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Abstract

Motivation: Phosphorylation is one of the most studied post-translational modifications, which plays a pivotal
role in various cellular processes. Recently, deep learning methods have achieved great success in prediction of
phosphorylation sites, but most of them are based on convolutional neural network that may not capture enough
information about long-range dependencies between residues in a protein sequence. In addition, existing
deep learning methods only make use of sequence information for predicting phosphorylation sites, and it is highly
desirable to develop a deep learning architecture that can combine heterogeneous sequence and protein–protein
interaction (PPI) information for more accurate phosphorylation site prediction.

Results: We present a novel integrated deep neural network named PhosIDN, for phosphorylation site prediction by
extracting and combining sequence and PPI information. In PhosIDN, a sequence feature encoding sub-network is
proposed to capture not only local patterns but also long-range dependencies from protein sequences. Meanwhile,
useful PPI features are also extracted in PhosIDN by a PPI feature encoding sub-network adopting a multi-layer deep
neural network. Moreover, to effectively combine sequence and PPI information, a heterogeneous feature combin-
ation sub-network is introduced to fully exploit the complex associations between sequence and PPI features,
and their combined features are used for final prediction. Comprehensive experiment results demonstrate that
the proposed PhosIDN significantly improves the prediction performance of phosphorylation sites and compares fa-
vorably with existing general and kinase-specific phosphorylation site prediction methods.

Availability and implementation: PhosIDN is freely available at https://github.com/ustchangyuanyang/PhosIDN.

Contact: mhwang@ustc.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-translational modifications (PTMs) are vital mechanisms to en-
able proper and specific protein functions by proteolytic cleavage or
addition of a modifying group covalently to amino acids (Mann and
Jensen, 2003). Among the over 200 different types of PTMs that
have been identified (Duan and Walther, 2015), one of the most
studied is phosphorylation on serine (S), threonine (T) and tyrosine

(Y), which plays a pivotal role in various cellular processes such as
signal transduction, DNA repair, cell cycle control and metabolism
(Ma et al., 2005; Wood et al., 2009). There are evidences showing
that over one-third of proteins can be phosphorylated and abnormal
phosphorylation is related to many human diseases (Cohen, 2002).

Due to the importance of phosphorylation in understanding dis-
ease mechanisms and guiding drug design, many experimental meth-
ods are introduced for identification of phosphorylation sites, such
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as low throughput 32P-labeling (Aponte et al., 2009) and high
throughput mass spectrometry (Beausoleil et al., 2006). However,
these experimental identification methods are labor-intensive and
time-consuming (Wen et al., 2016). Therefore, it is very important
to develop computational approaches with advantages of low cost
and fast speed. For that reason, a large number of computational
prediction methods have been proposed for identification of phos-
phorylation sites, and most of them are based on machine learning
technique. For example, Xue et al. (2008) use a Markov cluster algo-
rithm to develop a kinase-specific phosphorylation site prediction
approach, Group-based Prediction System (GPS), in which the
amino acid substitution matrix is used as the input features. Gao
et al. (2010) propose an approach called Musite, which uses Support
Vector Machine with amino acid frequencies as well as protein dis-
order scores and local protein sequences similarities. Li et al. (2018)
design a logistic regression-based approach, Quokka, which adopts
a variety of sequence scoring functions to predict kinase-specific
phosphorylation sites.

Recently, as an emerging machine learning technique, deep learn-
ing has brought a significant breakthrough in protein phosphoryl-
ation site prediction (Wang et al., 2017; Xu et al., 2020). For
example, Wang et al. present Musitedeep (Wang et al., 2017), the
first deep learning phosphorylation site prediction method, which
takes protein sequences as inputs and uses a multi-layer convolution-
al neural network (CNN) architecture with attention mechanism.
Subsequently, Wang et al. design CapsNet (Wang et al., 2019) that
has a two-layer CNN followed by one convolutional capsule layer
and one fully connected layer for further sequence feature extrac-
tion. In addition, we explore CNN architectures for phosphorylation
site prediction and propose DeepPhos (Luo et al., 2019), which uses
densely connected CNN (DCCNN) blocks with different filter sizes
and windows to learn multiple representations of sequences. The
test results show that these carefully designed CNN architectures are
superior to traditional phosphorylation site prediction methods.

Although aforementioned deep learning methods have achieved
promising prediction performance, there are still some issues to ad-
dress. First, despite of its powerful capability of learning local se-
quence patterns, it has been reported that CNN may not capture
enough information about long-range dependencies between resi-
dues in a protein sequence (Hanson et al., 2017; Uddin et al., 2020),
which however is beneficial for phosphorylation site prediction since
protein phosphorylation can be affected by long-range regions far
away from phosphorylation sites (Jung et al., 2010; Li et al., 2010).
As a result, it is crucial to design more sophisticated deep learning
architectures that can capture not only local patterns but also long-
range dependencies from protein sequences. Second, existing deep
learning architectures for phosphorylation site prediction only make
use of sequence information. Indeed, it has been shown that se-
quence information is often insufficient to reproduce the substrate
specificities of protein kinases (Linding et al., 2007; Song et al.,
2012). On the other hand, protein–protein interactions (PPIs) can
provide contextual information about additional effects in protein
phosphorylation (e.g. colocalization via anchoring proteins and scaf-
folds) (Linding et al., 2007; Song et al., 2012), and have been proved
to be complementary to sequence information with successful appli-
cations in existing phosphorylation prediction studies (Fan et al.,
2014; Li et al., 2010; Linding et al., 2007; Song et al., 2012; 2017).
Therefore, it is highly desirable to develop a deep learning architec-
ture that can combine heterogeneous sequence and PPI information
for phosphorylation site prediction.

In this work, we present a novel deep neural network, PhosIDN,
to accurately predict protein phosphorylation sites by efficiently
extracting and combining sequence and PPI information. As an inte-
grated deep learning architecture, PhosIDN consists of three closely
connected sub-networks including a sequence feature encoding sub-
network (SFENet), a PPI feature encoding sub-network (IFENet)
and a heterogeneous feature combination sub-network (HFCNet).
SFENet incorporates DCCNN block with a self-attention module to
capture not only local patterns but also long-range dependencies
from protein sequences. Meanwhile, IFENet adopts a multi-layer
deep neural network (DNN) to extract PPI features that are useful

for predicting protein phosphorylation sites. Moreover, to effectively
combine heterogeneous sequence and PPI information, HFCNet lev-
erages a bilinear feature module to fully exploit the complex associa-
tions between sequence and PPI features, and then extracts their
combined features by a multi-layer DNN. Comprehensive experi-
ments are conducted to investigate the performance of our approach,
and the evaluation results demonstrate that the proposed PhosIDN
significantly improves the prediction performance of phosphoryl-
ation sites and outperforms existing general and kinase-specific
phosphorylation site prediction methods.

2 Methods and materials

2.1 Benchmark dataset
In this study, we adopt a large-scale dataset (Luo et al., 2019)
designed for training and evaluating deep learning models, which
includes more than 160 000 experimentally verified general and
kinase-specific phosphorylation sites on human proteins filtered by
similarity threshold of 40% to decrease the sequence redundancy of
phosphorylation proteins. Furthermore, we use the same perform-
ance evaluation strategy as in previous study (Luo et al., 2019),
which randomly selects a proportion of the dataset (�10% for gen-
eral sites and �20% for kinase-specific sites) as independent test
data and takes the rest as training and validation data. Specifically,
when predicting general phosphorylation sites, we follow previous
study (Wang et al., 2017) to train two deep learning models using S/
T and Y sites, respectively, and then evaluate the performance of
PhosIDN and compare with other prediction methods on the inde-
pendent test data that contains more than 17 000 phosphorylation
sites (14 360 S/T sites and 2673 Y sites) (Luo et al., 2019). When
predicting kinase-specific phosphorylation sites, we train one specif-
ic prediction model for each kinase group, family, subfamily and in-
dividual kinase. The details of the number and residue type of sites
in the independent test data for kinase-specific phosphorylation site
prediction are shown in Supplementary Table S1.

2.2 Data representation
2.2.1 Sequence data

Given a protein sequence, we intercept a protein fragment contain-
ing a central potential phosphorylation site, and code it by one-hot
encoding scheme that is widely adopted in phosphorylation site pre-
diction (Luo et al., 2019; Wang et al., 2017). In this way, each pro-
tein fragment is encoded to a L� 21 two-dimension matrix, here L
indicates the window size of the protein fragment and 21 is the size
of the amino acid symbol dictionary (Khurana et al., 2018).

2.2.2 PPI data

In addition to protein sequences, we use PPIs from the STRING
database (Damian et al., 2011). To ensure the reliability of data, we
filter PPIs by confidence score of 900 and then obtain 162 927 pairs
of PPIs between 13 770 human proteins. After that, by using a graph
embedding strategy (Wang et al., 2016), we generate PPI embedding
of size 128 for each protein. Finally, we map these proteins to
UniProt identifiers using the identifier mapping provided by
STRING and assign the corresponding PPI embedding to each phos-
phorylation protein by name matching. For phosphorylation pro-
teins with missing PPI embeddings, we assign vectors of zeros by
following previous study (Kulmanov et al., 2018).

2.3 Architecture of PhosIDN
The proposed deep learning architecture of PhosIDN is shown in
Figure 1, which consists of two feature encoding sub-networks (i.e.
SFENet and IFENet) and one heterogeneous feature combination
sub-network, i.e. HFCNet. Specifically, SFENet and IFENet are
designed to separately extract useful sequence and PPI features for
predicting protein phosphorylation sites, and HFCNet is introduced
to combine the outputs of SFENet and IFENet and finally generate
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the prediction results of phosphorylation sites. We describe each
sub-network one-by-one as follows.

2.3.1 SFENet

In SFENet, a DCCNN block is used to capture local sequence pat-
terns, in which multiple convolutional layers are connected to each
other simultaneously to enhance the flow of phosphorylation infor-
mation (Luo et al., 2019). However, the convolutional layers in
DCCNN block may not obtain enough information about long-
range dependencies between residues in a protein sequence (Uddin
et al., 2020). To address this issue, we further incorporate DCCNN
block with an efficient self-attention module so that SFENet can cap-
ture not only local patterns but also long-range dependencies from
protein sequences. More details of this sub-network are described as
follows.

For an input protein sequence, each convolutional layer in
DCCNN block performs one-dimension convolutional computation
along the sequence length (Khurana et al., 2018) and the
corresponding representations are then concatenated to generate
the intermediate sequence features. More importantly, inspired by
the self-attention mechanism (Vaswani et al., 2017) we introduce a
self-attention module to further capture the long-range dependencies
between residues in a protein sequence. Specifically, the proposed
self-attention module receives input from two aspects: (i) the
intermediate sequence features extracted by previous DCCNN
block, X ¼ ½x1;x2; . . . ; xL�T , and (ii) positional encodings,
PE ¼ ½p1;p2; . . . ; pL�T , where xi; pi 2 RDði ¼ 1;2; . . . LÞ, D refers to
the total number of convolutional filters in DCCNN block and is set
to 152 in this study. Here, positional encodings are added to inject
information about the absolute or relative position of residues and
can be defined as follows (Vaswani et al., 2017):

pið2dÞ ¼ sin ði=100002d=DÞ;1 � i � L (1)

pið2d þ 1Þ ¼ cos ði=100002d=DÞ;1 � i � L (2)

where d is the dimension. That is, each dimension of pi corresponds
to a sinusoid. Then the intermediate sequence features is concaten-
ated with positional encodings to obtain H ¼ ½h1; h2; . . . ;hL�T as the
input of the self-attention module:

hi ¼ ½xi;pi�;1 � i � L (3)

where hi 2 R2D represents the ith column vector. After that, the self-
attention module transforms the input into three vectors as follows:

qi ¼WQhi; ki ¼WKhi; vi ¼WVhi; 1 � i � L (4)

where qi, ki and vi represent query, key and value vector, respective-
ly, WQ, WK and WV refer to the parameter matrices with the size of
dm � 2D and dm is set to 128 in this study.

To obtain output features of the self-attention module, each col-
umn vector is calculated as a weighted sum of all value vectors and
the weight for each value vector is computed by the correlation of
the query vector with corresponding key vector. Accordingly, for the
output features YH ¼ ½y1; y2; . . . ; yL�T , the jth column vector yj can
be computed in the follow steps. Firstly, the correlation ci;j of the
query vector qj with key vector ki is calculated as:

ci;j ¼
qj � kT

iffiffiffiffiffiffi
dm

p ; 1 � i � L (5)

where qj � kT
i refers to the matrix multiplication between these two

vectors, resulting in their correlation in a specific space, and
ffiffiffiffiffiffi
dm

p
repre-

sents the scaling factor, ensuring that the computing results for correl-
ation does not get excessively large. Secondly, the weight for each value
vector is obtained by softmax function and can be calculated as follows:

wi;j ¼
exp ðci;jÞ
PL

i¼1

exp ðci;jÞ
;1 � i � L (6)

Thirdly, the jth column vector of the output features is obtained
by summing the product of each value vector and its weight, which
is computed as:

yj ¼
XL

i¼1

wi;jvi;1 � j � L (7)

In this way, the output features are generated and then reshaped
to a one-dimensional tensor via flatten layer. After that, a fully con-
nected layer is adopted to obtain the final sequence features fS 2 Rn,
here n refers to the number of neurons in the fully connected layer
and is set to 32 in this study.

2.3.2 IFENet

To extract PPI features that are useful for phosphorylation site pre-
diction, we design IFENet as a multi-layer DNN with fully con-
nected layers using PPI embedding E as input, which can be
formulated as follows:

o1 ¼ aðW1Eþ b1Þ
oi ¼ aðWioi�1 þ biÞ; 2 � i � M

(8)

Fig. 1. The integrated deep learning architecture of PhosIDN
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where oi represents the output produced by the ith fully connected
layer in IFENet, Wi and bi refer to parameter matrices and bias item,
respectively, a represents ReLU activation function that can realize
the non-linear transformation, M refers to the number of fully con-
nected layers and here is set to 3. The output produced by the last
fully connected layer is used as final PPI features fI 2 Rm, m is the
number of neurons in the last fully connected layer and is equal to n
in this study.

2.3.3 HFCNet

After sequence and PPI features are extracted from aforementioned
two sub-networks, respectively, they are further combined by the
proposed HFCNet for final phosphorylation site prediction. Instead
of concatenating features directly, HFCNet utilizes a bilinear feature
module to capture the complex associations between heterogeneous
sequence and PPI features, and the output is then fed into a multi-
layer DNN to obtain the combined features. The detailed process is
described as follows.

For input sequence features fS and PPI features fI, bilinear feature
module can be formulated as (Gao et al., 2016):

fB ¼ fS � f T
I (9)

where fB represents the bilinear features and is reshaped to a one-
dimensional tensor via flatten layer. After that, by concatenating
with sequence and PPI features, it is fed into a multi-layer DNN
with three fully connected layers to obtain the combined features
fc 2 Ru, u is the number of neurons in the last fully connected layer
of the multi-layer DNN. Finally, the prediction scores of phosphor-
ylation and non-phosphorylation can be calculated as follows:

Pðy ¼ 1jxÞ ¼ 1

1þ expð�fcWcÞ
;Pðy ¼ 0jxÞ ¼ 1� Pðy ¼ 1jxÞ (10)

where Wc 2 Ru�2 represents the weight matrix of softmax function.

2.4 Training
To minimize the training error, the binary cross-entropy is utilized
as loss function in this study:

LC ¼ �
1

N

XN

j¼1

yjlnPðyj ¼ 1jxjÞ þ ð1� yjÞlnPðyj ¼ 0jxjÞ (11)

where N represents the number of samples in training data, xj refers
to the jth input protein sequence and yj represents its corresponding
class label. In addition, to avoid model overfitting during training
process, dropout layers are used in convolutional and fully con-
nected layers of PhosIDN. We choose Adam optimizer (Kingma and
Ba, 2014) that is a widely used stochastic gradient descent algo-
rithm. Meanwhile, mini batch strategy is adopted in this study,
which divides training data into several small parts by optimizer.

PhosIDN can be applied to predict both general and kinase-
specific phosphorylation sites. When predicting general phosphoryl-
ation sites, we use all available S/T and Y phosphorylation sites to
complete the training of our deep learning models. When predicting
kinase-specific phosphorylation sites, we follow previous studies
(Luo et al., 2019; Wang et al., 2017) to adopt a transfer learning
strategy to address the small-sample problem. Specifically, we first
train a base model on phosphorylation data without kinase annota-
tion and then transfer all the neural layers, the learned parameter
matrices and the bias items of the base model to kinase-specific mod-
els. Then we fine-tune the final model using kinase-specific phos-
phorylation site training data to relieve the overfitting problem.

2.5 Performance assessment
In order to assess the prediction performance of PhosIDN, we follow
previous studies (Luo et al., 2019; Song et al., 2017) to use several
commonly measurements for performance evaluation, including
area under the ROC curve (AUC), sensitivity (Sn), specificity (Sp),
precision (Pre), Accuracy (Acc), F1 scores (F1) and Matthew’s

correlation coefficient (MCC). The calculations of these measure-
ments are:

Sn ¼ TP

TPþ FN
(12)

Sp ¼ TN

TN þ FP
(13)

Pre ¼ TP

TPþ FP
(14)

Acc ¼ TPþ TN

TPþ TN þ FPþ FN
(15)

F1 ¼ 2� Pre� Sn

Preþ Sn
(16)

MCC ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞ � ðTPþ FPÞ � ðTN þ FNÞ � ðTN þ FPÞ

p

(17)

where TP, TN, FP and FN refer to true positives, true negatives, false
positives and false negatives, respectively.

3 Results

3.1 Evaluating the performance of PhosIDN
3.1.1 Performance evaluation with sequence information

To evaluate the ability of the proposed method in capturing long-
range dependencies between residues, we first compare PhosIDN
using only protein sequence as input (here referred to as
PhosIDNSeq) with DCCNN on independent test data of general
phosphorylation sites. We follow previous study (Jung et al., 2010)
to select several different window sizes for our experiments and the
ROC curves on S/T and Y sites are plotted in Figure 2. It is observed
that the performance of DCCNN cannot benefit from the increase of
the window size, indicating that CNN is good at learning local se-
quence patterns but may not take full advantage of larger window
sizes. For example, on S/T sites DCCNN is able to obtain AUC value
of 79.8% with window size of 33, while when the window size is
increased to 71 the AUC value of DCCNN slightly drops to 79.2%,
and the decrease in AUC value is associated with a P value of
0.0002935 calculated by using the roc_test function in pROC pack-
age (Robin et al., 2011). On the contrary, PhosIDNSeq obtains con-
sistent performance improvements with the increase of the window
size. Take S/T site as an example, compared with window size of 15,
the AUC value of PhosIDNSeq is improved by 3.8% (P value ¼
2.9735E-96) and 5.0% (P value ¼ 8.1592E-154) when the window
size is increased to 33 and 71, respectively. Meanwhile, we find that
PhosIDNSeq obtains comparable or higher AUC values than
DCCNN for each window size and shows significant advantage
with the largest window size of 71. For example, on S/T sites the
AUC value is enhanced from 79.2% (DCCNN) to 81.1%
(PhosIDNSeq) with a P value of 1.7987E-40. Similarly, on Y sites
the AUC value is enhanced from 70.4% (DCCNN) to 72.6%
(PhosIDNSeq) with a P value of 7.8998E-8. Taken together, these
results suggest that PhosIDNSeq can capture not only local patterns
but also long-range dependencies from protein sequences.
Accordingly, we select the window size as 71 for PhosIDNSeq in the
subsequent experiments.

Besides, we compare PhosIDNSeq with DCCNN for predicting
kinase-specific phosphorylation sites, and the AUC values based on
independent test data are displayed in Table 1 and Supplementary
Table S2. For prediction of some kinases on S/T sites such as family
CDK and subfamily ERK1, DCCNN shows good prediction per-
formance with high AUC values (94.1% on family CDK and 94.2%
on subfamily ERK1), which validate the importance of local se-
quence patterns in predicting kinase-specific phosphorylation sites.
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In comparison, as a more sophisticated deep learning architecture,
PhosIDNSeq further improve the prediction performance for these
kinases and the corresponding AUC values on family CDK and sub-
family ERK1 reach 97.0% and 97.6%, respectively. At the same
time, PhosIDNSeq also consistently outperforms DCCNN for
kinase-specific prediction on Y sites. For example, compared with
DCCNN on group TK and kinase SRC, PhosIDNSeq manages to ob-
tain AUC values of 83.6% and 85.4% with an improvement of
3.2% (P value ¼ 0.01383) and 2.8% (P value ¼ 0.04638), respect-
ively. These results show that in addition to general phosphorylation
site prediction, PhosIDNSeq can also successfully boost the perform-
ance of kinase-specific phosphorylation site prediction with power-
ful capability of capturing long-range dependencies between
residues.

3.1.2 Performance evaluation with both sequence and PPI

information

To assess the performance of our proposed method in extracting and
combining sequence and PPI information, by using independent test
data of kinase-specific phosphorylation sites we compare PhosIDN
with three other versions of the proposed method: (i) baseline: in
this case, we directly concatenate PPI embedding and the output of
SFENet and combine them via one fully connected layer, (ii)
IFENet*: in this case, we directly concatenate the outputs of SFENet
and IFENet and use one fully connected layer to combine them and
(iii) HFCNet*: in this case, we utilize HFCNet to combine PPI
embedding and the output of SFENet. To rigorously evaluate the
contribution of PPI information, the phosphorylated proteins in the
independent test data are excluded from PPIs during the training of
PhosIDN. As shown in Table 2 and Supplementary Table S3, all the
methods using both protein sequence and PPI embedding as inputs
produce higher performance than PhosIDNSeq, which corroborate
previous studies that find PPI information contributes to the per-
formance of kinase-specific phosphorylation site prediction.
Furthermore, it can be clearly seen that IFENet* consistently per-
forms better than baseline method, which suggests the ability of
IFENet in extracting useful PPI features. For example, the AUC val-
ues of IFENet* are 87.8% and 91.7% on group Atypical and kinase
SRC, respectively, which have 3.1% and 3.9% improvement over
baseline method, respectively. Meanwhile, it is observed that
HFCNet* also obtains higher AUC values than baseline method. For
example, the AUC values achieved by HFCNet* reach 94.3% and
97.5% on group CMGC and subfamily CDK2, respectively, which
are 1.3% and 1.1% better than those obtained by baseline method,
respectively. These results demonstrate the strength of HFCNet in

Fig. 2. ROC curves of PhosIDNSeq for different window sizes on S/T and Y sites

Table 1. AUC values (%) of PhosIDN with sequence information for

kinase-specific phosphorylation site prediction

Kinase DCCNN PhosIDNSeq

Group

AGC 87.0 89.1

Atypical 82.3 84.2

CAMK 89.4 91.6

CMGC 89.8 92.6

TK 80.4 83.6

Family

CDK 94.1 97.0

CK2 92.4 95.4

MAPK 94.5 95.4

PKC 83.7 86.4

Src 81.2 83.6

Note: Best performance values are highlighted in bold.

Table 2. AUC values (%) of PhosIDN with both sequence and PPI in-

formation for kinase-specific phosphorylation site prediction

Kinase Baseline IFENet* HFCNet* PhosIDN

Group

AGC 89.7 91.5 90.9 93.2

Atypical 84.7 87.8 87.1 88.7

CAMK 92.0 94.2 93.9 94.9

CMGC 93.0 93.7 94.3 95.0

TK 88.5 91.0 89.5 92.2

Family

CDK 97.0 97.6 97.4 98.2

CK2 95.5 96.0 95.5 97.0

MAPK 96.1 96.6 96.7 97.4

PKC 88.7 90.6 89.1 91.6

Src 86.9 88.8 89.0 90.3

Baseline, direct concatenation of PPI embedding and the output of SFENet

followed by one fully connected layer; IFENet*, direct concatenation of the

outputs of SFENet and IFENet followed by one fully connected layer;

HFCNet*, combination of PPI embedding and the output of SFENet via

HFCNet; PhosIDN, our proposed integrated deep neural network. Best per-

formance values are highlighted in bold.
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heterogeneous feature combination for kinase-specific phosphoryl-
ation site prediction. Finally, by integrating IFENet and HFCNet,
PhosIDN achieves the best performance across all kinase-specific
test data with remarkable improvements on AUC value. For ex-
ample, on subfamily PKCa PhosIDN obtains the best AUC value of
92.1%, with an improvement of 2.7% (P value ¼ 0.0007384), 2.0%
(P value ¼ 0.002713) and 2.2% (P value ¼ 0.001736) over baseline
method, IFENet* and HFCNet*, respectively.

In addition to AUC value, Sp, Sn, Pre, Acc, MCC and F1 are also
used in this study to verify the effectiveness of the proposed method.
By following previous study (Liu et al., 2018), we compute other
measurements when the Sp threshold is set at medium stringency
level (90%) and high stringency level (95%), and display the values
of these measurements in Table 3 and Supplementary Table S4. It
can be seen that both IFENet* and HFCNet* consistently achieve
higher performance than baseline method. For example, on group
Atypical at high stringency level, the Sn, Acc, MCC, Pre and F1 of
IFENet* are 45.8%, 70.3%, 46.7%, 90.0% and 60.7%, respective-
ly, while baseline method only obtains 28.0%, 61.4%, 30.8%,
84.6% and 42.0%, respectively. Also, the results clearly demon-
strate the superior performance of PhosIDN. Take family PKC as an
example, at medium stringency level PhosIDN has 12.6%, 7.2%
and 12.4% improvement for F1 compared with baseline method,
IFENet* and HFCNet*, respectively. In conclusion, PhosIDN can ef-
fectively extract and combine sequence and PPI information and sig-
nificantly improve the performance of kinase-specific
phosphorylation site prediction.

Besides the PPIs from STRING database, we also adopt the phys-
ical interactions of proteins recorded in BioGRID database
(Oughtred et al., 2021) and obtain totally 55 542 physical interac-
tions between 10 247 human proteins. The corresponding ROC
curves of different kinases are plotted in Supplementary Figure S1.
The results show that by leveraging physical interactions of proteins,
our proposed method also consistently achieves considerable
improvements in performance, further indicating the contribution of
PPI information to phosphorylation site prediction.

3.2 Comparison with existing methods
We first compare PhosIDN with several well-known methods for
general phosphorylation site prediction including PPSP (Xue et al.,
2006), NetPhos3.0 (Blom et al., 2004), Musite (Gao et al., 2010),
MusiteDeep (Wang et al., 2017) and DeepPhos (Luo et al., 2019)
based on independent test data. For existing methods, we adopt the
optimal window size used by each specific method that is provided
as a default setting. Supplementary Table S5 displays the AUC values
on S/T and Y sites obtained by different methods, which shows that
PhosIDN achieves better performance than other methods. Take Y
site as an example, the AUC value of PhosIDN is 74.0%, which is

9.9%, 17.9%, 20.0%, 7.4% and 2.4% higher than PPSP,
NetPhos3.0, Musite, MusiteDeep and DeepPhos, respectively. It is
of note that the performance of DeepPhos shows little change when
the maximal window size increases from default value of 51–71. In
addition, we also calculate the values of Sn, Pre, Acc, MCC and F1
for all investigated methods, and the results are listed in
Supplementary Table S6. We find that PhosIDN consistently outper-
forms other methods on all measurements. Take S/T site as an ex-
ample, at high stringency level PhosIDN obtains 24.2%, 29.6%,
20.7%, 7.4% and 4.2% improvement for F1, compared with PPSP,
NetPhos3.0, Musite, MusiteDeep and DeepPhos, respectively.
Taken together, these results suggest that with a novel integrated
deep learning architecture, PhosIDN has a very competitive perform-
ance for general phosphorylation site prediction. However, it is note-
worthy that despite of the respectable performance on general
phosphorylation sites, only kinase-specific methods should be able
to yield good accuracy (Trost and Kusalik, 2011), given the fact that
protein kinases have distinct substrate specificities (Eisenhaber and
Eisenhaber, 2010).

Next, we compare our approach with some existing methods for
kinase-specific phosphorylation site prediction including GPS, PPSP,
MusiteDeep and DeepPhos. Table 4 and Supplementary Table S7
display the AUC values of all compared methods for different kin-
ases. It is observed that both MusiteDeep and DeepPhos outperform
other traditional phosphorylation site prediction methods, which
indicates that CNN-based methods are advantageous in kinase-
specific phosphorylation site prediction. For example, compared
with GPS and PPSP, both MusiteDeep and DeepPhos obtain more
than 7.0% AUC improvement in prediction of family CK2. At the
same time, PhosIDNSeq compares favorably with MusiteDeep and
DeepPhos across all kinase-specific test data. Furthermore, we find
that by efficiently extracting and combining sequence and PPI infor-
mation, PhosIDN achieves significant improvements over other
methods that use only sequence information. For example, on family
PKC the AUC value obtained by PhosIDN reaches 91.6%, while
those of GPS, PPSP, MusiteDeep, DeepPhos and PhosIDNSeq are
66.2%, 76.1%, 80.5%, 84.2% and 86.4%, respectively. As for kin-
ase SRC, PhosIDN achieves 17.6%, 29.0%, 10.6% and 7.9% AUC
improvement compared with GPS, PPSP, DeepPhos and
PhosIDNSeq, respectively. Moreover, we compare PhosIDN with
PhosphoPredict (Song et al., 2017) that also leverages both sequence
and PPI information, and find that PhosIDN shows comparable or
better performance than PhosphoPredict. For example, on family
CDK and MAPK, PhosIDN manages to achieve AUC values of
98.2% and 97.4% with an improvement of 1.6% and 1.9%, re-
spectively. Finally, we list the values of Sn, Acc, MCC, Pre and F1 at
high stringency level in Table 5 and Supplementary Table S8, and
PhosIDN clearly shows the best predictive performance on all meas-
urements. Take group AGC as an example, PhosIDN obtains Sn of

Table 3. The values (%) of Sn, Acc, MCC, Pre and F1 of PhosIDN for kinase-specific phosphorylation site prediction at medium and high strin-

gency levels

Kinase Method Sp¼ 90% Sp¼ 95%

Sn Acc Mcc Pre F1 Sn Acc Mcc Pre F1

Group AGC Baseline 68.1 78.6 59.2 88.3 76.9 58.4 75.7 56.6 92.7 71.6

IFENet* 75.6 82.5 66.0 89.4 81.9 65.0 79.2 62.2 93.4 76.7

HFCNet* 72.2 80.7 62.9 88.9 79.7 59.7 77.9 57.6 92.9 72.7

PhosIDN 81.0 85.3 71.1 90.0 85.3 67.6 80.6 64.4 93.6 78.5

Group Atypical Baseline 54.2 72.0 47.2 84.2 66.0 28.0 61.4 30.8 84.6 42.0

IFENet* 57.6 73.7 50.1 85.0 68.7 45.8 70.3 46.7 90.0 60.7

HFCNet* 54.2 72.0 47.2 84.2 66.0 40.7 67.8 42.4 88.9 55.8

PhosIDN 65.3 77.5 56.8 86.5 74.4 50.8 72.9 51.0 90.9 65.2

Group CAMK Baseline 71.7 80.1 62.1 89.9 79.7 62.4 77.2 59.5 93.9 75.0

IFENet* 83.8 86.7 73.7 91.2 87.3 68.8 80.7 64.9 94.4 79.6

HFCNet* 78.6 84.1 69.1 90.7 83.7 65.7 79.8 61.1 94.0 77.7

PhosIDN 86.9 86.8 76.8 91.9 89.3 70.8 82.1 66.9 94.6 81.0

Note: Best performance values are highlighted in bold.
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67.6%, Acc of 80.6%, MCC of 64.4%, Pre of 93.6% and F1 of
78.5%, while the performance of the next-best method are Sn of
54.2%, Acc of 73.6%, MCC of 53.1%, Pre of 92.1% and F1 of
68.3%. In conclusion, the aforementioned analysis demonstrates
that PhosIDN compares favorably with existing methods for predict-
ing phosphorylation sites.

To evaluate the performance of PhosIDN on kinases with differ-
ent associated sites, we categorize kinase families with more than
200 sites in Supplementary Table S1 as well-annotated, and categor-
ize kinase families with fewer than 100 sites in the dataset as poorly
annotated. The corresponding AUC values of PhosIDN on well- and
poorly annotated kinase families are displayed in Supplementary
Table S9. The experimental results suggest that in addition to well-
annotated kinase families, PhosIDN can also achieve good AUC val-
ues on poorly annotated kinase families. For example, the AUC val-
ues of family Aur and CAMK2 are 96.5% and 95.1%, respectively.
Moreover, we test the performance of PhosIDN on some individual
kinases with fewer associated sites in kinase family Src and PKC,
and the corresponding AUC values are displayed in Supplementary
Table S10. Take family Src as an example, PhosIDN manages to ob-
tain AUC values of 90.8%, 91.2% and 90.7% on kinase HCK, FYN
and LCK, respectively. The experimental results suggest that in com-
parison with well-annotated kinases, PhosIDN can also perform
well on the kinases in the same kinase family but with fewer associ-
ated sites.

3.3 Visualization of features
In this section, we visualize the ability of our proposed method in
feature extraction and combination by using t-SNE (Maaten and
Hinton, 2008). For group Atypical and CAMK, original one-hot

encoding features, sequence features extracted by PhosIDNSeq and
combined features extracted by PhosIDN are plotted in Figure 3. It
is obvious that original one-hot encoding features of phosphoryl-
ation and non-phosphorylation sites are in mixture, while sequence
features extracted by PhosIDNSeq show separate trends, which be-
come even more evident when using combined features extracted by
PhosIDN. Similar results for some other kinases can be observed in
Supplementary Figure S2. These results suggest that original protein
sequence can be transformed into meaningful representation by
PhosIDNSeq, and PhosIDN can generate better representation with
stronger discriminant power in distinguishing phosphorylation and
non-phosphorylation sites.

4 Discussion

In this article, we propose PhosIDN, a novel integrated deep neural
network, for accurately predicting phosphorylation sites. When
using sequence information, PhosIDN obtains significant perform-
ance for both general and kinase-specific phosphorylation site pre-
diction, and the performance can be further improved by effectively
combining sequence and PPI information. Meanwhile, the experi-
mental results show that PhosIDN compares favorably with existing
methods. Furthermore, the visualization results also indicate its abil-
ity in extracting and combining features with strong discriminant
power. The main contributions of this work are as follows: (i) we
demonstrate that the self-attention mechanism is very valuable in
protein phosphorylation site prediction by obtaining the information
about long-range dependencies between residues, (ii) we design an
efficient deep neural network SFENet by leveraging DCCNN block
and self-attention module, which can take full advantage of sequence

Table 5. The values (%) of Sn, Acc, MCC, Pre and F1 of different methods for kinase-specific phosphorylation site prediction at high strin-

gency level

Kinase Method Sn Acc MCC Pre F1

Group AGC GPS 5.9 48.3 1.8 56.1 10.7

PPSP 32.9 62.4 34.9 87.7 47.9

DeepPhos 50.9 71.8 50.4 91.7 65.5

PhosIDNSeq 54.2 73.6 53.1 92.1 68.3

PhosIDN 67.6 80.6 64.4 93.6 78.5

Group Atypical GPS 16.1 55.5 17.9 76.0 26.6

PPSP 15.3 55.1 16.8 75.0 25.4

DeepPhos 36.4 65.7 38.7 87.8 51.5

PhosIDNSeq 39.8 67.4 41.6 88.7 55.0

PhosIDN 50.8 72.9 51.0 90.9 65.2

Note: Best performance values are highlighted in bold.

Table 4. AUC values (%) of different methods for kinase-specific phosphorylation site prediction

Kinase GPS PPSP MusiteDeep DeepPhos PhosphoPredict PhosIDNSeq PhosIDN

Group

AGC 56.5 78.0 – 88.4 – 89.1 93.2

Atypical 76.5 64.4 – 83.2 – 84.2 88.7

CAMK 70.6 71.3 – 90.9 – 91.6 94.9

CMGC 83.2 82.1 – 91.9 – 92.6 95.0

TK 60.4 70.6 – 82.0 – 83.6 92.2

Family

CDK 90.5 86.1 93.0 96.0 96.6 97.0 98.2

CK2 84.1 84.7 92.5 93.7 96.3 95.4 97.0

MAPK 92.1 84.4 93.4 95.4 95.5 95.4 97.4

PKC 66.2 76.1 80.5 84.2 90.2 86.4 91.6

Src 70.2 68.8 – 83.0 – 83.6 90.3

Note: Best performance values are highlighted in bold.
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information by capturing not only local patterns but also long-range
dependencies from protein sequences and (iii) by effectively utilizing
SFENet, IFENet and HFCNet, the proposed integrated deep neural
network shows great strength in extracting and combining heteroge-
neous sequence and PPI information, and achieves remarkable per-
formance for predicting both general and kinase-specific
phosphorylation sites.

Although PhosIDN has enhanced the prediction performance of
protein phosphorylation sites, there is still room for improvement.
Firstly, some other biological information (e.g. gene ontology terms
and protein secondary structure) is also helpful for predicting phos-
phorylation sites (Dou et al., 2014; 2017; Song et al., 2017), which
could be adopted in our future work. Secondly, despite the fact that
deep learning method has become a promising approach for phos-
phorylation site prediction, the deep neural network is still a black-
box that is often criticized for lacking interpretability (Ma et al.,
2018). Hence, it is very important to develop deep learning phos-
phorylation site prediction method with improved interpretability.
Thirdly, in addition to self-attention module, other models such as
recurrent neural network (Deznabi et al., 2020) and long short-term
memory (Chen et al., 2019) have also been successfully used to cap-
ture the long-range dependencies in sequential data, which can be
further explored in future study. Fourthly, kinase-specific models
may tend to perform better on the kinases with more associated
sites, and one possible reason is that for these kinases more data are
available for training prediction models. For other kinases, it is
expected that further improvement in performance can be obtained
with more kinase-specific sites identified and collected in the future.
Finally, PhosIDN shows powerful capability of extracting and com-
bining sequence and PPI information, which suggests that our ap-
proach could be further improved and extended to other PTM site
prediction tasks. In conclusion, we present a novel integrated deep
neural network for predicting phosphorylation sites, which has the
potential to be extended to more predictive tasks and provides clues
for further biological research.

Funding

This work was supported by the National Natural Science Foundation

of China [61871361, 61471331, 61971393, 61571414, 61932008,

61772368], National Key R&D Program of China [2020YFA0712403,

2018YFC0910500], Shanghai Science and Technology Innovation Fund

[19511101404] and Shanghai Municipal Science and Technology Major

Project [2018SHZDZX01].

Conflict of Interest: none declared.

References

Aponte,A.M. et al. (2009) 32P labeling of protein phosphorylation and

metabolite association in the mitochondria matrix. Methods Enzymol., 457,

63–80.

Beausoleil,S.A. et al. (2006) A probability-based approach for

high-throughput protein phosphorylation analysis and site localization. Nat.

Biotechnol., 24, 1285–1292.

Blom,N. et al. (2004) Prediction of post-translational glycosylation and phos-

phorylation of proteins from the amino acid sequence. Proteomics, 4,

1633–1649.

Chen,Z. et al. (2019) Large-scale comparative assessment of computational

predictors for lysine post-translational modification sites. Brief. Bioinf., 20,

2267–2290.

Cohen,P. (2002) The origins of protein phosphorylation. Nat. Cell Biol., 4,

E127–E130.

Damian,S. et al. (2011) The STRING database in 2011: functional interaction

networks of proteins, globally integrated and scored. Nucleic Acids Res., 39,

561–568.

Deznabi,I. et al. (2020) DeepKinZero: zero-shot learning for predicting

kinase–phosphosite associations involving understudied kinases.

Bioinformatics, 36, 3652–3661.

Dou,Y. et al. (2014) PhosphoSVM: prediction of phosphorylation sites by

integrating various protein sequence attributes with a support vector ma-

chine. Amino Acids, 46, 1459–1469.

Dou,Y. et al. (2017) Prediction of protein phosphorylation sites by integrating

secondary structure information and other one-dimensional structural

properties. In: Zhou, Y. (ed.) Prediction of Protein Secondary Structure.

Springer, Berlin, pp. 265–274.

Duan,G. and Walther,D. (2015) The roles of post-translational modifications

in the context of protein interaction networks. PLoS Comput. Biol., 11,

e1004049.

Eisenhaber,B. and Eisenhaber,F. (2010) Prediction of posttranslational

modification of proteins from their amino acid sequence. Methods Mol.

Biol., 609, 365–384.

Fig. 3. Visualization of original one-hot encoding features, sequence features extracted by PhosIDNSeq and combined features extracted by PhosIDN. The red dot represents

the phosphorylation sites with kinase annotation belonging to (a) group Atypical or (b) group CAMK, the blue dot represents the non-phosphorylation sites

PhosIDN 4675



Fan,W. et al. (2014) Prediction of protein kinase-specific phosphorylation sites

in hierarchical structure using functional information and random forest.

Amino Acids, 46, 1069–1078.

Gao,J. et al. (2010) Musite, a tool for global prediction of general and

kinase-specific phosphorylation sites. Mol. Cell. Proteomics, 9, 2586–2600.

Gao,Y. et al. (2016) Compact bilinear pooling. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Las Vegas, USA.

pp. 317–326.

Hanson,J. et al. (2017) Improving protein disorder prediction by deep bidirec-

tional long short-term memory recurrent neural networks. Bioinformatics,

33, 685–692.

Jung,I. et al. (2010) PostMod: sequence based prediction of kinase-specific

phosphorylation sites with indirect relationship. BMC Bioinformatics, 11,

S10.

Khurana,S. et al. (2018) DeepSol: a deep learning framework for

sequence-based protein solubility prediction. Bioinformatics, 34,

2605–2613.

Kingma,D.P. and Ba,J. (2014) Adam: a method for stochastic optimization.

arXiv, preprint arXiv:1412.6980.

Kulmanov,M. et al. (2018) DeepGO: predicting protein functions from se-

quence and interactions using a deep ontology-aware classifier.

Bioinformatics, 34, 660–668.

Li,F. et al. (2018) Quokka: a comprehensive tool for rapid and accurate predic-

tion of kinase family-specific phosphorylation sites in the human proteome.

Bioinformatics, 34, 4223–4231.

Li,T. et al. (2010) Identifying human kinase-specific protein phosphorylation

sites by integrating heterogeneous information from various sources. PLoS

One, 5, e15411.

Linding,R. et al. (2007) Systematic discovery of in vivo phosphorylation net-

works. Cell, 129, 1415–1426.

Liu,Y. et al. (2018) PTM-ssMP: a web server for predicting different types of

post-translational modification sites using novel site-specific modification

profile. Int. J. Biol. Sci., 14, 946–956.

Luo,F. et al. (2019) DeepPhos: prediction of protein phosphorylation sites

with deep learning. Bioinformatics, 35, 2766–2773.

Ma,J. et al. (2018) Using deep learning to model the hierarchical structure and

function of a cell. Nat. Methods, 15, 290–298.

Ma,L. et al. (2005) Phosphorylation and functional inactivation of TSC2 by

Erk: implications for tuberous sclerosisand cancer pathogenesis. Cell, 121,

179–193.

Maaten,L.v.d. and Hinton,G. (2008) Visualizing data using t-SNE. J. Mach.

Learn. Res., 9, 2579–2605.

Mann,M. and Jensen,O.N. (2003) Proteomic analysis of post-translational

modifications. Nat. Biotechnol., 21, 255–261.

Oughtred,R. et al. (2021) The BioGRID database: a comprehensive biomedical

resource of curated protein, genetic, and chemical interactions. Protein Sci.,

30, 187–200.

Robin,X. et al. (2011) pROC: an open-source package for R and Sþ to analyze

and compare ROC curves. BMC Bioinformatics, 12, 8.

Song,C. et al. (2012) Systematic analysis of protein phosphorylation

networks from phosphoproteomic data. Mol. Cell. Proteomics, 11,

1070–1083.

Song,J. et al. (2017) PhosphoPredict: a bioinformatics tool for prediction of

human kinase-specific phosphorylation substrates and sites by integrating

heterogeneous feature selection. Sci. Rep., 7, 6862.

Trost,B. and Kusalik,A. (2011) Computational prediction of eukaryotic phos-

phorylation sites. Bioinformatics, 27, 2927–2935.

Uddin,M.R. et al. (2020) SAINT: self-attention augmented

inception-inside-inception network improves protein secondary structure

prediction. Bioinformatics, 36, 4599–4608.

Vaswani,A. et al. (2017) Attention is all you need. Adv. Neural Inf. Process.

Syst., 5998–6008.

Wang,D. et al. (2019) Capsule network for protein post-translational modifi-

cation site prediction. Bioinformatics, 35, 2386–2394.

Wang,D. et al. (2016) Structural Deep Network Embedding. In: ACM

SIGKDD International Conference on Knowledge Discovery & Data

Mining, San Francisco, USA.

Wang,D. et al. (2017) MusiteDeep: a deep-learning framework for general and

kinase-specific phosphorylation site prediction. Bioinformatics, 33,

3909–3916.

Wen,P.-P. et al. (2016) Accurate in silico prediction of species-specific methyla-

tion sites based on information gain feature optimization. Bioinformatics,

32, 3107–3115.

Wood,C.D. et al. (2009) Nuclear localization of p38 MAPK in response to

DNA damage. Int. J. Biol. Sci., 5, 428–437.

Xu,Y. et al. (2020) PhosTransfer: a deep transfer learning framework for

kinase-specific phosphorylation site prediction in hierarchy. In: Pacific-Asia

Conference on Knowledge Discovery and Data Mining. pp. 384–395,

Springer, Singapore, Singapore.

Xue,Y. et al. (2006) PPSP: prediction of PK-specific phosphorylation site with

Bayesian decision theory. BMC Bioinformatics, 7, 163.

Xue,Y. et al. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation

sites in hierarchy. Mol. Cell. Proteomics, 7, 1598–1608.

4676 H.Yang et al.


	l
	l
	l
	l
	tblfn1
	tblfn2
	tblfn3
	tblfn5
	tblfn4

