
Statistically Speaking

Managing theR0of COVID-19:mathematicsfights back

“All models are wrong but some models are useful” –

George Box [1]

Perhaps for the first time in history, a single statistical

measure is now dictating the entirety of the UK government

policy. The ‘basic reproduction number’, R0 value for

COVID-19 is more directly determining economic and

social policy than has ever the inflation rate, interest rate or

exchange rate. It is encouraging to see political policy for

once ‘rational’ but disappointing as it took a pandemic to

make it so. However, is R0 an appropriate and significant

measure? Like many mathematics/statistical parameters, R0

is relatively easy to explain, more complicated to

understand (even graphically), and very difficult to calculate

or use for modelling. Given its significance for all our lives, it

is important to understand a little of its background. This

article seeks to explain the issues in a non-technical way,

relegating all equations (used sparingly) to appendices.

What is R0?
R0 can be described simply as the average number of

secondary infections produced when one infected individual

is introduced into a susceptible host population [2]. Pedants

will immediately recognise that we are currently at a stage

well beyond R0; that is, long after the disease ‘has been

introduced’ so more accurately the term is RE, the ‘effective

reproduction number’. Avoiding pedantry, we will use R0, RE
and R interchangeably. If one person becomes infected

(patient zero) and passes it onto two others, and they in turn

each to two others, and so on, the R0 value is 2. This is an

example of exponential, ‘Malthusian’ growth, first described

in 1798 (Eqn 1). We tend to view the problem in terms of our

human health but in Eqn 1, the data are viewed from the

perspective viral growth, akin to an animal population.

In 1847, Verhulst noticed an obvious problem with the

Malthusian model: exponential growth cannot go on

indefinitely. Animals will run out of food, space, etc, and

even for viruses, once they have infected everyone, they

have reached a limit to their theoretical population. A

different, logistic equation (Eqn 2) is required [3]. In this

logistic, S-shaped growth pattern the population increases

at first exponentially, but then the slope of curve (reflecting

the R0 value) changes from > 1 to < 1 mid-way up the curve

at what is known as the ‘inflection point’ (Fig. 1). Hence, in

this sense the R0 value may be regarded as naturally

changing in a population over time. For a virus, the plateau

may not represent the entire population infected but only

the proportion susceptible (see below).

However, even this logistic growth equation is not the

whole story. The plateau population is never likely to be

entirely static, but will vary with prevailing conditions, and

May’s related ‘logisticmap’ equation (Eqn 3) better reflects this

[4]. In this recursive equation, the term R not only influences

the rate of early exponential rise in population, but also the

degree towhich thepseudo-stable population laterfluctuates.

As the value of R increases, the population varies increasingly

cyclically or periodically around a mean value at the plateau,

with the notable finding that at some critical value of R, the size

fluctuates chaotically over time. It is interesting in this regard

that the range of reported values for COVID-19 R0 are

predicted to cause suchperiodic or even chaotic effects by the

logisticmapequation [5]. An accompanying article showshow

this has implications for NHS capacity planning [6]. Figure 1

plots the threeequations.

Measuring R0
There are broadly two approaches to estimating R0. One is

individual level modelling (ILM) where data are collected

ideally from the very start of an epidemic: the contacts of an

infected individual (patient zero) are traced and tested, and

this continues as the disease spreads. R0 is then the average

over the number of secondary (or tertiary, etc) cases of such

many diagnosed individuals. A second is the population level

model (PLM) which uses the change in infected numbers

within the population from one day to the next, often using

adjusted cumulative models. For example, if the number of

cases on day x is 1000, and new cases on day x + 1 is 1300,

then R0 by this method is 1.3 [7].

Individual level modelling, which can be regarded as

prospective and PLM, which might be viewed as retrospective,

do not lead to the same answer, as they depend on the

efficiency of contact tracing, the use of test results (and their

accuracy) vs. symptoms, etc. More generally, the estimate of

R0 by either method is also dependent upon, among other

things (a) the average number of people an infected person is

exposed to each day; (b) the probability of each exposure

becoming an infection; (c) duration of infectiousness,

including periods of asymptomatic infectiousness; (d)
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population size, especially the proportion of susceptible

people; and (e) rate of recovery or death. These experimental

approaches, ILM vs. PLM, therefore, need to take these factors

into account by combination with modelling (see below) and

different models do this to different degrees in calculating R0.

Modelling R0
If models assist data analysis, then in turn, the data support

modelling. A simple model is the SI model (susceptible-

infected). The total population, N, consists of the sum of

those susceptible (S) and infected (I). Moreover, since I

transmits to S, the rate at which I increases is the inverse of

the rate at which S declines. In the SImodel, the rate at which

the disease spreads will be proportional to S (the more

susceptible people there are, the faster the disease spreads)

and also to I (the more infected people there are, the faster

the disease will spread), with the constraint that the sum of S

and I must equal N. The transmission rate of infection (not

precisely the same as R0) is the product of the proportion of

susceptibles and proportion of infected (Eqn 4) [7].

However, the SI model does not take into account

recovery from disease, which the SIR model does. SIR

assumes that those who recover are immune, and therefore

as their proportion rises, this puts a limit on spread of disease

as it reduces the proportion of susceptibles. The recovery

rate, by definition, increases in proportion to the rate of

increase of the infected. It can therefore be shown that, in the

SIR model, R0 is proportional to the ratio of the transmission

rate and the recovery rate (Eqn 5). Figure 2 shows an

example of an SIR modelling plot [7].

It should readily be seen that various other factors

could be introduced to these SI and SIR models to

complicate the equations even further. There is always a

trade-off in modelling between the ‘computational cost’ of

increasing the model’s complexity, balanced against the

diminishing returns on themodel’s accuracy in representing

reality. A model that is as complicated as reality is useless as

a model, regardless of accuracy. Less accurate models will

bemuchmore useful.

Confusion
The equations in the Appendix 1 reflect the fact that R0 is

not a straightforward statistic: R appears as a factor in

different places, in different forms of equations (although

further mathematics could in fact show that each equation is

logically consistent with the others). Specific methods to

calculate R0 from theoretical models include: the survival

function; next-generation method; Jacobean matrix

eigenvalues; endemic equilibrium; metapopulation

models; partial differential equation models, hierarchical

Bayesian regression and constant term-polynomial

methods [8]. Models take into account different numbers of

factors (e.g. compare SI vs. SIR; other models take into

account subgroups like age, health, etc), and they also use

different types of statistics (e.g. frequentist vs. Bayesian).

Therefore, estimates from these methods do not agree.

Figure 1 Threemodels of population (viral) growth: exponential (Eqn 1; red), logistic (Eqn 2, black) and logisticmap (Eqn 3,
green). Different values have been used to separate the lines. Note that whereas in exponential, R0 value is constant, it varies for
the other twomodels depending on the time-point it ismeasured
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Moreover, all models face the problem that diseases that

have R0 > 1 do not always become epidemics (and can die

out), and conversely, those with R0 < 1 can persist. Even at

any one time-point, R0 does not have a single value in the

population, but different values for various differently

susceptible subgroups or those that live in clusters or partial

isolation (e.g. higher in care homes) [9].

Noting these deficiencies, most commentators

nevertheless agree that R0 is all we really have. A recent

text proposed that healthcare staff should march on the

Department of Health with placards shouting “Give us

confidence intervals! Give us standard deviations!” [10].

The NHS has traditionally been averse to error bars in its

publications and this is also true of its presentation of

R0: some indication of the variance associated with

the estimates being used would be welcome. An

independent group of senior scientists (led by a former

Chief Scientific Advisor) has made similar criticisms to

those above, of the government’s presentation of R0 and

argued that R0 should be presented with the confidence

intervals of different estimates and caveats on how it was

measured [11].

Hope
There is some consensus that offers hope across all the

models. One is that, generally, diseases can be tackled

effectively by reducing the R0, and this can be achieved by

reducing the contacts of an infected person. Commentators

may differ in emphasis, but it is agreed that a combination of

social distancing, rigorous contact tracing and isolation of

contacts and the vulnerable should be effective. Second, is

that exponential equations work both ways. Whereas

infections rates can rise at alarmingly high rates (Fig. 1),

reducing the exponent only modestly will have dramatic

effects in the other direction. With a starting value of 21,000,

reducing R0 by just 9% from say, from 1.15 to 1.05 reduces

the projected infections (e.g. after 61 days) from > 100

million to just over 400,000. Third, the proportion of the

population required be immune to achieve herd immunity

(whether through past infection or vaccination) is

dependent upon the R0, and particularly sensitive in the

range R0 1–2 (Fig. 3). If R0 can be kept to < 2, then

just < 50% of the population needs to be immune [12]. In

other words, a vaccine does not have to be perfectly

effective to manage the disease, if combined with social

distancing and other measures – it only needs to be ‘good

enough’. Despite the complexity and confusion, this

consensus should offer somepromise.

Postscripts
Thomas Malthus (1766–1834) was an English polymath –

cleric, mathematician, economist and founding Fellow of

the (Royal) Statistical Society – who wrote an early treatise

on population growth (An Essay on the Principle of

Population, 1798; Eqn 1). His ideas remain controversial.

The notion that exponential population growth outstrips

Figure 2 Example of an SIRmodel plot for a hypothetical infectious disease. The green curve is the susceptible population; the
red curve is the infected, and the black curve is the recovered. Note the inverse relationship between the susceptible and
recovered, with the infected being the balance
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food availability has been used to support population

control (in the poor). Pierre Franc�ois Verhulst (1804–1849)

was a Belgian mathematician (Eqn 2) with a passionate

social conscience. When visiting Rome, he was moved to

submit a democratic constitution for the Papal State, and

was promptly banished from the city [3]. He died young.

Carl Gustav Jacob Jacobi (1804–1851), who described the

‘matrix’ named after him now used to model R0 in some

methods, was a German pure mathematician – a giant of

the subject. He had no idea of the future applications of his

work. He also died young, of smallpox, in one of the many

waves of epidemics that killed up to 400,000 people

annually in Europe in the mid-19th century. The population

biologist Robert May (1936-2020), Fellow of Merton

College, was former Chief Scientific Advisor to the UK

Government (1995-2000), and President of the Royal

Society (2000-2005). His logistic map (Eqn 3) has been

described as one of the most beautiful equations in science

[13]. He died in an Oxford care home of dementia, on 28

April at the height of the COVID-19 pandemic. It is not

known what he would have thought of the central role of R0

in current government policy.
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Appendix
Equation 1: simple exponential equation where P(t) is the

population at time t, P0 is the initial population, R is the rate

of growth and t is the time:

P tð Þ ¼ P0eR:t ð1Þ
Equation 2: logistic growth equation, where symbols as in

Eqn 1, with K being themaximum population achievable for

the given conditions:

PðtÞ ¼ K
1þ A:e�R:t where A ¼ K� P0

P0
ð2Þ

Equation 3: logistic map equation: symbols as in previous

equations, with Pn+1 being the population at day n + 1, Pn
the population at day n. The equation is recursive:

Pnþ1 ¼ R:Pn 1� Pnð Þ ð3Þ

Equation 4: SI model, where b is the transmission rate, and

P1 and PS are the proportions of susceptibles and infected at

any given time:

Rate of infection ¼ b:PI:PS ð4Þ

Equation 5: SIR model; symbols as above, R and R0

interchangeable, where c is the recovery rate:

R0 ¼ b
c

ð5Þ
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