
Research Article
Classification of Hand Grasp Kinetics and Types Using
Movement-Related Cortical Potentials and EEG Rhythms

Mads Jochumsen,1 Cecilie Rovsing,1 Helene Rovsing,1 Imran Khan Niazi,1,2,3

Kim Dremstrup,1 and Ernest Nlandu Kamavuako1

1Centre for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
2New Zealand College of Chiropractic, Auckland, New Zealand
3Rehabilitation Research Institute, Auckland University of Technology (AUT), Auckland, New Zealand

Correspondence should be addressed to Mads Jochumsen; mj@hst.aau.dk

Received 30 April 2017; Revised 10 July 2017; Accepted 26 July 2017; Published 29 August 2017

Academic Editor: Saeid Sanei

Copyright © 2017 Mads Jochumsen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation.
These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially
be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and
speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP)
as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29
healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor
cortex.The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope,
and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear
discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and
MRCP-components: 0.48±0.05 (grasp types), 0.41±0.07 (kinetic profiles, motor execution), and 0.39±0.08 (kinetic profiles, motor
imagination). Delta activity contributed the most but all features provided discriminative information. These findings suggest that
information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement
intentions.

1. Introduction

The detection of movement intentions is an essential part
of a brain-computer interface (BCI) for motor rehabilitation
after a stroke [1]. By detecting movement intentions from
the ongoing EEG, it is possible to activate an electrical
stimulator or rehabilitation robot [2, 3], so the elicited
somatosensory feedback is paired with motor cortical activ-
ity. In this way, the requirement for Hebbian learning is
fulfilled. The detection of movement intentions from EEG,
specifically movement-related cortical potentials (MRCPs),
has been thoroughly investigated and several techniques exist
to detect executed and imaginary movements from healthy
subjects and attempted movements from patients suffering
from spinal cord injury or stroke [4–9]. Recent studies have

been published where the efficacy of BCI interventions for
neurorehabilitation has shown promising results [1, 2]. To
improve BCI interventions, task variability can be introduced
into the rehabilitation which maximizes the retention of
relearned movements [10]. Some studies have shown that it
is possible to decode different task-related parameters from
the same limb such as movement direction, movement type,
force, and speed [7, 11–15]; by decoding such parameters,
variabilitymay be introduced in the training. In these studies,
a wide variety of signal processing techniques and features
have been used. The features, as for the movement intention
detection, have primarily been extracted from the time and
frequency domain. The features include mean amplitude in
different time windows, either chosen systematically or based
on the underlying physiology/signal morphology [7, 15], and
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spectral power in frequency bands that are systematically
chosen with a width of, for example, 1–5Hz or from the
physiological EEG rhythms [7, 14, 16]. Other types of features
have also been used such as time-frequency representations
[17]. The features are often selected in an exhaustive system-
atic way to identify the features (and best channels) that fit
the individual subject; in this way, it is possible to account
for the great intersubject variability [7]. In summary, these
studies show that task-related parameters can be decoded
from single-trial analysis using different features extracted
from premovement EEG. However, information is lacking
regarding the importance of the features and where the
discriminative information arise from in the physiologically
establishedmeasures of EEG andMRCPs, that is, delta, theta,
mu/alpha, beta, and gamma rhythms, readiness potential,
negative slope, and motor potential, respectively. It has
previously been shown that the components of the MRCP
are modulated by variations in force and speed [18], but it
is not known how variations in, for example, grasp types
affect MRCPs. Moreover, it is not known how these task-
related parameters modulate the different EEG rhythms. As
outlined, many different kinds of features from the time and
frequency domain have been used to classify single-trial EEG
traces to discriminate between task-related parameters, but
using only the established EEG rhythms (not to be mixed
with the event-related synchronization/desynchronization)
and MRCP components as features have not been evaluated.
By testing this, it may be possible to explain the importance
of the different features and give an indication of where the
discriminative information is encoded.

In the current study, it was investigated if using the
established EEG rhythms and MRCP components, extracted
from the premovement EEG, can be used as features to
discriminate between different task-related parameters for
hand movements. Moreover, the importance of each feature
type was investigated. For this investigation, two previously
published data sets [6, 7] were used, which enables a direct
comparison with previous results.

2. Methods

In the following sections, the data collection will be outlined
as well as the analysis used in the current study.

2.1. Subjects. 29 healthy subjects participated; 14 subjects (7
women and 7 men: 24 ± 1 years old) performed different
grasp types (motor execution, data set 1), while 15 subjects
(12 women and 3 men: 27±11 years old) performed the same
grasp type but with variations in the level of force and speed
(motor execution and imagination, data set 2). All subjects
gave their written informed consent. All procedures were
approved by the local ethical committee (number 20130081).

2.2. Experimental Setup. The subjects were seated in a com-
fortable chair with their right hand resting on a table in
front of them. The subjects held a handgrip dynamometer
which was used to record the force that was produced. The
right hand was dominant in all subjects except for one. At

the beginning of the experiment, the maximum voluntary
contraction (MVC) was determined. In data set 1 [7], the
subjects were asked to perform three different hand grasps:
palmar, lateral, and pinch grasps, where they had to reach
∼5% MVC in 0.5 s (see (A2) in Figure 1). Each movement
type was performed 4 × 25 times with a 1-minute break
in-between each every 25th movement. Two consecutive
movements were separated with 9 s. The movements were
performed in blocks; the order was randomized.The subjects
were visually cued (see (A2) in Figure 1) by a custom-made
program (Aalborg University), and the produced force was
recorded and used as input, so the subjects had continuous
visual feedback. The subjects spent ∼5 minutes practicing to
become familiar with the setup.

In data set 2 [6], the subjects were asked to execute and
imagine four isometric palmar grasps. The tasks were as
follows: 0.5 s to reach 20%MVC, 0.5 s to reach 60%MVC, 3 s
to reach 20%MVC, and 3 s to reach 60%MVC; each task was
repeated 40 times.The subjects were visually cued (see (A1) in
Figure 1), and they were provided with visual feedback in the
same way as described above to ensure that the movements
were performed with the correct level of speed and force.
No force was produced for the imagined movements, but
the subjects were still provided with the feedback, so they
knew when to initiate the imagined movement. The tasks
were randomized in blocks, and the subjects trained for two
minutes before each task.

2.3. Recordings

2.3.1. EEG. Continuous monopolar (Ag/AgCl ring elec-
trodes) EEG (EEG Amplifiers, Nuamps Express, Neuroscan)
was recorded from the following channels (according to the
International 10–20 system): F5, F3, F1, Fz, FC5, FC3, FC1,
FCz, C5, C3, C1, Cz, CP5, CP3, CP1, CPz, P5, P3, P1, and Pz;
moreover, F7, FT7, T7, TP7, andP7 for the subjects performing
three different hand grasps (data set 1). The signals were
referenced to the right ear lobe and grounded at nasion.
Electrooculography (EOG) was recorded from FP1.The EEG
and EOG were sampled with 500Hz and converted with
32-bit precision. The impedance of all electrodes was below
5 kΩ. During the recordings, the subjects were asked to
minimize eye blinks and facial and body movements. Epochs
were rejected if they were contaminated with EOG, peak-
peak amplitude exceeding 125 𝜇V. A digital trigger was sent
from the visual cueing program to the EEG amplifier at the
beginning of each trial (at 𝑡 = −3 s in (A1) and (A2) in
Figure 1).

2.3.2. Force and Maximum Voluntary Contraction. A hand-
grip dynamometer (Noraxon USA, Scottsdale, AZ) was used
to record the force, which was used as input to the visual
cueing program. The force was sampled with 2000Hz. The
MVC was determined at the beginning of the experiment,
where the subject performed three maximal contractions
separated by one minute. The highest value of the three
contractions was used as the MVC. For the tasks where the
movements were executed, the force was used to determine
the movement onset. This was defined as the instant where
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Figure 1: (a) Visual cues presented to the subjects performing movements with different kinetic profiles (A1) and grasp types (A2), (b) grand
average across trials and subjects for imaginary movements with different kinetic profiles in channel C3, (c) grand average across trials and
subjects for executed movements with different kinetic profiles in channel C3, and (d) grand average across trials and subjects for different
executed grasp types in channel C3. F20: fast (0.5 s) 20%MVC, F60: fast (0.5 s) 60%MVC, S20: slow (3 s) 20%MVC, and S60: slow (3 s) 60%
MVC. Note the difference in amplitude on the 𝑦-axis in (b). MVC: maximum voluntary contraction.

all values in a 200-ms wide moving time window were above
the baseline.The baseline was calculated from the recordings
during the rest phase. All onsets were visually inspected.

2.4. Signal Processing

2.4.1. Preprocessing. Initially, the signals were bandpass fil-
tered from 0.05 to 45Hz using a 2nd order zero-phase digital
Butterworth filter. For dataset 2, a large Laplacian spatial filter
was applied to be able to compare the findings in the current
study with the ones reported previously [6]. F7, F3, Fz, T7,
C3, Cz, P7, P3, and Pz were used to calculate a surrogate
channel with C3 as the central channel [6]. The continuous
EEG was divided into epochs from the movement onset (or
task onset for motor imagery) and 2 s prior this point. Epochs
containing EOG activity in FP1 were rejected if the peak-peak
amplitude was above 125𝜇V.

2.4.2. Feature Extraction. Features were extracted from the
time domain and the frequency domain from the MRCP
and natural EEG rhythms, respectively. Three time domain
features were extracted: (1) average amplitude from −2 s to
−0.5 s with respect to the movement onset (early contingent
negative variation (CNV), early Bereitschaftspotential (BP),
or readiness potential (RP)), (2) average amplitude from −0.5
to −0.15 s with respect to the movement onset (late CNV,
late BP, or negative slope), and (3) the peak of maximum
negativity (the motor potential). Five spectral features were
extracted from the movement onset and 2 s prior to this
point; these were the average power in the delta (0–4Hz),
theta (4–7Hz), alpha (7–15Hz), beta (15–30Hz), and gamma
(30–45Hz) frequency range. The average power was calcu-
lated using power spectral density with a Hamming window.
The time and frequency domain features were extracted from
each channel from data set 1 and from the surrogate channel
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from data set 2. These features were extracted from single-
trial EEG traces.

2.5. Feature Selection and Classification. The data were ran-
domly divided into ten parts, where nine parts were used for
training and the last was used for evaluation. On the training
set sequential forward selection was performed [7]. The
features were ranked by the separability of a 2-class problem,
for example, palmar grasp versus rest (lateral and pinch
grasp), based on 𝑢-statistics from Mann–Whitney’s test. The
features were ranked with the highest 𝑢-statistics first and the
features with the lowest 𝑢-statistics in the end. With leave-
one-out cross-validation on the training set, the classification
accuracywas obtainedwith linear discriminant analysis using
the feature with the highest 𝑢-statistics value. Then the
feature with the 2nd highest 𝑢-statistics was included and
the classification accuracy was calculated; if the classification
accuracy improved, the feature was added to the candidate
feature set; otherwise, it was discarded. This procedure was
repeated until all features were evaluated. Since a 3-class and
two 4-class problems were considered, the optimal features
were evaluated for all pairwise comparisons (e.g., palmar
versus rest, lateral versus rest, and pinch versus rest) after
which 3 (or 4) candidate feature sets were obtained.The 3 (or
4) candidate feature sets were merged and another round of
feature selection was performed to obtain the final feature set
that was used for the classification of the test set.

After the feature selection, the test data were classified in
two different ways according to the two data sets. For data
set 1, linear discriminant analysis was performed on a 3-class
problem. For data set 2, a support vector machine with a
linear kernel was used to classify the features for the two 4-
class problems.The two different classifiers were chosen, so it
would be possible to compare the findings with the previous
publications on the data sets where linear discriminant
analysis [7] and support vector machines [6] were used.
The classification of features extracted from data set 2 was
performed in three ways: (1) without feature selection to be
able to compare the results with previous findings, (2) with
sequential forward selection to estimate the importance of
each feature type, and (3) with principal component analysis
(PCA). The number of principal components used was equal
to the number of features selected by sequential forward
selection. The average classification accuracy was calculated
across the ten testing folds. Moreover, to estimate if a global
classifier can be used to classify new data, classification
accuracies were calculated with leave-one-subject-out cross-
validation; this was done on data set 2 to have a low
dimensionality of the feature vector (eight features).

2.6. Feature Importance Evaluation. The importance of each
feature type and channel location (for data set 1) was
investigated. In this study, the feature importance is defined
as how often each feature is selected in the training folds
using sequential forward selection. The importance of each
individual feature type (delta power, etc.) was merged across
all channels for data set 1; this was done to investigate the
effect of the feature type.The importance of each channel was
evaluated bymerging all feature types for the specific channel.

Table 1: Classification accuracies obtained for the three different
grasps. Pal: palmar grasp, Lat: lateral grasp, and Pin: pinch grasp.

Grasp Predicted
Pal Lat Pin

True
Pal 0.43 0.28 0.29
Lat 0.25 0.47 0.28
Pin 0.23 0.24 0.52

The feature importance was averaged across the subjects for
the two 4-class problems (executed and imaginarymovement
with different kinetic profiles) and the 3-class problem (differ-
ent executed grasp types).Thenumber of times the individual
features were selected was divided by the total number of
selected features to obtain the feature importance in percent.
Moreover, the same analyses were performed for the best half
of the subject (𝑛 = 7) based on classification accuracy.

2.7. Analysis Investigating the Effect of Gender, Age, and Motor
Execution versus Imagination. To investigate if the gender
and age imbalance in data set 2 was affecting the results,
an analysis was performed on the resting EEG for motor
execution and imagination. Epochs were extracted from −5
to −3 s prior to the movement onset from the preprocessed
EEG. The variance in the interval was calculated and plotted
(see Figure 2) as well as the mean ± the standard deviation of
the single-trial EEG −5 s until the movement onset.

3. Results

From Figure 2(b), it can be seen that there is no trend
for any differences related to gender or age, and the rest
period for motor execution and imagination was similar.
The classification accuracies are summarized in Tables 1–4
and in Figure 3, and the feature analysis is summarized in
Figure 4. To investigate if there was an association between
the ability to produce the specific force pattern and the
classification accuracies, the root-mean-square error (RMSE)
was calculated between the produced force and visual cue.
The Spearman correlation (Rho: 0.25; 𝑃 = 0.38) was calcu-
lated between the RMSE (0.25 ± 0.04) and the classification
accuracies, but there was no association between the RMSE
and the classification accuracies.

3.1. Classification of Movements. The results from the clas-
sification of the different grasp types (Table 1) show that
the highest classification accuracies are on the diagonal;
however, it should be noted that there is also a high number
of misclassified samples. The overall classification accuracy
for the 3-class problem was 0.48 ± 0.05 (mean ± standard
deviation).

The results from the classification of the movements
with different kinetics profiles (Tables 2 and 3) show that
the highest classification accuracies are on the diagonal.
Again, it should be noted that there is a high number of
misclassified samples.The overall classification accuracies for
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Figure 2: (a) Plot of the mean ± standard deviation of a representative subject (𝑛 = 1) performing motor execution to reach 60% MVC in
0.5 s. (b)The variance of the rest period is shown for each subject in data set 2. “M”: male, “F”: female, and the number is the age of the subject.
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Figure 3: Individual classification accuracies acrossmovement types for each subject. All classification accuracies are obtained after sequential
forward selection. The theoretical chance levels have been added as horizontal dashed black lines.

the two 4-class problems were 0.41 ± 0.07 and 0.39 ± 0.08
(mean ± standard deviation) for motor execution and motor
imagination, respectively, without using sequential forward
selection. When the sequential forward selection was used,
the classification accuracies were 0.39±0.07 and 0.36±0.09 for
movement execution and motor imagination, respectively.
For PCA, the classification accuracies were 0.38 ± 0.07 and
0.33 ± 0.09 for movement execution and motor imagination,
respectively. In Figure 3, the intersubject variability in the
classification accuracies is indicated.

In Table 4, the results are presented when using the leave-
one-subject-out approach for estimating a global classifier
where no training data are needed for the individual subject.
With this approach, the average classification accuracies were
0.32±0.04 and 0.31±0.06 formovement execution andmotor
imagination, respectively. However, it should be noted that
the highest values were only on the diagonal for fast 20%
MVC and slow 60% MVC for motor execution and fast 20%
MVC for motor imagination.

3.2. Feature andChannel Importance. Theimportance of each
channel and feature type is outlined in Figure 4. No clear
trend can be seen from the importance of each channel. The
most important (most selected) feature type was the average
power in the delta frequency range. The EEG rhythms were
most important when discriminating between the move-
ments with different kinetic profiles, but in general all of the
eight feature types contain discriminative information. From
Figure 4(a), it can be seen that the standard deviation of
the feature importance across subjects is great. The patterns
do not change much when only looking at the seven best
subjects. There is a slight reduction in the importance of the
delta activity and an increase in the importance of RP for the
different grasp types.

4. Discussion

The results indicate that it is possible to discriminate between
different grasp types and movements with different kinetic
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Figure 4: (a) Importance of each feature type for all subjects, (b) importance of each feature type for the seven best subjects (in terms of
classification accuracy), (c) importance of each of the 25 channels in data set 1 for all subjects, and (d) importance of each of the 25 channels
in data set 1 for the seven best subjects (in terms of classification accuracy). RP: readiness potential or early CNV/BP, NS: negative slope or
late CNV/BP, and PN: peak negativity. The bars indicate ±1 × standard deviation.

profiles, although the classification performance is limited.
The most discriminative feature type was the power in the
delta frequency range, but all of the features contributed
discriminative information.

The classification accuracies obtained using the EEG
rhythms and the MRCP segments were higher than chance
level calculatedwith a significance level of 5% [19] when using
the subject’s own training data. The classification accuracies
associated with the leave-one-subject-out approach were at
chance level, which suggests that the classifier should be
trained on the subject’s owndata.The classification accuracies
were slightly higher for motor execution compared to motor
imagination, which was also expected based on the signal
morphology in Figure 1. This is also consistent with previous
studies using temporal and spectral features [6, 16, 20]. The
classification accuracies associated with the different grasp
types were lower compared to previous findings [7]; however,
it should be noted that the features were different, since
the aim of the current study was to investigate where the
discriminative information is encoded in the established
EEG rhythms and MRCP components. The classification
accuracies associated with the movements with different
kinetic profiles were ∼10 percentage points higher than in the
reference study on data set 1 [6]. In the current study, extra
features were added in terms of the average power of the EEG
rhythms, and based on the analysis of the feature importance,
the increase in classification accuracies is possibly due to the
inclusion of those features.

The feature analysis revealed that task-related discrimina-
tive information can be extracted from the frequency range
of all the different EEG rhythms with the main contribution
from the delta band, which is also the frequency area where
the MRCP is located. These findings are consistent with
previous studies where it has been found that the entire EEG
spectrum is used for discriminating between task-related
parameters and that it is possible to decode the MRCP for
different levels of force and speed [7, 15, 20]. It was, however,
expected that the late BP/CNV and peak negativity would
contribute more to the classification since they, according to
the signalmorphology, containmore discriminative informa-
tion around themovement onset, at least for motor execution
with different kinetic profiles (Figure 1(c)). Also, it has been
shown that these segmentswere different formovementswith
different kinetic profiles [18, 21]. The single-trial variability
(Figure 2(a)) may be an explanation for the fact that peak
negativity is not so important for the classification or the
relatively high cut-off frequency of the low pass filter when
performing MRCP analysis; this should be around 5–10Hz
instead of 45Hz if looking at the MRCP frequency range
instead of the entire EEG spectrum. It should be noted that
the RP and NS were extracted in fixed time intervals with
respect to the movement onset to account for the single-
trial variability; this has been done in several other studies
[18, 22]. However, the different phases of the MRCP are
affected by variations in, for example, attention [23], and
the peak of maximum negativity may not always occur at
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Table 2: Classification accuracies obtained for different motor
execution kinetic profiles. F20: fast 20% MVC, F60: fast 60% MVC,
S20: slow 20% MVC, and S60: slow 60% MVC. SFS: sequential
forward selection, and PCA: principal component analysis. The
classification accuracies obtainedwithout andwith SFS and PCA are
presented in the top and bottom part, respectively.

Predicted
F20 F60 S20 S60

Kinetic-ME without SFS
True

F20 0.45 0.20 0.22 0.14
F60 0.23 0.41 0.18 0.18
S20 0.22 0.20 0.38 0.20
S60 0.26 0.22 0.11 0.41

Kinetic-ME with SFS
True

F20 0.39 0.23 0.22 0.17
F60 0.26 0.35 0.20 0.19
S20 0.20 0.18 0.37 0.24
S60 0.25 0.21 0.09 0.45

Kinetic-ME with PCA
True

F20 0.39 0.27 0.19 0.15
F60 0.26 0.40 0.19 0.15
S20 0.25 0.18 0.34 0.23
S60 0.31 0.19 0.12 0.38

the movement onset; therefore, the different phases could
have been calculated with respect to the peak of maximum
negativity instead of themovement onset. However, it may be
difficult to identify the onset of the different phases (e.g., by
changes in the slopes) in single-trial MRCPs in an automated
way to avoid bias.

As well as the feature types, the importance of each
channel was evaluated on data set 1. The analysis showed that
all channels contributed discriminative information, which
may be due to the size of the cortical representation of
the hand and the effect of volume conduction. On average,
the frontal channels contributed slightly more discriminative
information which can be explained by the neural generation
of the initial negative phase of the MRCP that is produced
more frontally and then propagates more posteriorly. From
a BCI control perspective, decoding of movement intentions
is highly relevant; however, the performance is limited. It is
not known what the lower limit of a BCI for rehabilitation
is [24], but it is expected that the rehabilitative outcome is
related to the BCI performance [2]. The performance could
be increased by reducing the number of classes and focusing
on two classes instead of four or by calibrating the BCI to
the individual subject from a larger number of features (e.g.,
power from 1Hz bins or wavelet analysis from each channel).
This leads to a larger feature vector than what was reported
in this study, whose focus was on established physiological
features of the EEG and MRCP. The dimensionality of the
large feature vector should therefore be reduced. Sequential

Table 3: Classification accuracies obtained for different motor
imagination kinetic profiles. F20: fast 20% MVC, F60: fast 60%
MVC, S20: slow 20%MVC, and S60: slow 60%MVC. SFS: sequential
forward selection, and PCA: principal component analysis. The
classification accuracies obtainedwithout andwith SFS and PCA are
presented in the top and bottom part, respectively.

Predicted
F20 F60 S20 S60

Kinetic-MI without SFS
True

F20 0.48 0.19 0.19 0.15
F60 0.23 0.33 0.27 0.17
S20 0.20 0.22 0.38 0.19
S60 0.30 0.22 0.11 0.37

Kinetic-MI with SFS
True

F20 0.42 0.21 0.18 0.20
F60 0.24 0.33 0.25 0.18
S20 0.22 0.22 0.35 0.22
S60 0.34 0.22 0.10 0.35

Kinetic-MI with PCA
True

F20 0.40 0.21 0.17 0.22
F60 0.25 0.31 0.25 0.19
S20 0.22 0.24 0.35 0.19
S60 0.32 0.30 0.10 0.28

Table 4: Classification accuracies obtained for different motor
execution (top) and imagination (bottom) kinetic profiles using
leave-one-subject-out classification (global classifier). F20: fast 20%
MVC, F60: fast 60%MVC, S20: slow 20%MVC, and S60: slow 60%
MVC. MVC: maximum voluntary contraction.

Predicted
F20 F60 S20 S60

Kinetic-ME
True

F20 0.50 0.08 0.17 0.25
F60 0.49 0.09 0.21 0.21
S20 0.34 0.07 0.29 0.30
S60 0.35 0.06 0.17 0.41

Kinetic-MI
True

F20 0.55 0.05 0.22 0.18
F60 0.50 0.08 0.20 0.23
S20 0.44 0.05 0.28 0.22
S60 0.54 0.04 0.08 0.34

forward selection and PCA showed similar performance;
however, it is expected that PCA will perform worse when
a larger number of features are included than the nine that
were used in this study, but it will be much faster to compute
the PCA [7].
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5. Conclusion

It was shown that the task-related parameters, force, speed,
and grasp type, can be decoded using the established EEG
rhythms and MRCP components; although the performance
was limited, it was above chance level. The delta rhythm
contributed the most, but all EEG rhythms and MRCP
components contained discriminative information regarding
different levels of force and speed and about the type of hand
grasp.
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[14] J. Ibáñez, J. I. Serrano, M. D. del Castillo, J. Minguez, and J. L.
Pons, “Predictive classification of self-paced upper-limb analyt-
ical movements with EEG,” Medical and Biological Engineering
& Computing, vol. 53, no. 11, pp. 1201–1210, 2015.

[15] M. Jochumsen, I. K. Niazi, N. Mrachacz-Kersting, D. Farina,
and K. Dremstrup, “Detection and Classification ofMovement-
Related Cortical Potentials Associated with Task Force and
Speed,” Journal of Neural Engineering, vol. 10, Article ID 056015,
2013.

[16] E. N. Kamavuako,M. Jochumsen, I. K.Niazi, andK.Dremstrup,
“Comparison of features for movement prediction from single-
trial movement-related cortical potentials in healthy subjects
and stroke patients,” Computational Intelligence and Neuro-
science, vol. 71, Article ID 858015, pp. 1–8, 2015.

[17] D. Farina, O. F. do Nascimento, M.-F. Lucas, and C. Doncarli,
“Optimization of wavelets for classification of movement-
related cortical potentials generated by variation of force-related
parameters,” Journal of Neuroscience Methods, vol. 162, no. 1-2,
pp. 357–363, 2007.

[18] O. F. Nascimento, K. D. Nielsen, and M. Voigt, “Movement-
related parameters modulate cortical activity during imaginary
isometric plantar-flexions,” Experimental Brain Research, vol.
171, no. 1, pp. 78–90, 2006.

[19] GR. Müller-Putz, R. Scherer, and C. Brunner, “Better than
random? a closer look on BCI results,” International Journal of
Bioelectromagnetism, vol. 10, pp. 52–55, 2008.

[20] M. Jochumsen, I. K. H. Niazi, N. Mrachacz-Kersting, N. Jiang,
D. Farina, and K. Dremstrup, “Comparison of spatial filters
and features for the detection and classification of movement-
related cortical potentials in healthy individuals and stroke
patients,” Journal of Neural Engineering, vol. 12, no. 5, p. 056003,
2015.

[21] O. F. DoNascimento, K. D. Nielsen, andM.Voigt, “Relationship
between plantar-flexor torque generation and the magnitude of
themovement-related potentials,” Experimental Brain Research,
vol. 160, no. 2, pp. 154–165, 2005.

[22] A. Hatta, Y. Nishihira, T. Higashiura, S. R. Kim, and T. Kaneda,
“Long-termmotor practice induces practice-dependent modu-
lation of movement-related cortical potentials (MRCP) preced-
ing a self-paced non-dominant handgrip movement in kendo
players,” Neuroscience Letters, vol. 459, no. 3, pp. 105–108, 2009.

[23] H. Shibasaki and M. Hallett, “What is the bereitschaftspoten-
tial?” Clinical Neurophysiology, vol. 117, no. 11, pp. 2341–2356,
2006.

[24] M. Grosse-Wentrup, D. Mattia, and K. Oweiss, “Using brain-
computer interfaces to induce neural plasticity and restore
function,” Journal of Neural Engineering, vol. 8, no. 2, Article ID
025004, 2011.


