximum generation of reporter ions for standards and this motivated 
acquisition of stepped energies of +/− 5 within the narrower 25–45 NCE range that appear in Table 1. The mean 
and standard deviation of the response of the standard set of ellagitannins to specific HCD conditions showed 
that 40 +/− 5 provided a slightly higher mean of 98.06 and a lower standard deviation of 1.87 than corresponding 
values for 35 +/− 5. Although 40 +/− 10 was a maximum for intervals of +/−10 (Table S8), the smaller mean 

Figure 1. Characteristic reporter ions used to classify precursors as ellagitannins: (a) 
2,2′,3,3′,4,4′-hexahydroxybiphenyl, (b) 3,4,8,9,10-pentahydroxydibenzo[b,d]pyran-6-one, (c) ellagic acid; CID 
MS2 spectra for: (d) castalagin, (e) vescalagin, and (f) the CID MS3 spectrum of the isolated 457 product ion 
from vescalagin. Blue, red, and green dot graphics above the 249, 275, and 301 reporter ions were added for 
improved contrast of the relative intensities in product ion spectra.

Standard Compound 25 +/− 5 30 +/− 5 35 +/− 5 40 +/− 5 45 +/− 5

castalagin 61.4 88.5 100 95.4 84.2

vescalagin 71.3 94.7 100 98.6 84.8

acutissimin A 45.7 72.7 100 96.2 97.5

epiacutissimin A 46.4 78.5 100 96.8 95.5

roburin A 50.5 81.2 100 99.3 95.2

roburin D 48.9 71.9 86 100 98.5

roburin B/C 62.7 89 100 99.9 90.6

grandinin 68.8 90 100 96.3 83.2

roburin E 63.1 79.9 94.2 100 77

x 57.64 82.93 97.8 98.06 89.61

σ 9.85 8.02 4.82 1.87 7.59

Table 1. Normalized Sums of 249/275/301 Intensities for NCEs Stepped by 5.
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of 88.53 and larger standard deviation of 4.29 indicated that the smaller interval was better. Using the responses 
from these ellagitannins as a basis, 40 +/− 5 was selected as the HCD setting to be used when screening to classify 
precursors as ellagitannins.

Although HCD performed better for reporter ion generation, fragmentation spectra generated by CID would 
be better for inclusion in spectral libraries. Even though a lower, non-stepped HCD collision energy could pos-
sibly provide comparable and consistent fragmentation of precursors classified as ellagitannins to that of CID, 
it would be more likely that acquired spectra would contain non-trivial and uncertain amounts of second and 
third-generation product ions as the exact threshold energies would be unknown61. An NCE of 20 was previously 
used to obtain pseudo-CID spectra for ellagitannins, but even relatively mild HCD conditions may result in dif-
ferent degrees of secondary fragmentation, as evidenced by changes in relative abundance of common fragments 
depending on molecular structure62.

Comparison of HCD and CID spectra for representative standard ellagitannins that produce different major 
first-generation product ions (Fig. S10) show that the ambiguity created by HCD could increase the difficulty 
of assignments within spectral library searches. Although grandinin and acutissimin A have different major 
first-generation product ions, 487 and 457 respectively, the most abundant second and third-generation product 
ions are the same 249/275/301 reporter ions. These reporter ions are multi-generational and their intensities 
would no longer accurately be associated with specific product ion generations if spectral libraries were com-
prised of pseudo-CID spectra from even mild HCD conditions63. Standard normalized collision energies for CID 
(Tables S1 and S2) ranged from 15–25 and 30 was chosen to ensure complete fragmentation while minimizing the 
possibility that smaller species would be ejected from the LIT.

Analyzer Optimization. Specific MS and CID analyzer settings that were selected when applying an 
HCD-CID screen were derived from iterations of select instrumental settings and filters available in the 
Supporting Information within a similarly titled section. Ellagitannin standards were subjected to an HCD-CID 
screen during analyzer optimization that included a MIPS filter, an intensity filter of 1e5, and a charge state filter 
that only allowed dianions to be subjected to HCD.

Mass Trigger Validation. Control experiments are provided in more detail in the Supporting Information. 
In brief, the response of the standard basis set showed that 2.5 ng of material was the minimum amount required 
to anticipate full peak shapes for species classified as ellagitannins. TRT conditions were altered to compare the 
differences of requiring all three reporter ions in T-3RT and variants that allowed any two reporter ions (T-2RT) 
or any reporter ion (T-1RT) to be observed in the top 10 most abundant peaks in an HCD spectrum to result 
in CID acquisition. Leaf extracts of Palmer amaranth (Amaranthus palmeri) that had no ellagitannin or HHDP 
derivatives was chosen to test for false positive CID events under each TRT condition. This extract provided over 
280 precursor candidates to serve as potential false positive targets and although amaranth had no ellagitannins, 
it contained an abundance of quercetin-glycosides including quercetrin, isoquercitrin, and rutin. Major fragment 
ions of rutin and isoquercitrin included 300.029 and 301.037 (Fig. S38) which are close to the ellagic acid trig-
ger ion of 300.998 that would have generated a false positive result without high resolution mass spectrometry 
(HRMS). By employing both HRMS and multiple trigger ions we were able to avoid false positive identification 
in complex plant extracts, which attests to the robustness of the optimized method. An additional advantage of 
HRMS over QqQ instrumentation is that MS3 of the 301 ion is unnecessary to confirm classification which allows 
more time for the instrument to scan for additional ellagitannin candidates without increasing the false positive 
rate. Further, a mixture of the ellagitannin standards was spiked to the amaranth extract to estimate false nega-
tive classification. No false negatives occurred under any TRT condition, but false positive events were observed 
under T-1RT which resulted in the acquisition of CID data in the absence of ellagitannin content. Strawberry 
analysis omitted T-1RT analysis given the false positives observed in amaranth.

Filter Optimization. The Rosaceae family has been found to be higher in ellagitannin content than other 
fruits and vegetables and was chosen to test the tandem HCD-CID screen given the availability of existing reports 
available for comparison62,64–67. The high concentration of ellagitannins present in strawberry leaves provided an 
opportunity to examine the outcome of applying filters that directly affected which precursor ions were subjected 
to HCD and subsequently classified. Various filter combinations were combined to create the screens described in 
the Methods section of this report. Complete lists of ions classified as ellagitannins under each screen condition 
for both T-3RT (Tables S9–S19) and T-2RT (Tables S20–S30) are available in the Supporting Information.

The most pertinent results were condensed for T-3RT (Table S31) and T-2RT (Table 2) and show that the 
latter provided greater numbers of unique species classified. The cumulative values for the condensed tables dif-
fer from the complete lists in the Supporting Information as they do not include duplicates of species that were 
observed in multiple charge states or whose C13 isotope peak was not properly excluded by the MIPS filter to more 
accurately reflect the number of unique precursors classified using a specific screen. Estimation of the degree to 
which in-source fragmentation of larger unknown precursors may have contributed to these unique counts would 
require direct examination of larger standards in the 3-4 kDa range which are unavailable. Given that none of 
the larger ~2 kDa standards showed evidence of in-source fragmentation (Fig. S8), it seemed reasonable to infer 
that potential in-source fragmentation of larger ellagitannins did not significantly contribute to the summary 
values in the condensed tables. Additionally, though strawberry leaf extract had potential interferents such as 
quercetin glycosides present with along native ellagitannins this did not influence the robustness of the method in 
correctly identifying ellagitannins. The reason for this is that the optimized method utilizes both HRMS to select 
characteristic fragment ions specific to ellagitannins and then requires multiple reporter ions to be present before 
classifying a precursor which minimizes the possibility of false positive classification.
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The smallest ellagitannin, 2,3-hexahydroxydiphenoylglucose, is defined from the condensation of single 
HHDP and glucose subunits (482.070 Da) but whether to include species with molecular weights lower than 
this when reporting ellagitannins has not yet been standardized62,68. A targeted mass exclusion list was initially 
considered to ensure no singly charged m/z below 481.062 would be included for precursor selection, but was not 
added to the method parameters given general interest and precedent set by recent studies62,69–72. Species below 
482.070 Da were omitted from T-2RT enumeration (Table 2) to accurately report ellagitannin summary values in 
addition to the aforementioned adjustments for charge state and isotope duplicates. Initial transcription efforts 
from Freestyle allowed for screens [III] and [IV] to be used as a comparison when parameters of the Proteome 
Discoverer workflow were modified to the final form reported in the Supporting Information. An assessment of 
the most significant parameters within the Proteome Discoverer workflow that affected proper grouping of iso-
baric species is also available in the Supporting Information.

A previously reported species isobaric with the vescalagin (3.81 min) and castalagin (5.48 min) standards 
(Fig. S27) in strawberry leaf extract allowed for direct comparisons of how different TRT conditions affected 
which isomers were observed66. Examination of the [M-2H]2- 466.029 m/z species acquired under all method 
variants except those with an anion charge state filter for both T-3RT (Fig. S39) and T-2RT (Fig. S40) condi-
tions showed that more isomeric forms were observed with T-2RT given low levels of a single reporter ion, 249, 
prevented many isomers from being classified under T-3RT. Tentative structures of significant ions (Fig. S41) 
were prepared assuming even electron configurations for convenience, but proposal of gas-phase fragmentation 
mechanisms was beyond the scope of this work given the need to exclude stable radical dianions from considera-
tion. Screen [III] was selected to illustrate the advantages of T-2RT over T-3RT (Fig. 2a,b) since manual selection 
of isomers by elution profile was easier given the absence of an automated pipeline to perform the same task 
for screens that utilized dynamic exclusion (DE). Isomers were readily differentiated by averaged CID spectra 
(Fig. 2c–h), but an automated process to extract, combine, and average spectra to build a spectral library of ellag-
itannins would be a required before product ion structures and associated gas-phase fragmentation mechanisms 
could be proposed on timescales common in other omics fields.

Ellagitannins from recent studies were tabulated (Table S32) and the 154 non-isomeric ellagitannins 
(Table S33) observed under T-2RT [IV] had 9 of 11 potential matches from species reported in strawberry lea
ves32,62,64,72–74. Two species that had masses above 2400 Da (Table S33) were not observed since this was above 
our set mass range. Expanding to include reports that utilized material other than strawberry leaves (Table S34) 
resulted in 21 tentative identifications. Although a subset of previous tentative labels includes multimers 
(Table S33), manual examination of CID spectra indicates that a systematic review of assignments based on frag-
mentation spectra will be required in future studies to confirm non-covalent associations.

Discussion
Given the increased interest in biosourced commodities, there is a need for improved discovery methods using 
advanced LC-MS platform designs. We defined a new mode of operation, targeted reporter ion triggering (TRT) 
to classify one specific group of polyphenolic secondary metabolites in plants, the ellagitannins. The T-2RT con-
dition requiring the observation of any two reporter ions to be observed was sufficient to ensure no incorrect 
classifications in the amaranth control and resulted in more ellagitannins and isomers than T-3RT in strawberry 
leaf extract. Despite their occurrence along with potential interferents such as quercetin glycosides, the ellagitan-
nins in the strawberry leaf extract were correctly classified due to the utilization of HRMS and multiple reporter 

T-2RT I. II. III. IV. V. VI. VII. VIII. IX. X XI.

Anions 20 25 0 47 41 38 50 0 23 24 0

<5e5 Intensity 9 16 0 45 36 32 44 0 17 16 0

>5e5 Intensity 11 9 0 2 5 6 6 0 6 8 0

<900 Da 15 18 0 31 28 24 33 0 15 16 0

<1100 Da 20 24 0 46 40 37 49 0 23 24 0

>1100 Da 0 1 0 1 1 1 1 0 0 0 0

Dianions 45 0 97 124 109 100 0 134 51 0 52

<5e5 Intensity 22 0 80 115 99 84 0 126 33 0 33

>5e5 Intensity 23 0 17 9 10 16 0 8 18 0 19

<900 Da 3 0 7 6 7 7 0 7 2 0 2

<1100 Da 18 0 39 45 39 38 0 45 20 0 20

>1100 Da 27 0 58 79 70 62 0 89 31 0 32

Total 65 25 97 171 150 138 50 134 74 24 52

< 5e5 Intensity 31 16 80 160 135 116 44 126 50 16 33

>5e5 Intensity 34 9 17 11 15 22 6 8 24 8 19

Unique Mass 58 25 97 154 134 122 50 134 67 24 52

Table 2. Precursor ions present in strawberry leaves that met all criteria to be classified as ellagitannins under 
conditions [I–XI] using T-2RT. Screen descriptions defined in the methods section include: I. (Intensity), II. 
(Anion), III. (Dianion), IV. (DE 12 s), V. (DE 3 s), VI. (DE 3 s, Apex), VII. (−1, DE 3 s), VIII. (−2, DE 3 s), IX. 
(DE 3 s, 5e5), X. (−1, DE 3 s, 5e5), XI. (−2, DE 3 s, 5e5).
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ions. Specific stepped HCD NCE conditions of 40 +/− 5 allowed for the maximum generation of 249/275/301 
reporter ions used to label precursors as ellagitannins and an NCE value of 30 for CID was sufficient for the gen-
eration of fragmentation spectra of isomers. Leveraging the high resolution and accurate mass capacities of the 
Orbitrap with a tandem HCD-CID experiment resulted in an optimized method that detected 154 non-isomeric 

Figure 2. Elution profile of screen [III] for the isobaric 466.029 species present in strawberry under different 
TRT conditions: (a) T-2RT, (b) T-3RT; CID spectra of the 466.029 species acquired using screen [III] under 
T-2RT: (c) isobar ‘1’, (d) isobar ‘2’, (e) isobar ‘3’, (f) isobar ‘4’, (g) isobar ‘5’, (h) isobar ‘6’. Isobars with abundances 
greater than 5e5 observed with T-3RT and T-2RT at 10.13 min and 11.49 min were labeled 1 and 2 while those 
observed only under T-2RT at 8.75 min, 9.10 min, 9.29 min, and 9.59 min were labeled 3, 4, 5, and 6 respectively.
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species in a single data dependent acquisition (DDA). Comparison with recent literature data showed that only 9 
non-isomeric ellagitannins in strawberry leaves were provided tentative identifications from previous studies64,73. 
Based on this optimized method we were able to putatively identify 154 non-isomeric ellagitannins from straw-
berry leaves, which is 17 times higher than the number of ellagitannins reported in the same matrix. Broadening 
the search to include ellagitannins from any source increased this value to 21 tentative matches. The potential of 
comprehensive and systematic inclusion of CID spectra for the isomers of each unique species has never been 
possible before development of this TRT approach.

The tandem HCD-CID method presented is well positioned to be applied across other classes of natural 
products, where HCD derived reporter ions can serve as triggers for screening a compound class, although the 
249/275/301 reporter ions are specific to ellagitannins and not applicable to other compound classes. The pau-
city of annotated structures of plant-based natural products such as ellagitannins makes accelerated structural 
assignment of CID spectra challenging32,62,64,73,74. In this regard, CID spectral libraries of compounds would first 
need to be created with existing tentative structure identifications most commonly found in tabulated lists which 
currently include a few hundred non-isomeric ellagitannins14,32,62,64,74. Complementary NMR data could then be 
acquired with preparatory UHPLC methods to systematically confirm tentative structural assignments. Hybrid 
search of MS spectral libraries structurally validated by NMR would drastically decrease the effort required to 
identify unknown ellagitannins75. We envision that our TRT method presents opportunities to rapidly generate 
CID spectral libraries and enable the adoption of quantitative omics workflows for plant natural product experi-
ments. This method enabled the rapid classification of unknown precursors while still retaining a comprehensive 
and facile systematic inclusion of fragmentation spectra for isomers to support the development of annotated 
spectral libraries for a previously inaccessible class of compounds in natural sources.

Methods
Chemicals and Reagents. Castalagin, vescalagin, roburin A, roburin D, roburin E, grandinin, and a 1:1 
mixture of roburin B and roburin C were extracted and purified from oak heartwood, while acutissimin A and 
epiacutissimin A were obtained by hemisynthesis using vescalagin and catechin50–52. Chemical structures of these 
ellagitannins standards are presented in Fig. S1. Optima UHPLC-MS grade acetonitrile and water, as well as 
Optima LC/MS grade methanol and formic acid, were purchased from Fischer Chemical; HPLC grade chloro-
form was obtained from Fischer Scientific.

Strawberry Leaf Extraction. Description of the sample preparation procedure can be found in the 
Supporting Information.

Instrumentation. All analyses were performed using an Ultimate 3000 HPLC (Thermo Scientific, Waltham, 
MA, USA) coupled to an Orbitrap Fusion (Thermo Scientific) Tribrid mass spectrometer equipped with an elec-
trospray ion source using tune application software 2.1.1565.18 and Xcalibur 4.0.27.13.

Infusion-MS/MS Analysis. Description of instrument parameters utilized for infusion of standard com-
pounds can be found in the Supporting Information.

UPLC-MS/MS Analysis. All samples subjected to LC-MS/MS analysis were separated on a Waters (Waters 
Corp., Milford, MA, USA) Acquity UPLC HSS T3 (150 × 2.1 mm, 1.8 µm) column at 30 oC. The following gra-
dient program utilizing water with 0.1% formic acid as mobile phase A and acetonitrile as mobile phase B was 
employed: 0 min, 10% B; 2 min, 10% B; 8 min, 30% B; 12.5 min, 60% B; followed by a 3-minute washing step 
at 90% B and a subsequent re-equilibration for 7 min at 10% B. The flow rate was set to 0.22 mL/min and the 
injection volume chosen was 2 µL. The mass spectrometer was operated in negative ionization mode with a data 
dependent MS2 HCD-CID method. The interface conditions were as follows: emitter voltage, −2600 V; vaporizer 
temperature, 325 oC; ion transfer tube, 325 oC; sheath gas, 55 (arb); aux gas, 10 (arb); and sweep gas, 1 (arb).

Method Settings. Internal mass spectrometer settings utilized for MS scans unless stated otherwise were 
as follows: mass range 150 m/z to 1200 m/z; RF lens, 60%; AGC target, 4e5; maximum injection time, 50 ms; 
and 1 µscan in profile mode at 50 K resolution on the Orbitrap mass analyzer. The method then sequentially 
included a series of filters prior to any HCD MS2 events. A monoisotopic peak selection filter was included and 
set as peptide for all methods as this setting functioned as well as others available. An intensity filter of 1e5 was 
utilized for all methods unless stated otherwise. An optional charge state filter was included for some methods to 
select precursor charge states of either 1, 2, or 1 & 2. An optional dynamic exclusion (DE) filter was included for 
some methods with either a 12 s or 3 s exclusion window and had common parameters of: exclude n = 1 times; 
+/−3 ppm; exclude isotopes; and single charge state per precursor. Apex detection was included for one method 
and was set to: expected peak width, 6 s; desired apex window, 30%. There were five ddMS2 OT-HCD scans with 
the following settings unless stated otherwise: quadrupole isolation, 1.6 m/z isolation window; HCD collision 
energy, 40%, stepped 5%; detector type, Orbitrap, auto m/z normal scan range, 15 K resolution, 100 m/z first mass; 
AGC Target, 5e4, inject ions for all available parallelizable time, 35 ms maximum injection time; 1 µscan, profile. 
A targeted reporter ion trigger (TRT) followed ddMS2 OT-HCD and included ions 249.040, 275.019, and 300.998; 
+/− 5 ppm error tolerance; with the detection of either 3 or 2 or 1 ions from the list as explicitly stated; only ions 
within the top 10 most intense for all mass triggers. Subsequent ddMS2 OT-CID conditions were as follows unless 
stated otherwise: MSn Level, 2; quadrupole isolation, 1.6 m/z isolation window; CID collision energy, 30; activa-
tion Q, 0.25; detector type, Orbitrap, auto m/z normal scan range, 15 K resolution; AGC Target, 5e4, inject ions for 
all available parallelizable time, 22 ms maximum injection time; 1 µscan, profile. The number of dependent scans 
between ddMS2 OT-HCD and ddMS2 OT-CID was set to 1. A summary of screen method parameters for a given 
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TRT condition is presented in Table 3. A more complete description of the motivation for the application of each 
filter combination can be found in the Supporting Information.

Data Analysis. Description of software used for analysis and figure creation can be found in the Supporting 
Information.

Data Availability. The MS/MS datasets generated during the current study are available in the figshare repos-
itory, https://figshare.com/projects/Rapid_Screening_of_Ellagitannins_in_Natural_Products_via_Targeted_
Reporter_Ion_Triggered_Tandem_Mass_Spectrometry/29656.
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