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Untargeted proteomics reveals upregulation of stress response pathways during 
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ABSTRACT
Monoclonal antibody (mAb) interchain disulfide bond reduction can cause a loss of function and 
negatively impact the therapeutic’s efficacy and safety. Disulfide bond reduction has been observed at 
various stages during the manufacturing process, including processing of the harvested material. The 
factors and mechanisms driving this phenomenon are not fully understood. In this study, we examined 
the host cell proteome as a potential factor affecting the susceptibility of a mAb to disulfide bond 
reduction in the harvested cell culture fluid (HCCF). We used untargeted liquid-chromatography-mass 
spectrometry-based proteomics experiments in conjunction with a semi-automated protein identification 
workflow to systematically compare Chinese hamster ovary (CHO) cell protein abundances between 
bioreactor conditions that result in reduction-susceptible and reduction-free HCCF. Although the growth 
profiles and antibody titers of these two bioreactor conditions were indistinguishable, we observed broad 
differences in host cell protein (HCP) expression. We found significant differences in the abundance of 
glycolytic enzymes, key protein reductases, and antioxidant defense enzymes. Multivariate analysis of the 
proteomics data determined that upregulation of stress-inducible endoplasmic reticulum (ER) and other 
chaperone proteins is a discriminatory characteristic of reduction-susceptible HCP profiles. Overall, these 
results suggest that stress response pathways activated during bioreactor culture increase the reduction- 
susceptibility of HCCF. Consequently, these pathways could be valuable targets for optimizing culture 
conditions to improve protein quality.
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Introduction

Chinese hamster ovary (CHO) cell culture is one of the most 
commonly used platforms for producing recombinant biother
apeutics such as monoclonal antibodies (mAbs).1 Over the past 
several decades, the volumetric efficiency of industrial CHO 
cell cultures has increased dramatically, primarily due to 
enhanced viable cell density and extended viability of the 
cultures.2,3 The process conditions used to operate high- 
density CHO cultures, however, can result in metabolic 
stresses.4 For example, metabolic byproducts can accumulate 
in fed-batch cultures to levels that inhibit cell growth and harm 
viability.5 Further, control over the quality of mAbs in the 
harvest material has emerged as another potential issue.

Reduction of mAb interchain disulfide bonds has been 
observed at various stages during downstream processing fol
lowing bioreactor harvest.6 Studies aimed at identifying the 
factors that contribute to this phenomenon have largely 
focused on the role of downstream processing conditions. For 
example, Trexler-Schmidt et al.7 attributed antibody disulfide 
reduction to intracellular reducing enzymes (primarily thior
edoxin reductase/thioredoxin) that are released when cell lysis 
occurs due to harsh centrifugation conditions during harvest. 

Accordingly, efforts to minimize the formation of low mole
cular weight (LMW) disulfide reduction products have focused 
on modifying harvest-related processing steps. One proposed 
solution is to maintain a highly oxidative environment in the 
harvested cell culture fluid (HCCF) through air sparging for 
the purpose of shifting the equilibrium of reversible redox 
reactions toward oxidation.8 Another strategy is to minimize 
the activity of host cell-derived reducing enzymes by reducing 
storage temperature,6,9,10 adding chemical inhibitors (e.g., 
cystine, copper sulfate, ethylenediamine tetraacetic acid) or 
removing cofactors for the enzymes (e.g., metal ions).7

Less attention has been paid to upstream events, although 
several studies have identified antibody class, light-chain type, 
cell line and cell culture process as potentially contributing 
factors.11–13 Isotopic labeling experiments using dithiothreitol 
as a reducing agent showed that the disulfide bonds between 
light and heavy chains were more susceptible to reduction and 
that this susceptibility depended on the type of light chain.13 

A study of the reduction susceptibility of immunoglobin 
G (IgG) molecules in antibody-depleted cell culture fluid 
found that disulfide bonds between heavy chain and λ light 
chain are more susceptible to thioredoxin-dependent 
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reduction than heavy chain and κ light chain.14 Reduction of 
interchain disulfide bonds during post-harvest processing is 
rarely seen with antibodies in HCCF from standard bench- 
scale reactors.7 In comparison, the phenomenon is more read
ily observed in harvests from large-scale cultures, although the 
reason for this is unclear. Hutterer et al.14 conducted a series of 
spike-in experiments comparing the reduction susceptibility of 
a mAb in different cell lysates from several cell lines and culture 
conditions, and demonstrated that different lysates exhibit 
varying reducing activity. Recently, Cura et al.15 reported on 
a modified fed-batch cell culture process that results in reduc
tion-susceptible harvest material, where the same vessel is used 
for N-1 seed culture and fed-batch production. Disulfide 
reduction in the HCCF from this modified culture was abro
gated when the sample was stored under a high dissolved 
oxygen (DO) condition, suggesting that the disulfide reduction 
could be catalyzed by reducing enzymes present in the harvest 
material. Using this experimental model, the authors identified 
metabolic indicators (e.g., higher ratio of lactate to pyruvate in 
the culture medium and elevated glyceraldehyde dehydrogen
ase (GADPH) expression) that are altered in the reduction- 
susceptible process and correlate with disulfide bond reduction 
during post-harvest processing. Handlogten et al.16 have also 
reported that increasing the set points for DO, oxidized thiols 
(e.g., cystine), and/or metal ions prevented mAb reduction in 
the bioreactor, indicating that the redox status of the cells and/ 
or culture medium could directly affect the disulfide bonds of 
the recombinant protein. Altogether, these observations sug
gest that the metabolic state of CHO cells in the reactor can 
influence the disulfide reduction susceptibility of the HCCF. 
However, the connection between cell metabolism in the bior
eactor and mAb disulfide bond reduction susceptibility in the 
HCCF remains poorly understood.

One possible link is that metabolic indicators, such as ele
vated GAPDH expression, reflect a state of heightened meta
bolic burden and oxidative stress in the cells.17–19 Metabolic 
burden and oxidative stress are intimately related in industrial 
CHO cell cultures. Reactive oxygen species (ROS) can derive 
from increased oxidative phosphorylation and adenosine tri
phosphate (ATP) generation needed to drive recombinant 
protein biosynthesis, as well as direct oxidation of medium 
components and metabolite byproducts.20 Oxidative stress 
can also result from protein processing in the endoplasmic 
reticulum (ER), as the oxidoreductases catalyzing protein dis
ulfide bond formation (e.g., ER oxidoreductin 1 and ERO1) 
generate hydrogen peroxide as a byproduct. In turn, oxidative 
stress can activate stress response pathways in the ER to further 
increase ROS generation.21,22 This raises the possibility that 
oxidative stress experienced by the cells early in the culture can 
become amplified and persist to induce the buildup of stress 
response proteins, which include protein degrading enzymes 
such as reductases (e.g., thioredoxins). These enzymes can be 
released from lysed cells and result in a disulfide bond reduc
tion-susceptible HCCF.7

In this study, we used label-free liquid chromatography- 
mass spectrometry (LC-MS) experiments in conjunction with 
the fed-batch culture models described by Cura et al.15 to 
determine which, if any, metabolic and stress response path
ways were differentially expressed in the bioreactor culture that 

yielded a disulfide reduction-susceptible HCCF. We found 
significant differences in the expression of glycolytic enzymes 
and major reductases between cultures, resulting in reduction- 
susceptible and reduction-free HCCF. Multivariate analysis of 
proteomics data from these two culture conditions showed 
broad differences in protein expression and found an upregu
lation of chaperone proteins in cells from the reduction- 
susceptible condition. The chaperone proteins included heat 
shock proteins (HSPs), which suggests that reduction suscept
ibility of the HCCF could result from cellular stress response.

Results

Cells cultured under a reduction-susceptible bioreactor 
condition show-altered expression of metabolic enzymes 
and disulfide reducing enzymes

A recombinant CHO cell line expressing an IgG molecule 
was used to investigate the effects of cell culture process on 
the susceptibility of mAb disulfide bond reduction in the 
HCCF. We previously observed15 that culturing the cells in 
the same vessel for N-1 seed and fed-batch production 
(‘rolled’ bioreactor condition) resulted in disulfide reduc
tion-susceptible HCCF. In contrast, transferring the N-1 
seed culture into a fresh vessel for fed-batch production 
(‘control’ bioreactor condition) resulted in reduction-free 
HCCF. In general, we observed that disulfide reduction- 
susceptibility correlated with the expression and activity of 
the thioredoxin system. The growth profiles and antibody 
titers of these two bioreactor conditions were indistinguish
able. However, we observed significant differences in several 
metabolic indicators, including the ratio of extracellular lac
tate to pyruvate, GAPDH expression, 6-phosphogluconate 
dehydrogenase expression, and glucose-6-phosphate dehy
drogenase activity, suggesting a metabolic shift to the pen
tose phosphate pathway in disulfide reduction-susceptible 
HCCF.15

Based on these previous findings, we investigated if other 
glycolytic enzymes contributing to the production of lactate 
were also upregulated in the rolled condition. This analysis 
focused on days 7, 8, and 9 of fed-batch culture, corresponding 
to the stationary phase when the rate of mAb titer increase is 
maximal (refer to Cura et al.15 for bioreactor data). Untargeted 
LC-MS experiments were performed to measure the host cell 
protein (HCP) expression profiles from replicate bioreactor 
runs of reduction-susceptible (rolled, N = 2) and reduction- 
free (control, N = 2) conditions. These data were analyzed for 
enzymes in lower glycolysis (involving 3-carbon molecules), as 
pyruvate is an end product of this pathway. The untargeted 
experiments detected four of the seven enzymes in lower gly
colysis (Figure 1a-d). The abundance profiles of aldolase 
(ALDOB, Figure 1a) and phosphoglycerate kinase (PGK1, 
Figure 1d) did not show a statistically significant difference 
between the two conditions. Consistent with the previous 
study by Cura et al.,15 we detected greater abundance of 
GAPDH in cells from the rolled condition on days 7 and 8 
(Figure 1b). The day 9 abundance of GADPH protein was 
indistinguishable in the two conditions. The GADPH profiles 
of the two conditions were significantly different (p < .05) as 
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determined by linear regression of abundance differences 
(Supplementary Figure S1). A similar trend was detected for 
enolase (ENO1, Figure 1c and S1).

Under oxidative stress conditions, GAPDH functions as 
a metabolic switch to redirect flux into pathways that generate 
reducing power for antioxidant systems.17–19 These systems 
include thioredoxins (TRX) and related reductases, which 
have been identified as host cell-derived factors that contribute 
to disulfide bond reduction susceptibility of HCCF.6,9,23 We 
found a significant, nearly two-fold increase in the abundance 
of thioredoxin reductase 1 (TRXR1, Figure 1e) and glu
tathione-disulfide reductase (GSR, Figure 1f) in cells from the 
reduction-susceptible condition in the day 7 sample. Both are 
disulfide reducing enzymes that defend against oxidative 
damage, suggesting a potential link between oxidative stress 
and the metabolic changes we observed.

Analysis of untargeted proteomics data shows broad 
differences in protein abundance between bioreactor 
conditions of reduction-susceptible and reduction-free 
HCCF

The above observations showed differences in abundance and 
expression profiles of several host cell enzymes between reduc
tion-susceptible and reduction-free HCCF. We next investi
gated if there were broad differences in HCP abundance 
between the two bioreactor conditions. To this end, we ana
lyzed the variance in the untargeted proteomics data using 
principal component analysis (PCA). Each batch of LC-MS 
data was separately analyzed to take into account potentially 
confounding batch effects.24 Score plots of the first two princi
pal components (PCs) showed that samples from the same 
batch grouped closely together (Supplementary Figure S2). 

Nevertheless, distinct groupings by bioreactor condition were 
detectable within each batch. This is more clearly observed in 
separate scatter plots of PC scores for each batch. For data set 1 
(Figure 2a), separation between the reduction-susceptible 
(rolled) and reduction-free (control) conditions occurs along 
the second principal component (PC2), with rolled and control 
samples having positive and negative PC2 scores, respectively. 
Together, PC1 (50.2%) and PC2 (29.3%) account for 79.5% of 
the total variance. For data set 2 (Figure 2b), the first two PCs 
account for a similar fraction (75.7%) of total variance. 
However, the separation along PC2 is weaker, with the day 9 
sample from the reduction-free condition having a negative 
PC2 score. To corroborate the sample groupings suggested by 
the PCA score plots, we performed a multivariate test (permu
tational multivariate analysis of variance, PERMANOVA), 
which found that the protein abundance profiles of the rolled 
and control conditions are significantly different 
(p-value = 0.022 for data set 1 and 0.014 for data set 2).

We next performed a discriminant analysis (PLS-DA) to 
identify peptides that contribute to the separation between 
the two bioreactor conditions. Score plots from PLS-DA 
(Figure 3c,d) showed clear sample groupings along the 
first latent variable (LV1). For both data sets, samples 
from the rolled condition projected onto LV1 with lower 
(more negative scores). Similar to the PCA results, the 
rolled samples showed a smaller variance in the scores 
compared to the control samples. The scores of control 
samples decreased from day 7 to 9. For data set 1 
(Figure 2c), the day 9 sample projected with a negative 
score, closer to the rolled samples. Taken together, the 
multivariate analysis results suggested that cells from the 
two bioreactor conditions have distinct protein abundance 
profiles.

Figure 1. Abundance of lower glycolysis enzymes (a-d) and reductases (e, f). Error bars show SEM (N = 2). Asterisk (*) indicates significant difference (p < .05) in the time 
profile of protein abundance.

MABS e1963094-3



Figure 2. (a, b) Scatter plots of first two principal component scores (PC1 and PC2) for data set 1 (a) and data set 2 (b). Values in parentheses show percent variance 
explained by the corresponding principal component axes. Circles and squares show control and rolled samples, respectively. (c, d) First latent variable (LV1) scores from 
PLS-DA of data set 1 (c) and data set 2 (d). Panels (e) and (f) show the corresponding LV1 loadings determined from PLS-DA for all peptides in the respective data sets.
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Inspection of LV1 loadings from PLS-DA showed that 
a subset of peptides contributed disproportionately to the 
separation between the control and rolled condition samples 
(Figure 3e,f). The peptides corresponding to the 50 most posi
tive and 50 most negative loadings were selected for further 
analysis to determine if the profiles of proteins represented by 
these peptides were significantly different between sample 
groups over days 7, 8, and 9 of bioreactor culture.

Stress response proteins are enriched in the set of proteins 
differentially abundant between cells from 
reduction-susceptible and reduction-free conditions

To compare the abundance time profiles of discriminatory 
proteins over days 7, 8, and 9, the proteomics data sets were 
first processed using a semi-automated procedure for peptide 
identification and protein annotation (Figure 2). Data from 
two sets of bioreactor runs were separately annotated to 
account for potential batch-to-batch differences in detected 
peptides. A total of 1,558 and 1,567 unique peptides were 
detected with high confidence in data set 1 and data set 2, 
respectively. The loadings criterion identified largely overlap
ping sets of discriminatory peptides across the two data sets, 
resulting in a discriminatory set of 125 unique peptides having 
loadings that are in the top 50 most positive or 50 most 
negative category in either data set. The abundance time pro
files of proteins corresponding to these peptides were then 
compared between the two bioreactor conditions using 
ANCOVA. This identified 85 discriminatory proteins detected 
in all 12 samples (across both data sets) that exhibited 

significantly different (p < .05) abundance profiles between 
the two bioreactor conditions (supplementary Table S2). 
p-values were calculated by ANCOVA. A cutoff value of 
p = .05 was used as the significance threshold.

We next performed a k-means clustering analysis to 
determine which, if any, of the significant discriminatory 
proteins exhibited similar abundance profiles across the 
bioreactor conditions and time points. The optimal number 
of clusters was determined using the Calinski-Harabasz 
index (Supplementary Figure S3, panel A). A Silhouette 
plot (Supplementary Figure S3, panel B) confirmed k = 5 
as the correct number of clusters that produces the smallest 
cluster assignment error (no overlap between clusters). The 
trends in each cluster are shown in (Figure 3). The compo
sition of each cluster is shown in the heatmap of 
Supplementary Figure S4.

Cluster 1, comprising the largest number of proteins 
(27), did not show a discernible overall trend, although 
individual proteins in the cluster show different abundance 
time profiles between the two bioreactor conditions. Cluster 
2 proteins decreased in abundance from day 7 to 9 for the 
control conditions, whereas they either remained low (rela
tive to control day 7) or increased from day 7 to 9 for the 
rolled condition. Cluster 3, comprising the fewest proteins 
(7), remained low in the control condition (relative to 
rolled day 9) and increased from day 7 to 9 in the rolled 
condition. Cluster 4 proteins increased steadily in the con
trol condition, whereas they remained elevated (relative to 
control day 7) for the rolled condition. Cluster 5 proteins 
showed the same trend as cluster 4 for the control 

Figure 3. Mean abundance profiles (normalized as described in Section ‘Untargeted Proteomics Data Processing and Annotation’) of significant discriminatory proteins 
grouped into five clusters. Each line represents one of 85 proteins shown in Table S2. Clusters were obtained using k-means clustering. Optimality of cluster number was 
determined using the Calinski-Harabasz criterion. The numbers of proteins in each cluster are shown in parentheses next to cluster number.
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conditions, but steadily decreased in abundance over time 
for the rolled condition.

To determine if proteins in the same cluster participate in 
related biological processes, we performed a gene ontology 
(GO) analysis. The GO terms for the proteins are presented 
in Supplementary Table S2. This analysis showed that 
a majority of cluster 1 comprised metabolic enzymes, with 13 
of 27 proteins catalyzing reactions in glycolysis, pyruvate meta
bolism, or the TCA cycle. Cluster 2 largely comprised proteins 
annotated with GO terms related to protein processing. Cluster 
3 included cell signaling, protein processing, and metabolic 
proteins. The dominant biological process of cluster 4 was 
again protein processing, specifically in the ER, and included 
several proteins associated with cellular stress response. Cluster 
5 did not associate with a dominant GO term in the biological 
process domain. However, several of the proteins in the cluster 
were annotated with GO terms related to protein processing.

To determine statistically significant GO terms, an enrich
ment analysis was performed using the STRING database. 
After correcting for false discovery rate (FDR), the lowest 
significant p-values (<10–4) were calculated for translation, 
translational elongation, and cellular metabolic process 
(Table S3). All three terms were associated with cluster 4. 
Other significant GO terms were protein folding, biological 
regulation, and oxidation-reduction process. A majority of 
the proteins associated with the significant GO terms belonged 
to families of HSPs or Eukaryotic elongation factor (EEF) 

complexes. These results suggested that elevation of chaper
ones is a significant discriminatory characteristic of HCPs from 
the rolled (reduction-susceptible) condition. p-values were cal
culated using Fisher’s exact test and adjusted for FDR using the 
Benjamini–Hochberg procedure.

Protein–protein interaction analysis identifies a network 
of heat shock and ER chaperone proteins

We next investigated which, if any, of the proteins in the above 
identified clusters interacted with each other. This analysis 
focused on proteins in clusters 4 and 5, which showed 
a general upregulation in the reduction-susceptible condition. 
These proteins showed a steady increase in abundance for the 
control condition and higher abundance on day 7 (compared 
to day 7 control) for the rolled condition. The protein–protein 
interaction network was generated using STRING25 and ren
dered into an undirected graph using Cytoscape (Figure 4, 
supplementary Figure S5). A single network connecting 
a majority (17/21) of the proteins in cluster 4 was detected 
based on STRING’s confidence scores of known interactions 
between proteins. This network comprised proteins related to 
protein processing (EEFs and ATP-dependent chaperone com
plex), protein synthesis (ribosomal proteins and nucleolar pro
tein), or stress response (HSPs, hypoxia upregulated protein). 
This network also connected several proteins in cluster 5, 
including HSP 90 alpha (HSPCA), ribosomal proteins L3, 

Figure 4. Significant interactions between proteins in clusters 4 and 5. Functional protein interaction network analysis was performed on the basis of interaction data in 
the STRING database (version 11.0). Cytoscape was used to visualize the resulting connected graph. Dark and light nodes are proteins from cluster 4 and 5, respectively. 
A line between two nodes indicates that the pair has at least one known or predicted interaction. A thicker line indicates that there is higher confidence in the 
interaction, e.g., due to experimental evidence for protein-protein binding.
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and L10, and an ATP synthase subunit. Taken together with 
the k-means clustering results, the protein–protein interaction 
analysis suggests that the cells from the reduction-susceptible 
bioreactor were subjected to elevated cellular stress.

Discussion

Previous studies have implicated protein disulfide reductases 
such as TRX in the reduction of antibodies in HCCF.9,10,23,26 

The study by Cura et al.15 found that reduction-susceptible 
HCCF from a rolled tank bioreactor condition contained 
higher levels of TRX and increased metabolic markers, includ
ing GAPDH and lactate/pyruvate ratio. These data suggest that 
a metabolic shift in cells during production, caused by bior
eactor conditions, can result in antibody reduction susceptibil
ity after harvest. However, the mechanisms responsible for the 
observed metabolic shift and increased abundance of reduc
tases in the disulfide reduction-susceptible HCCF were 
unclear.

To address these questions, we compared the abundance of 
HCPs in samples from control and rolled bioreactor conditions 
that result in reduction-free and reduction-susceptible HCCF, 
respectively. We focused on three timepoints (days 7, 8, and 9) 
that correspond to the shift to stationary phase of bioreactor 
culture. Multivariate discriminant analyses (PLS-DA) per
formed on normalized protein abundances showed a clear 
separation between samples from the control and rolled bior
eactor conditions (Figure 2), indicating that the cells grown 
under these two conditions had broadly different protein 
expression profiles. Comparisons of the top discriminatory 
proteins (having the most positive or negative LV1 loadings) 
using ANCOVA identified 85 proteins having significantly 
different trends in their relative abundance between the reduc
tion-susceptible and reduction-free bioreactor conditions. 
Clustering the proteins followed by GO term enrichment ana
lysis pointed to an upregulation of ER proteins on day 7 as 
a discriminatory trend of the rolled bioreactor condition. 
Moreover, this group of early upregulated proteins (cluster 4, 
Figure 3, Supplementary Figure S3) included several HSPs 
associated with cellular stress response. Taken together, these 
findings suggest that the increased abundance of reductases 
(Figure 1) and metabolic shift observed in reduction- 
susceptible HCCF could be correlated with cell stress.

CHO cell proteomics

LC-MS has been widely used to study proteomes of CHO 
cells. However, identification and annotation of detected pep
tides remain challenging due to the complexity of the data. 
For example, tryptic digests of whole-cell lysates result in 
peptides having sequences that are common to multiple pro
teins. A related problem is quantification, which is difficult 
because a protein can be represented by multiple peptides 
detected at varying intensities. In this study, we developed 
a semi-automated workflow to systematically annotate data 
from label-free, untargeted LC-MS experiments and select 
confidently identified peptides (FDR of incorrectly identified 
peptides <1% and confidence level >95%) for protein quanti
fication. The number of unique CHO cell proteins identified 

in our study (~1,600) is comparable to previous studies. 
Comparing the host cell proteomes of CHO K1, CHO S, 
and CHO/dhFR− cells, Xu et al.27 detected 1,307 proteins 
that were expressed in all three cell lines. Park et al.28 ana
lyzed HCPs released from viable and lysed CHO DG44 and 
DXB11 cells, and identified ~2,000 proteins that accumulated 
in fed-batch cultures of the cells. A similar number of pro
teins were identified in a study by Lakshmanan et al.29 that 
compared the host cell proteomes of K1, DXB11, and DG44 
cell lines.

These and other previous studies were generally concerned 
with studying growth- or recombinant product-related differ
ences by, for example, comparing cultures at different growth 
stages,27,28 characterizing the effects of a temperature shift30,31 

or depletion of a growth-regulating miRNA/mRNA,32,33 or 
monitoring the glycoproteins in the culture medium.34–36 In 
contrast, our study focused on differences in HCP abundance 
between cultures that exhibit essentially identical growth and 
productivity profiles, yet result in HCCF having varying sus
ceptibility to disulfide reduction of the mAb product, 
a demonstrated issue for protein quality in 
biomanufacturing.37,38 Consistent with our earlier observation 
regarding metabolic indicators,15 we found significant differ
ences in the abundance of several glycolytic enzymes. 
Furthermore, we found differences in the abundance of pro
teins that function in protein folding and cellular stress 
response.

There have been only a limited number of proteomics 
studies on CHO cell stress response. One study on the effects 
of butyrate and zinc sulfate exposure found that expression of 
ENO1 and TRX correlated with cellular stress induced by these 
two additives. More recently, Xie et al.39 reported that exposure 
of CHO cells to methyl tert-butyl ether, an oxidant and cyto
toxic chemical, induced the upregulation of antioxidant 
enzymes and HSP family A members 8 and 9 (HSPA8 and 
HSPA9). In this study, we detected a greater abundance of both 
HSPs, as well as ENO1 and TRXR1, in the reduction- 
susceptible bioreactor condition.

Early upregulation of chaperones indicates cell stress

Enrichment analysis showed that the proteins upregulated 
on day 7 in the rolled condition (clusters 4 and 5) were 
significantly associated with translation and metabolic pro
cesses (Tables S2 and S3). These proteins include stress- 
inducible protein folding and processing-related proteins 
located in the ER (HSP90B1, HYOU1, and RPN2), cytosol 
(CCT2, CCT5, and HSPCA), and mitochondria (HSPA9). In 
addition to chaperone function, the ER proteins (HSP90B1 and 
HYOU1) and heat shock proteins (HSPCA and HSPA9) also 
regulate Ca2+ signaling and are essential for protein assembly 
and folding as well as degradation of misfolded proteins.40–42 

The chaperones CCT2 and CCT5 interact with heat-shock 
proteins (e.g., HSP90B1) to regulate Ca2+ signaling in response 
to stress in the ER. In CHO cells, HSP90B1 is induced by 
glucose limitation or ER stress.43,44 Expression of HSPA9 in 
CHO cells is increased with accumulation of unfolded protein 
in the ER.45 Recently, Xie et al.39 highlighted HSPA9 as 
a marker of oxidative stress in CHO cells. Upregulation of 
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HYOU1 occurs under hypoxia,46 as well as ER stress-induced 
unfolded protein response. Wei et al.47 showed that these ER 
chaperones were upregulated as cells aged during extended 
CHO cell culture.

In addition to heat shock (thermal stress), chaperone upre
gulation can be caused by oxidative stress, and thus one possi
ble explanation for our observations is that cells in the rolled 
condition experienced greater oxidative stress earlier in the 
culture. Combined with the enhanced demand for oxidative 
protein folding by enzymes, such as ERO1 due to recombinant 
protein overexpression, the oxidative stress could exacerbate 
ROS accumulation in the ER. It has been shown that the 
oxidative stress response in the ER is accompanied by upregu
lation of chaperones,48 possibly to resolve ROS-induced mis
folding of proteins.49,50 Potentially exacerbating the oxidative 
stress is the depletion of ROS scavenging enzymes in the rolled 
bioreactor condition, including superoxide dismutase, catalase, 
glutathione peroxidase (GPx7), and peroxiredoxin 
(Supplementary Figure S6).

The source of increased oxidative stress in the rolled bior
eactor condition is unclear. One possible explanation is that 
draining the bioreactor during inoculation while continuously 
heating the vessel induced a heat shock response. During the 

drain and refill process, cells on or near the vessel’s interior 
glass surface could experience temperatures above 40°C (data 
not shown). Previous studies have shown that temperatures in 
this range can elicit a heat shock response that, once triggered, 
could result in lasting effects on cell metabolism and stresses in 
the early part of the production culture.51,52 Alternatively, the 
transient elevation in reactor temperature at the beginning of 
culture could have catalyzed the formation of oxidant chemi
cals that promote oxidation of medium components over the 
duration of bioreactor culture. As ROS production can be 
induced by many abiotic stresses, it is possible that both 
mechanisms, as well as other bioreactor culture-related stres
ses, contribute to the upregulation of antioxidant enzymes and 
chaperones.

ER stress and oxidative stress are potential drivers for 
increased abundance of reductases in the 
reduction-susceptible HCCF

Our findings regarding the upregulation of ER chaperones and 
stress response proteins in the rolled bioreactor condition, 
which could explain the increased abundance of protein dis
ulfide reductases in the HCCF, are summarized in (Figure 5). 

Figure 5. Oxidative stress response and protein reduction pathways in cells from the reduction-susceptible bioreactor condition. Blue arrows indicate proteins detected 
at greater (up arrow) or lower (down arrow) abundance in cells from the rolled condition compared to control. Some signaling pathway components (e.g., TRX) that we 
were unable to quantify are included in the figure to connect the detected proteins according to known pathways of oxidative stress signaling and ER stress response. 
The proteins were grouped into subsystems (numbers in circles) based on their pathway membership (Supplementary Table S2) and cellular compartment. The 
subsystems and their interactions are discussed Section ‘ER Stress and Oxidative Stress are potential Drivers for Increased Abundance of Reductases in the Reduction- 
Susceptible HCCF’. BiP: immunoglobin protein; CAM: calmodulin; CAMK: CAM-dependent protein kinase III; CAT: catalase; CNX: calnexin; CRT: calreticulin; EFF2: 
Elongation factor 2; ERO1: ER oxidoreductin 1; GPx: glutathione peroxidase; GSH: glutathione; GSSG: glutathione disulfide; GSR: Glutathione-disulfide reductase; GST: 
glutathione s-transferase; HSPs: heat-shock proteins; NADPH: nicotinamide adenine dinucleotide phosphate; PDI: protein disulfide isomerase; TRX: thioredoxin; TRXR: 
thioredoxin reductase; UPR: unfolded protein response.
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We detected an earlier (day 7) increase in the abundance of 
calmodulin (CAM) and elongation factor 2 (EEF2) in the rolled 
bioreactor compared to the control bioreactor. CAM is a Ca2+ 

activated messenger protein implicated in oxidative stress 
response of CHO cells.53 In the presence of ROS, such as H2 
O2, CAM mediates the activation of EEF2 via Ca2+/CAM- 
dependent protein kinase III (CAMK) (Figure 5, #1). In the 
ER, the decrease in Ca2+ weakens the association of ER chaper
one binding immunoglobin protein (BiP) with unfolded and 
aggregated proteins (Figure 5, #2), resulting in an increase of 
unfolded proteins.54 Degrading or refolding these proteins 
requires the calreticulin (CRT)/calnexin (CNX) quality control 
cycle (Figure 5, #3).27 We detected an increase in the abun
dance of CRT in the rolled condition, along with other chaper
ones (HSPs), which suggests an ER stress response (i.e., 
unfolded protein response) typically associated with ROS 
accumulation.49

Protein folding activity in the ER can itself be a source of 
ROS generation. Folding and re-folding of unfolded or mis
folded proteins within the ER is facilitated by protein disulfide 
isomerase (PDI), which catalyzes disulfide bond formation and 
isomerization.55 Oxidative folding by PDI results in the reduc
tion of the isomerase, which needs to be regenerated to its 
oxidized form by oxidizing enzymes such as ERO1. This, in 
turn, generates H2O2 as a byproduct (Figure 5, #4). We also 
found increased abundance of several antioxidant enzymes in 
the rolled condition, including TRXR1, GSR, and glutathione- 
S-transferase (Figure 1e, f). In concert with the glutathione 
(GSH) reductase system, the TRXR system protects against 
oxidative damage to macromolecules56 by reducing oxidized 
cysteine and methionine residues (Figure 5, #5).

It should be noted that antibody reduction likely occurs in 
harvested material (HCCF) after cells are lysed.7,15 Specifically, 
thioredoxins and GSH released from lysed CHO cells into the 
cell culture fluid have been shown to reduce antibody inter
chain disulfide bonds.23,26 Greater abundance of TRXR1 in 
cells from the rolled bioreactor could thus result in a HCCF 
having an enhanced capacity for TRX-catalyzed mAb disulfide 
bond reduction, especially when the HCCF sample is stored 
and processed under non-oxidizing conditions. Activity of 
TRX in the HCCF would be further enhanced in the presence 
of free thiols, as well as enzymes capable of regenerating these 
thiols. This scenario is consistent with our observation that the 
cells from the rolled bioreactor showed a greater abundance of 
GSR, which regenerates the free thiol GSH from the oxidized 
glutathione dimer (GSSG).

In conclusion, we have shown that cells at stationary phase 
(several days before harvest) have a significantly different HCP 
expression profile in a reduction-susceptible bioreactor condi
tion compared to cells in a reduction-free condition. The 
proteins that most significantly discriminate between the two 
bioreactor conditions include HSPs that function as intracel
lular chaperones. The abundance of these proteins trended 
higher in the reduction-susceptible condition. Taken together 
with increased abundance of antioxidant enzymes, this sug
gests that the cells from the reduction-susceptible conditions 
experienced greater oxidative stress. When these cells are lysed 

during harvest, the release of TRXR and GSR could establish 
a more reductive environment in the HCCF. Our previous 
study showed that TRXR protein expression and activity were 
both significantly elevated in reduction-susceptible HCCF 
samples compared to reduction-free samples.15 Whether the 
oxidative stress results from direct induction of a heat shock 
response, oxidizing chemicals in the culture medium, or other 
abiotic stresses remains to be elucidated and warrants further 
studies. Prospectively, mitigating these stresses during the cell 
culture could benefit post-harvest HCCF processing and 
improve control over product quality.

Materials and methods

Cell line and cell culture medium

Chemically defined Bristol–Myers Squibb-proprietary basal 
and feed cell culture media and a proprietary recombinant 
CHO cell line expressing an IgG antibody were used in these 
experiments. Unless otherwise noted, all chemicals and 
reagents were purchased from Sigma–Aldrich (St. Louis, MO).

Bench-scale bioreactors and cultivation conditions

Recombinant, suspension adapted IgG producing CHO 
cells were cultured in 250 mL, 1 L and 3 L shake flasks. 
The shake flask cultures were placed in a shaking incubator 
(Kuhner, Basel, and CH) at 36.5°C and agitation rate 
150 rpm in a humidified atmosphere of 5% CO2. Bench- 
scale bioreactor cultivations for both N-1 seed and fed- 
batch production were carried out in separate 5 L stirred 
glass bioreactors (Sartorius, Goettingen, DE). This two- 
vessel cultivation was designated as the ‘reduction-free 
(control)’ condition.15 For cultivation of CHO cells produ
cing IgG molecules susceptible to disulfide reduction, the 
same vessel was used for the N-1 seed and fed-batch pro
duction. The N-1 seed bioreactor was drained of its content 
until only enough volume remained to inoculate a fed- 
batch production bioreactor. This was followed by addition 
of fresh, room temperature medium to the same vessel to 
reach the starting volume for a 5 L production bioreactor. 
This single vessel cultivation was designated as the ‘disul
fide reduction-susceptible (rolled)’ condition.

The 5 L bioreactors were equipped with pH and dissolved 
oxygen (DO) probes for online monitoring and control. 
Sparging of CO2 gas was used for upper end pH control. 
Agitation, aeration, and oxygen sparging were used to control 
pCO2 and air saturation to the desired ranges. Cell density and 
viability were monitored by daily offline measurements (Vi- 
Cell XR, Beckman Coulter, Atlanta, GA, USA). Offline mea
surements for pH, air saturation, and pCO2 were performed on 
a pHOx pH/gas analyzer (Nova Biomedical, Waltham, MA, 
USA). Glucose, lactate, and pyruvate profiles were measured 
with Cedex Bio HT (Roche, Indianapolis, IN, USA). Cell cul
ture samples (7–10 mL) were collected daily. The samples were 
immediately centrifuged at 660 g, 4°C for 10 minutes to obtain 
separate aliquots of medium supernatant and cell pellet. The 
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supernatant and pellet samples were stored at −80°C until 
further analysis.

Host cell protein extraction and sample preparation

Proteins were extracted from cell pellet samples using an 
organic solvent mixture of methanol, chloroform, and water 
(47.6:47.6:4.8 v/v/v) as described previously57 with modifica
tions for a high-density suspension-adapted cell culture. Cell 
pellets from the 5 L production bioreactors were thawed and 
rinsed with ice-cold 1× phosphate-buffered saline. Calculated 
amounts of methanol/water (91:9 v/v) and chloroform were 
added to arrive at the final solvent mixture. Samples were 
vortexed for 15 seconds, and then subjected to three freeze- 
thaw cycles to lyse the cells. The lysed sample was transferred 
to a fresh sample tube and centrifuged for 10 min at 15,000 g 
and 4°C. After removing the supernatant, equal volumes 
(650 µL) of extraction buffer and TRizol® reagent were added 
to solubilize and to denature the protein pellet. The extraction 
buffer was an aqueous solution of 50 mM Tris (pH 7.6), 0.5% 
(w/v) sodium dodecyl sulfate, and 1% (v/v) β-mercaptoethanol. 
After incubating for 1 h at 37°C, the sample was vortexed for 
15 seconds and centrifuged for 15 min at 14,000 g and 4°C to 
obtain phase separation. The bottom phase containing proteins 
was collected in a fresh sample tube, mixed with 1 mL of ice- 
cold acetone, stored overnight at −20°C, and centrifuged the 
next day for 15 min at 14,000 g and 4°C to pellet the precipi
tated proteins. After discarding the supernatant, the pellet was 
washed three times with 1 mL ethanol, and dried in a SpeedVac 
concentrator (Eppendorf, Hauppauge, NY). The dried proteins 
were reduced by incubating the sample for 30 min at 37°C with 
50 µL of an 8 M urea and 50 mM dithiothreitol (Sigma– 
Aldrich) solution in 50 mM Tris-HCl (Trizma hydrochloride, 
Sigma–Aldrich). Then, 5 µL of 500 mM iodoacetamide 
(Sigma–Aldrich) were added and the mixture was incubated 
for 15 min at room temperature in the dark to alkylate cysteine 
residues. The reduced and alkylated proteins were digested by 
adding trypsin (10 µg protease per 1 mg protein) in 1 M Tris- 
HCl with 1 mM calcium chloride and incubating the sample 
overnight at 37°C. The digestion was quenched by lowering the 
pH to 2 using formic acid. The sample was centrifuged for 
5 min at 14,000 g and 4°C to pellet any remaining undigested 
protein. The supernatant was collected and stored at −20°C for 
LC-MS analysis.

Untargeted proteomics using LC-MS

The digested peptides were analyzed on a triple quadrupole 
time-of-flight (TOF) MS system (TripleTOF® 5600+, AB Sciex, 
Framingham, MA) coupled to a binary pump high- 
performance LC system (Agilent 1260). The samples were 
run in a randomized order. Detection of the peptides was 
performed in positive electrospray ionization (ESI+) mode 
using information-dependent acquisition (IDA). Full-scan 
(TOF) MS spectra (300–1,250 m/z) were acquired for precursor 
ions having charge states of +2 to +5. Mass tolerance was set to 
50 mDa. The scans excluded isotopes within 4 Da. Dependent 
(IDA) scans were triggered when an ion count exceeded 100 

cps. Prior to ionization, the peptides were separated on 
a reverse-phase (RP) column (Ascentis® Express C18, 2.7 μm 
100 Å 150 × 2.1 mm, Sigma–Aldrich) using a gradient method. 
The column oven temperature was set to 35°C. Mobile phase 
A was a 0.1% (v/v) formic acid solution in water and mobile 
phase B was a 0.1% (v/v) formic acid solution in acetonitrile. 
The flow rate was set to 200 µL/min. The solvent gradients are 
described in Supplementary Table S1.

Untargeted proteomics data processing and annotation

Untargeted LC-MS proteomics data from replicate bioreactor 
runs of reduction-free (control, N = 2) and disulfide reduction- 
susceptible (rolled, N = 2) conditions were acquired in two 
batches. Raw data from the LC-MS experiments were processed 
through a series of quality control and annotation steps to identify 
the detected peptides and determine the abundance of proteins 
represented by the peptides (Figure 6). An ion library covering all 
samples in a batch was generated in ProteinPilot (version 5.1, AB 
Sciex) from IDA scan data of every detected precursor ion for 
which an exact mass was determined (Figure 6, step 1). The ions 
were assigned peptide sequences and corresponding protein iden
tities by searching Chinese hamster (Cricetulus griseus) protein 
sequences in the UniProtKB/Swiss-Prot database using 
ProteinPilot’s Paragon algorithm (step 2). The ions having 
assigned peptide sequences were collected into a feature table, 
where each feature is specified by a chromatographic retention 
time (0.5 min. window), accurate mass (m/z value, tolerance 10 
ppm), peak height in the corresponding extracted ion chromato
gram (XIC), and the assigned peptide sequence. The features 
were then filtered based on peak height (100 cps threshold) to 
remove ions (peptides) detected with poor signal.

The feature table was further analyzed using a script written in 
MATLAB (R2019b, MathWorks, Natick, MA) to select confi
dently identified high-quality peptides (step 3), determine the 
proteins represented by the selected peptides (step 4), and quan
tify the relative abundance of the proteins (step 5). For step 3, the 
following criteria were applied to determine that a peptide was 
confidently detected: 1) a peptide is represented by a distinct 
combination of accurate mass and retention time (RT), i.e., the 
peptide’s m/z and RT differ by more than 0.1 and 0.5 min, 
respectively, compared to all other peptides in the feature 
table; 2) a peptide belongs to only one protein; 3) a peptide is 
observed more than once, e.g., two different charge states are 
detected.

For step 4, the following criteria were applied to determine that 
protein was confidently represented by the detected peptides: 1) 
the protein was identified based on at least two peptides; 2) at least 
two peptides associated with the protein have a confidence score 
greater than 95%. Peptides meeting the above criteria and belong
ing to confidently detected proteins were quantified in 
MultiQuant (version 2.1 AB Sciex) by manually integrating the 
peptides’ peak areas (AUCs) in the corresponding XICs (step 5). 
The peptide AUCs of a sample were normalized twice, first by the 
sum of all peptide AUCs for the sample, and then the total ion 
current from the TOF survey scan. An additional set of quality 
filters was applied to exclude peptides that do not have an AUC 
above blank in at least 80% of samples, and peptides with RTs 
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deviating more than 0.5 min between samples were also excluded 
(step 6). The peptide with the largest average normalized AUC 
across all samples was selected to represent the corresponding 
protein’s abundance. Finally, the abundance of a protein in 
a sample was scaled to the largest abundance across all samples 
in the same batch.

Statistical analysis

Expression profiles of glycolytic enzymes from reduction-free 
and reduction-susceptible conditions were compared by first 
calculating the differences in relative abundance between the 
conditions at matching time points, and then performing 
a linear regression through these points with culture time as 
the predictor variable. Differences in abundance were calcu
lated separately for each batch of proteomics data, resulting in 
a regression model fitted to six data points for each glycolytic 

enzyme. A cutoff p-value of 0.05 was used to determine that 
a regression line had a significant (non-zero) slope, and thus 
indicated a protein expression profile differed between the two 
bioreactor conditions. This analysis was performed in Prism 
(version 8, GraphPad, San Diego, CA). Principle components 
analysis (PCA) was performed on the LC-MS data (normalized 
AUCs of peptides) using MATLAB to visualize sample 
groupings.58 In addition, permutational multivariate analysis 
of variance (PERMANOVA) was performed using the 
FATHOM Toolbox for MATLAB to test if there was 
a statistically significant difference in HCP abundance profiles 
between reduction-susceptible and reduction-free 
conditions.59

Subsequently, a partial least squares discriminant analysis 
(PLS-DA) was performed using the NIPALS algorithm imple
mented in MATLAB to identify peptides (and corresponding 
proteins) that discriminate samples from disulfide reduction- 

Figure 6. Data processing workflow for untargeted LC-MS proteomics of CHO cell extracts.
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susceptible and reduction-free bioreactor conditions. Mean cen
tering was used as the data scaling method. Discriminatory 
proteins contributing to the separation between sample groups 
were selected based on loadings of the first latent variable. The 
loadings were first sorted from the smallest (most negative) to 
the largest (most positive), and then the top 50 most positive 
and negative loadings were selected. The abundance time pro
files of proteins corresponding to these loadings were tested for 
statistical significance between the two bioreactor conditions 
using analysis of covariance (ANCOVA). This analysis treated 
each replicate time point as an individual data point, resulting in 
a regression model fitted to six data points for each discrimina
tory protein of interest.60 For a protein of interest, the 
ANCOVA test compared the slopes and intercepts of two 
regression lines corresponding to the protein’s abundance 
time profiles in cells from reduction-susceptible and reduction- 
free bioreactor conditions. A cutoff p-value of 0.05 was used to 
determine that a pair of regression lines are significantly differ
ent and thus indicate that the protein’s expression profile dif
fered across the two bioreactor conditions. A k-means clustering 
analysis was performed on these significant proteins to identify 
groups that exhibit similarly different expression patterns 
between the two conditions. Euclidean distance was used as 
the similarity metric. The Calinski-Harabasz index was used to 
determine the optimal number of clusters,61 and Silhouette 
coefficient values were calculated to confirm that correct clusters 
have been obtained with no overlap between clusters. This 
analysis only considered significant proteins detected in both 
sets of replicate bioreactor runs (Supplementary Table S2). 
Interactions between proteins within clusters having similarly 
different expression profiles between reduction-susceptible and 
reduction-free bioreactor conditions were analyzed using the 
STRING database (version 11.0, https://string-db.org) and 
visualized using Cytoscape (version 3.8.1, https://cytoscape. 
org).62
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