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Our recent identification of an exo-
somal route for tau protein secre-

tion1 marks a key similarity between tau 
and other aggregation-prone proteins 
implicated in neurodegenerative disease 
pathogenesis and is to some extent con-
gruent with the popular idea that tau 
pathology spreads between neurons via 
a “prionlike” template-mediated pro-
tein misfolding mechanism in AD and 
other tauopathies. However, the obser-
vation that much of the phosphotau in 
CSF samples from early AD patients is 
exosomal (and thus likely to have been 
secreted) calls into question a very widely 
held and plausible assumption - the idea 
that the elevated CSF-tau in AD is due to 
the passive release and accumulation of 
tau in the CSF as a consequence of wide-
spread neuronal death. Here we examine 
this issue directly and explore some of 
the broader implications of this study for 
our understanding of AD pathogenesis 
and the prospects for improving its diag-
nosis and treatment.

While significant progress has been made 
toward understanding the role played by 
tau misprocessing in AD pathogenesis, 
much remains unclear. At the cellular 
level of analysis, misprocessing events 
such as oligomerization, hyperphos-
phorylation and cleavage that lead to tau 
aggregation via its microtubule binding 
repeat (MTBR) region have been linked 
to many aspects of tau mediated toxic-
ity, especially in “tau-only” tauopathies 
associated with exonic point mutations in 
tau.2-4 However, tau is now known to have 
many cellular functions beyond its classic 
role in stabilizing axonal microtubules via 
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the MTBR,5,6 including interactions with 
signal transduction and (now) uncon-
ventional secretory pathways, some of 
which are implicated in AD and non-AD 
tauopathy pathogenesis.7 The classic view 
of a single MTBR-mediated tau toxicity 
mechanism in AD has been complicated 
over the past decade by numerous reports 
of an alternative toxicity mechanism that 
does not require the tau MTBR8-11 and 
which mediates much of the neurotoxicity 
due to Abeta in AD.12,13 The existence of 
separate MTBR+ and MTBR- tau toxic-
ity mechanisms is particularly relevant to 
our emerging understanding of interneu-
ronal aspects of tauopathy pathogenesis, 
which until very recently was based solely 
on neuropathology patterns suggestive 
of paracellular and trans-synaptic lesion 
propagation in AD.14-16 More recently, we 
and others have characterized tau secre-
tion, uptake and extracellular toxicity in 
various cell culture models1,17-20 and have 
shown that tau can be secreted from and 
taken up by non-moribund neurons in 
situ in a cell-autonomous non-transgenic 
model.18,21,22 and that tau misprocessing 
and secretion resembles that seen in other 
aggregate-associated diseases, including 
prion diseases.23-25 These studies emphasize 
both the likely relevance of tau secretion 
to tauopathy pathogenesis and the multi-
plicity of possible tau transfer and toxicity 
pathways. While recent studies in murine 
transgenic models suggest the operation of 
a “prionlike” mechanism of lesion spread 
via templated protein misfolding,26-28 the 
possible involvement of MTBR- and/or 
receptor-mediated interneuronal toxicity 
mechanisms indicate that the identifica-
tion of any one mechanism as responsible 
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active secretion, since Ca2+ fluxes also play 
a critical role in most unconventional 
secretion mechanisms.46 Another situa-
tion where neuron death remains a highly 
plausible (if still unproven) source for ele-
vated CSF-tau may be prion diseases such 
as Creutzfeldt Jacob disease (CJD), which 
typically features much higher CSF-tau 
levels than does AD together with mas-
sive neocortical neuron loss over a shorter 
timecourse after diagnosis.47

In the case of AD, however, indica-
tions from studies performed in the past 
decade have generally been either ambigu-
ous or inconsistent with the “death tau” 
hypothesis.48,49 The advent of quantitative 
ELISA-based studies comparing CSF-tau 
levels in early and late AD cases (includ-
ing ours) show that the well-established 
neuropathological “Braak” sequence of 
AD development does not anticipate the 
elevation of CSF-tau levels and thus con-
flicts with the death origin hypothesis (see 
Fig. 1A).1,14,32 This is especially notable 
in early “limbic” stage AD (Braak Stages 
3–4), when neurofibrillary pathology is 
confined to limbic regions of the temporal 
lobe that represent less than 10% of brain 
volume, while CSF-tau levels are rising 
sharply to their maximal levels.1 Moreover, 

was plausible, consistent with the known 
progression of neurofibrillary degenera-
tion to extracellular “ghost tangles” and 
was unopposed by other explanations.40,41 
Also, the lack of tauopathy models and of 
accurate data on the timecourse of neuron 
death in AD made acquiring direct evi-
dence for alternative CSF-tau biogenesis 
mechanisms impractical.6,42 Since then, 
this assumption has been repeatedly (if 
casually) asserted in the medical literature 
despite the lack of evidence for a causal 
link between antecedent neuronal cell 
death and elevated CSF-tau levels in AD.

The continued plausibility of the 
death-induced hypothesis of CSF-tau in 
AD appears to be based on analogy with 
episodic conditions (head trauma, stroke, 
severe seizures) in which the time course 
of CSF or blood tau levels can be mea-
sured relative to a single generative event. 
In each of these conditions, CSF and/or 
serum tau levels undergo a large transient 
rise that is directly correlated with both 
event severity and with direct measures 
of neuronal loss.43-45 The analogy with 
AD-induced neuron loss is strengthened 
by the presence of excitotoxic features in 
the neuron loss in all of these conditions, 
although this does not rule out a role for 

for lesion propagation in tauopathies is 
premature, particularly AD.9,29-31 Thus, 
while we now have much more evidence 
that tau protein transfer between neurons 
is important to tau lesion propagation in 
tauopathies, the central mechanistic fea-
tures of such transfer remain to be worked 
out. This is also true for the mechanisms 
by which both N-terminal (MTBR-) and 
near full length (MTBR+) tau species are 
generated in both the extracellular space 
and CSF.32-37

Is Neuron Death a Necessary  
Preliminary to the Generation  

of CSF tau in AD?

One of the more important effects of our 
recent study may be to call in to question 
a widely held assumption about the sig-
nificance of CSF-tau in AD pathogene-
sis—that elevated CSF-tau levels typically 
seen in AD are caused by passive release 
of tau from dead neurons.1 Even in the 
earliest accounts of elevated CSF-tau in 
AD in the mid 1990s, this assumption 
was made without supporting citations or 
discussion of alternative mechanisms.38,39 
The death-based origin for CSF-tau was 
generally accepted at that time because it 

Figure 1. elevated CSF levels of total tau and phosphotau in early AD are better explained by secretion of misprocessed tau from neurons and glia 
rather than a consequence of massive neuronal death. (A) CSF-tau in AD consists largely of 1) N-terminal fragments between 20–35kD apparent 
molecular weight with a variable admixture of higher mW species that appear to represent near full length tau. these match the secreted tau species 
seen in both in situ and cell culture models of tau secretion. the image at right shows an identified neuron (ABC) in the lamprey brain expressing 4r0N 
human tau with the P301L tauopathy mutation after 20 d of expression immunolabeled with tau12 (N-terminal mAb —red channel) and the GFP tag 
(green channel). this image illustrates the multiple possible secretion routes for tau that ultimately accumulates in the CSF. the “diffuse” tau described 
in the lamprey model consists largely of N-terminal fragments that lack the mtBr, whereas the “focal” route requires the presence of the mtBr. Both 
secretion routes in the lamprey model either introduce tau to the interior surfaces of the IVth ventricle (periventricular tau) or cross it entirely. (B) the 
respective time courses of neuronal death and CSF-tau elevation in AD are inconsistent with postmortem passive leakage of tau into the CSF, with the 
highest levels of CSF-tau occurring well before the onset of widespread cerebral occurrence of neurofibrillary degeneration in the so-called isocortical 
stages (Braak 5-6) of AD, and failing to increase with disease severity.
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CSF-tau levels remain largely stable or 
may even fall in late stage AD, even as 
neurofibrillary pathology and neuron loss 
become widespread in the brain.1,14,32 In 
this context, our demonstration that tau, 
particularly in its phosphorylated form, is 
associated with a secretion marker in CSF 
from early AD patients provides an alter-
native mechanism to neuron death, and 
thus may prompt a broad reassessment of 
the origin of CSF tau in AD.

The likelihood that tau secretion 
is involved in the genesis of CSF tau 
is fundamentally important to critical 
questions relating to AD diagnosis and 
treatment, since it raises broad issues of 
the timing and distribution of degenera-
tive changes in the brain. For instance, a 
“death” mechanism of CSF-tau pathogen-
esis implies that tau misprocessing is fatal 
to affected neurons earlier in the disease 
than is suggested by a “secretion” based 
mechanism. It therefore suggests a more 
pessimistic outlook than the latter for the 
development of prospective diagnostics 
and effective therapeutics for AD. It is a 
truism that the staying power of powerful 
and compelling ideas is better linked to 
their plausibility rather than to the actual 
evidence supporting them—a well known 
example being the miasmatic theory of 
infectious disease.50 By presenting the first 
direct evidence for an alternative mecha-
nism, this study may crystallize the exist-
ing evidence that antecedent neuron death 
is not currently a plausible mechanism for 
CSF-tau biogenesis in AD. This provides a 
new perspective on AD pathogenesis that 
opens unexplored avenues to improving 
both the diagnosis and treatment of this 
devastating and widespread condition.
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