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Abstract: Soil is a real treasure that humans cannot live without. Therefore, it is very important to
sustain and conserve soils to guarantee food, fiber, fuel, and other human necessities. Healthy or
high-quality soils that include adequate fertility, diverse ecosystems, and good physical properties
are important to allow soil to produce healthy food in support of human health. When a soil
suffers from degradation, the soil’s productivity decreases. Soil restoration refers to the reversal of
degradational processes. This study is a pictorial review on the nano-restoration of soil to return its
fertility. Restoring soil fertility for zero hunger and restoration of degraded soils are also discussed.
Sustainable production of nanoparticles using plants and microbes is part of the process of soil
nano-restoration. The nexus of nanoparticle–plant–microbe (NPM) is a crucial issue for soil fertility.
This nexus itself has several internal interactions or relationships, which control the bioavailability of
nutrients, agrochemicals, or pollutants for cultivated plants. The NPM nexus is also controlled by
many factors that are related to soil fertility and its restoration. This is the first photographic review
on nano-restoration to return and sustain soil fertility. However, several additional open questions
need to be answered and will be discussed in this work.

Keywords: soil–plant nexus; soil degradation; soil conservation; waterlogged soil; salt-affected soil;
polluted soil; degraded soil

1. Introduction

The soil system represents one of the main natural resources that supplies human
needs for food, feed, fiber, fuel, and more [1,2]. Agroecosystems are crucial to guaranteeing
human life because of the interactions among their compartments, which include soil,
water, plants, microbes, humans, and animals [3]. Thus, many studies have focused
on the role of agroecosystems in sustaining and restoring soil fertility, or the ability of
the soil to provide needed nutrients to crops. The loss of soil fertility may result from
degradational processes such as pollution of the soil–plant–water system [4], alkalinity and
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salinity [5], or antagonisms from other nutrients or elements that may be added during
agricultural management [6]. One of the most active portions of an agroecosystem is the
soil microbes. These microbes have crucial impacts, mainly in the rhizosphere, through
significant reactions in soil–plant–microbial activity, which may enhance soil fertility [7].
Several reactions occur in the rhizosphere that involve the release of root exudates or plant
metabolites to support the soil microbial community for transformation of nutrients [7].
Therefore, there is an urgent need to build soil organic content and microbial communities
to achieve both soil fertility and sustainable agriculture [3,7–10].

A number of studies have highlighted factors that are associated with interactions
among different compartments of the agroecosystem. The relationship among different
nexuses and their link to soil and water has been widely investigated, such the systems of
soil–water–climate change [11], water–land–energy–food [12,13], soil–food–environment–
health [14], sustainable water–energy–environment [15], water–food–energy–climate [16],
water–energy–waste [17], water–energy–food [18–20], water–food–land–ecosystem [21],
water–energy–carbon [22], soil health–human health [23], and soil–water–plant–human [24].
Photographic or pictorial articles can be highly effective at communicating these complex
nexuses [2]. This has led to several recent articles that have used illustrations and/or pho-
tographs to highlight topics such as smart agriculture [25], soil and humans [26], manage-
ment of salt-affected soils [27], the comparison between higher plants and mushrooms [28],
nano-farming [29], nano-grafting [30], and the soil–water–plant–human nexus [24]. The
main difference between a typical review article and pictorial review is that the picto-
rial review heavily depends on presenting the available information using photographs,
diagrams, and other image-based methods. The fundamental idea of this kind of presen-
tation is that one photo or other image may be better than 1000 words, and therefore a
well-illustrated review facilitates communicating the main ideas in the paper.

Therefore, this is the first photographic and diagrammatic review on nano-restoration
as a means to sustain soil fertility. This work also discusses one of the most important
nexuses, the nanoparticle–plant–microbe (NPM) system and its potential to restore soil
fertility, focusing on the NPM nexus and its importance for sustainable agriculture.

2. Methodology of the Review

The main sources for this review are articles from the major publishers (e.g., PubMed,
Frontiers, ScienceDirect, Springer, MDPI, Google Scholar). The following keywords or
phrases were searched: “Restoring soil fertility and zero hunger”, “main soil restoration
forms”, “approaches of soil restoration”, “Sustainable synthesis of nanoparticles by plants
and microbes”, “Nano-enhanced materials for soil fertility restoration”, and “Nanoparticle–
plant–microbe nexus and soil fertility”. Different combinations of these keywords and
phrases were entered into search engines such as “Nanoparticle and Plant”, “Nanoparticle
and Microbe”, “Nanoparticle and Soil Fertility”, “Soil and Nanoparticle”, “Plant and
Microbe”, “Microbe and Soil Fertility”, “Soil–Plant–Water nexus”, “Soil–Plant–Microbe
Nexus”, “Soil–Water–Nanoparticle Nexus”, “Soil–Plant–Water–Microbe Nexus” and “Soil–
Plant–Microbe–Nanoparticle Nexus”. The selection of articles from different engines
should depend on certain criteria, mainly the reputation and quality of journals and limited
publication period. Manuscripts published in the last 5 years (2018–2022) were prioritized
within this review.

3. Soil and the Sustainable Development Goals (SDGs)

The need to feed around 10 billion people by 2050 represents a great challenge for
the entire world. This necessitates an increase in agricultural production of ~70% by
2050 [31]. Soil is a major factor in this production. Soil is central to many of the Sustainable
Development Goals (SDGs) [32], as seen in Figure 1. The SDGs were announced by the
United Nations and have direct and indirect impacts on managing soil functions [33]. Many
of the SDGs can be directly (SDGs 2, 3, 6, 13, 15, and 17) or indirectly (SDGs 1, 5, 6, 8, 10,
and 16) affected by soil quality and management [34].
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Thus, the quality and persistence of soil functions and their achievement for these
goals mainly rely on soil health [35]. In line with these goals, there is an urgent need for
continuous support of soil ecosystem services [33]. Any progress in achieving the SDGs
requires sustainable management of soils, because many SDGs are directly influenced by
the properties and processes of soils [32].

Soil restoration is a crucial approach to achieve the goal of zero hunger [36,37] (Figure 2).
Soil restoration is a process in which the reduced soil fertility or soil health/quality of
degraded soil is reversed through management practices to restore ecosystem functions
and services. The main things that need to be restored include (1) physical degradation
(e.g., compaction, erosion, sealing, loss of structure), (2) chemical degradation (e.g., salt-
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affected soils, pollution, acidification), (3) biological degradation (loss of soil biodiversity,
low soil organic matter), and (4) ecological degradation (loss of nutrients and carbon,
inhibited in the denaturing of pollutants) [31]. There is a strong relationship between
soil fertility and its management (from one side) and SDG 2 (zero hunger), from the
other. Zero hunger is strongly connected to global issues represented in food security,
malnutrition, and sustainable agriculture. These issues mainly depend on soil fertility
and its management through the ecological management of nutrients, which is needed to
overcome environmental obstacles such as soil degradation, water pollution, and climate
change [38].
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4. Restoration of Degraded Soils

Soil degradation can be defined as “a change in the soil health status resulting in
a diminished capacity of the ecosystem to provide goods and services for its beneficia-
ries” [40]. Soil degradation includes losses in soil biodiversity, productivity, and fertility.
The main causes of soil degradation are pollution resulting from industrial, agricultural,
and commercial activities, loss of arable lands due to overgrazing, urban sprawl/expansion,
climatic changes, and unsustainable agricultural practices. Restoration of soil fertility can be
achieved through sustainable management of degraded lands, such as climate change miti-
gation through the cultivation of bioenergy crops, production of animal proteins through
intensive rotational grazing, and restoration of biodiversity by converting degraded crop-
lands into conservation plantings [38]. Soil fertility can be restored by applying different
approaches as presented in Figure 3, which may include using plant growth promoting
rhizobacteria and arbuscular mycorrhizal fungi, applying organic amendments, inorganic
fertilization, nanomaterials and nano-nutrients, cover crops and soil surface mulching,
preventing hardening or compaction of the soil, integrated application of fertilizers to
include organic, inorganic and biofertilizer, perennialization of cropping systems, and
enhancing the sources of ecosystem services [38,39]. Several kinds of degraded soils are
well-known, such as sandy soils in arid regions, waterlogged soils, polluted soils, mined
soils, and salt-affected soils. In the following sub-sections, a certain concern will focus on
two common types of degraded soils (i.e., saline sandy and saline–sodic soils).
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4.1. Saline Sandy Soils

Restoration of saline sandy soils especially in arid regions depends on the main
problem of these soils (i.e., salinity level in soil, low content of organic matter and nutrients,
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low ability to hold water). Applying the organic amendments like compost or organic
fertilizers or green manure are the most common practices in sandy soils (Figure 4). Under
water stress conditions, foliar application using salicylic acid (150 mg L−1), and ascorbic
acid (100 mg L−1) can support the productivity of olive trees grown in Matrouh, Egypt [41].
The integrated inoculation of pearl millet by mycorrhizae fungi, with combined application
of humic acid (38.4 kg ha−1) and phosphoric acid (1.5 mL L−1) improved the availability of
nutrient status of sandy calcareous soil in Mariout, southwest of Alexandria, Egypt [42].
Integrated management of K-additives (apply Amphora extract of algae, biochar, and
compost) to improve Zucchini productivity grown on sandy soil [43]. The combined
amending sandy soils with mixed organic and mineral as N-sources and irradiating seeds
of faba bean to increase the crop productivity was reported by Farid et al. [44]. The microbial
mixtures (Bacillus subtilis, Pseudomonas flourescens, Pleurotus ostreatus, and mycorrhizeen®)
modified soil physio-chemical properties and its fertility, and consequently increased
productivity of Hibiscus sabdariffa L. in sandy soil [45].
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Figure 4. Cultivation of sandy soils is a great challenge facing the arid and semi-arid regions because
of low fertility and low ability to hold water. These photos represent cultivation of sandy soil with
different horticultural crops in Egypt, including citrus, grapes (higher photo left from saline sandy
and right), mango (middle photos, which represent saline sandy soils), and banana (lower photo
left). Photos by El-Ramady.
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Soil microbes (biofertilizers) can increase soil fertility through enhancing solubility
and uptake of nutrients in soil by cultivated plants, and then increase productivity and its
yield [46]. The tripartite interaction among soil–plant–microbes is very important for soil
fertility and sustainable agriculture. The reason represents in the nature of this relationship
between plant and microbes, which lead to converting the unavailable nutrients in soil
into available and uptakeable by plants [47]. Besides the acquisition of nutrients and due
to the beneficial activities of soil–nutrient–microbe–plant interactions, soil microbes can
also inhibit plant pathogens and induce plant defense response [47]. Under the circular
economy, using agri-based organic wastes in producing bio-organic fertilizer and compost
via soil beneficial microbes at the farm level are a crucial approach for a sustainable design
of new cropping systems, and for increasing soil natural suppressiveness to soil-borne
plant pathogens [48].

4.2. Saline–Sodic Soils

Salt-affected soils are a common problem. Salts are a major constraint for high crop
productivity on about 1125 million hectares globally and are especially problematic in
arid and semi-arid regions [49]. These soils are formed by both anthropogenic activities
and natural causes. Natural causes include fossil salt deposits, the weathering of salty
parent materials, deposition of salts by water or wind, and the tidal flow of sea water or
groundwater inflow in coastal lands. Anthropogenic activities that lead to degradation
through salinization may include irrigation with saline water, poor drainage and irrigation
management, replacement of perennial vegetation with annual crops (which changes
water relationships), seepage of canal water, over-extraction of groundwater, over-use
of agrochemicals, and using waste effluents in irrigation systems [50,51]. The type of
soil salinity is indicated by measures including electrical conductivity (EC), soil pH, and
soil sodium content. Sodium content is given as either sodium adsorption ratio (SAR),
a measure of how much sodium is on the soil exchange sites relative to calcium and
magnesium, and exchangeable sodium percent (ESP), a measure of how much of the total
cation exchange sites are occupied by sodium. Salt affected soils have distinguishing
features, such as the accumulation of salts on the soil surface, poor structure due to
dispersion of clays, and others, as presented in Figures 5–8.

Salt-affected soils can be classified geographically into coastal and inland salt-affected
soils based on the Indian approach. Coastal saline soils are classified as saline soils and
acid–saline soils based mainly on soil pH and EC, whereas inland salt-affected soils are
classified into saline, sodic, and saline–sodic based on the values of soil pH, EC, and SAR or
ESP [53]. The major areas that have salt-affected soils globally include Asia (mainly China,
India, Bangladesh, Indonesia, Iran, Iraq, and Pakistan), Africa (mainly in the north of Africa
including Egypt, Morocco, Algeria and Tunisia), North and Central of America (e.g., the
western USA and Canada, and Mexico), South America (e.g., Argentina, Brazil, Chile, and
Paraguay), Europe (mainly in Hungary, France, and Romania), and Australia [53]. The
main features of saline/alkaline soils may include the growth of halophyte plants like
purslane, the accumulation of salts on the soil surface, nutrient deficiency due to nutrient
imbalances, plant dehydration, disease pressure due to decreased resistance, etc.
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Figure 6. Some common features of saline-alkaline soils at the experimental farm of Kafrelsheikh
Uni. (Egypt), which represent in sabkha on the soil surface and growing the purslane plants (the
first higher 2 photos beside the middle photo left), the accumulation of salts during rice growing in
saline soil in the middle photo right, and the lower photos (left) general view to saline soil during
cultivating lettuce under drip irrigation and deep cracks due to heavy clay content (the lower right
photo). Photos by El-Ramady.

Salt-affected soils have several impacts on both soil and cultivated plants. Salinity
stress is a complex process that negatively influences nearly all of a plant’s biochemical
and physiological processes. As a result, crop productivity is decreased due to inhibition
of plant growth, reduced biomass, and its yield, decline in shoots, leaves, flowers, and
seeds, low water and nutrient uptake efficiency, induced-DNA damage, oxidative stress
due to a high content of reactive oxygen species (ROS), inhibition of photosynthesis and
cellular hydration, and accumulation of toxic ions, mainly Na+ [52,53,56–59]. Impacts on
the soil itself include loss of structure, dispersion of organic matter, antagonism of nutrient
update, increased soil erosion rate (due to high soil dispersibility and decrease shear stress),
increased flooding rate (due to higher runoff because of low soil permeability), ecological
imbalances (due to changes in vegetation including halophytes, bushes, mesophytes, and
trees), and may cause problems for human health because of frequent malaria outbreak
and other diseases [53,60,61]. Under salinized environments, many mechanisms could
be adapted to make plants more tolerant to salinity, including (1) adaption through ionic
homeostasis and osmotic adjustment (proline, betaine, etc.), (2) adaption through ROS scav-
enging (enzymatic and non-enzymatic antioxidants), (3) adaption through salt exclusion,
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removing and pumping salt out of root cells, and (4) adaption through salt secretion, leaf
succulence, photosynthesis protection, and reduction of water loss in shoots [55].
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Figure 7. Production of horticultural crops under arid climatic zones and salinity stress in salt-affected
soils at the experimental farm of Kafrelsheikh University (Egypt). Many crops physiological and
nutritional problems (mainly nutrient imbalances, dehydration, disease pressure due to decreased
resistance) can be seen on the cultivated crops from top to bottom; lettuce, sugar-apple tree (top
photos), persimmon (the middle photos), and citrus (lower photos). Photos by El-Ramady.

Salt-affected soils can negatively affect crop productivity causing huge losses in both
yield and its economic value. Thus, proper management strategies must be adopted to
reduce stressful conditions on cultivated crops and to protect the soils from the devastating
and deleterious impacts of this stress using combinations of the following approaches
(Table 1):

1. Application of Ca-sources like gypsum [53],
2. Phytoremediation using halophytes [62,63],
3. Application of biofertilizers [64],
4. Nano-remediation using nanomaterials [65],
5. Applying organic materials like biochar [66,67],
6. Selecting proper crop genotypes [68,69],
7. Using integrated fertilization [70],
8. Maintaining soil water level by using proper fertilization/irrigation [71],
9. Selecting efficient irrigation systems [72], and
10. Soil management through techniques like tillage and mulching [73].
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Figure 8. Salt-affected soils have general characteristics, including the accumulation of salts on
the surface of the soil, missing plants due to high soil salinity in the field or under greenhouse
conditions, high water table content due to poor drainage, especially in traditional greenhouses, and
high temperature, which increases evaporation from the soil surface and thus accumulation of salts
on the soil surface. Photos by El-Ramady.

It is essential to utilize sustainable approaches to reduce the deleterious impacts
of salinity stress, as reported by several published articles such as El Sabagh et al. [74];
Farid et al. [75]; Leal et al. [76]; Naz et al. [77]; Khan et al. [78] (Figures 9 and 10).
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Figure 9. Saline–sodic soils in Kafrelsheikh, Egypt, could be managed using the application of
gypsum (seen as the white spots on the soils in the photos). Cleaning the agricultural canals and/or
drains is common at the experimental farm of Kafrelsheikh University to avoid harmful impact of Na
in such soils, which is necessary to provide good drainage and reduce anthropogenically-induced
salinization of the soils. Photos by El-Ramady.
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Table 1. Some published studies on managing salt-affected soils using different nanomaterials
and biofertilizers.

Used Nanomateri-
als/Amendment Cultivated Plant Properties of Used

Soil Main Findings of This Study Refs.

I. Applied nanomaterials

Nano-Zn, nano-Si (30,
25 nm and 50,

2.5 mg L−1, resp.)

Rice (Oryza sativa, L.),
var. Giza 178

Clayey, EC = 7.6 dS
m−1, SAR = 14,

ESP = 22.5%

Improved saline sodic soil by integrated
management of both nano-Zn, and

nano-Si in addition to using
straw-filled ditches

[79]

Nano-ZnO at levels of
1 and 2 g·L−1

(40–50 nm)

Faba bean (Vicia faba L.),
var. Sakha 1

Clayey, pH = 8.43, EC =
7.48 dS m−1, SAR =

16.2, ESP = 18.6

Application of nano-ZnO compost and S
was integrated to reclaim

saline–sodic soils
[80]

Green nano-silica
(150 and 300 mg L−1) Banana (Musa spp.)

Sandy irrigated with
groundwater

(EC = 4.12 dS m−1)

Green nano-silica improved the
productivity and quality in sandy soil

with saline irrigation
[81]

MgO-NP at 50 and
100 µg ml−1 as foliar

application

Sweet potato (Ipomoea
batatas L.) cv.
Beauregard

Sandy loam, EC =
7.56 dS m−1, pH = 7.65,

ESP = 10.66%

Co-applied effective micro-organisms
and/or MgO-NPs improved plant

tolerant to osmotic stress by increase
osmolytes level, K+ content

[65]

Nanoparticles
(Si-Zn-NPs) and plant

growth-promoting
microbes (PGPMs)

Soybean (Glycine max
L.) cv. Giza 111

Clayey, pH = 8.23, EC =
5.52 dS m−1, ESP = 16%

PGPMs and nanoparticles (Si-Zn-NPs)
promoted soybean productivity, and

seed quality under water deficit stress
[82]

Foliar NPs-Si (12.5 mg
L−1) and bio-Se-NPs

(6.25 mg L−1)

Rice (Oryza sativa L.),
Giza 177 and Giza 178

Clayey, pH = 8.20, EC =
7.20 dS m−1, SOM =

1.62%

Applied nano-nutrients (NPs-Si and
NPs-Se) improved the yield components

and mitigated harmful salinity stress
[83]

II. Applied biofertilizers/organic fertilizers

Extracts of moringa
leaves, licorice roots,

ginger (2.0%)

Wheat (Triticum
aestivum L.), cv. Misr 1

Clayey, pH = 8.13, EC =
13.20 dS m−1, ESP =

15.08%

Proline and enzymatic antioxidants
(CAT, SOD) after treating with

vermicompost and sprayed with
moringa extract

[84]

PGPR, some strains of
both Rhizobium

and Bacillus

Faba Bean (Vicia faba
L.), cv. 716

Clayey, pH = 8.24, EC =
5.52 dS m−1, SOM =

1.19%, ESP = 20%

Foliar PGPR and potassium silicate
maintain soil quality and increased

productivity of plants irrigated with
saline water (3.5 dS m−1)

[85]

PGPR, namely some
strains of Azospirillum

and Bacillus

Wheat (Triticum
aestivum L.), cv. Misr 1

Clay loam, pH = 8.58,
EC = 9.09 dS m−1, SOM

= 1.48%, ESP = 18%

Collaborative impact of PGPR and
compost on soil properties, and

physiological–biochemical attributes of
wheat under water deficit stress

[86]

Bacterial inoculation
(plant

growth-promoting
rhizobacteria)

Maize (Zea mays L.) cv.
HSC 10

Clayey, pH = 8.22, EC =
7.33 dS m−1,
ESP = 21.27%

Phosphor-gypsum and PGPR are
effective approach for ameliorating the

negative stress of salinity on
maize plants

[87]

Foliar spray of folic
acid (FA), ascorbic acid

(AA), and salicylic
acid (SA)

Potato (Solanum
tuberosum L.) cv. Spunta

Loam, pH = 7.71, EC =
7.14 dS m−1,
SOM = 0.79%

Foliar AA (200 mg L−1) was most
effective in enhancing plant tolerance to

salinity stress
[88]

Gypsum and
mycorrhizal fungi
inoculation (AMF)

Wheat (T. aestivum L.),
cv. Sakha 94; maize (Z.
mays L.), cv. Hybrid 368

Heavy clay, pH = 8.32,
EC = 7.09 dS m−1, ESP
= 19.35%, SOM = 1.16%

Combination of applied gypsum and
AMF inoculation was an effective

approach to ameliorate and alleviate the
hazardous effects of soil salinity and

sodicity on cultivated plants

[89]
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Table 1. Cont.

Used Nanomateri-
als/Amendment Cultivated Plant Properties of Used

Soil Main Findings of This Study Refs.

PGPR (Azospirillum
brasilense and Bacillus

circulans);
potassium silicate

Wheat (T. aestivum L.),
cv. Misr 1, Gemmeza

12, and Sakha 95

Clayey texture, pH =
8.28, EC = 7.71 dS m−1,

SOM = 1.75%

Combined application activated soil
enzymes (i.e., urease and

dehydrogenase); boosted soil microbial
activity; enhanced plant growth at

studied stress

[90]

Biochar (husks of rice
and maize) and foliar

applied
potassium humate

Onion (Allium cepa L.),
cv. Giza 20

Clay loam, pH = 8.35,
EC = 11.14 dS m−1,

SOM = 1.51%

Dual application of biochar and
K-humate was sustainable, an effective,
eco-friendly strategy under water stress

[91]

Abbreviations: soil electrical conductivity (EC); sodium adsorption ratio (SAR), soil organic matter (OM), (EC),
and cation exchange capacity (CEC) was in cmolc kg−1, respectively.

5. Sustainable Production of Nanoparticles

The sustainable production of nanoparticles (NPs) can be achieved using biological
approaches (i.e., microorganisms and plants). This biosynthesis of nanoparticles is also
called the green production of nanoparticles. The types of nanoparticles produced and the
method of production may differ from plants to microbes (Table 2). Several publications
have reported on the biosynthesis of nanoparticles and different environmental conditions
that control this production (e.g., [92–101]).

Table 2. A comparison between microbes and plants in producing nanoparticles.

Item (s) of Comparison Microorganisms Plants

Method of synthesis The biological/green method or biosynthesis The biological or green methods

Which plant tissue or
microbe can use?

Bacteria, fungi, yeast, viruses, cyanobacteria,
and actinomycetes

Plant tissues (leaf, flower, seed, stem, root, peel, fruit)
and plant extracts

location of production Extracellular and intracellular Extracellular and intracellular

Main mechanism

Extracellular biosynthesis by trapping metal
ions on the cell wall and reducing them

through secreted enzymes as reducing agents
(e.g., acetyl xylan esterase)

Extracellular production of nano-particles using
plant extracts (e.g., leaf, fruit, etc.) as capping agents
in the production of nanoparticles, fast degradation

of metal ions

Intracellular biosynthesis by reducing metal
ions into cell cytoplasm through metabolic

reactions with enzymes (e.g., nitrate
reductase), phytochemicals

Proteins, amino acids, vitamins, polysaccharides,
polyphenols, terpenoids, organic acid

Factors affecting
biosynthesis

of nanoparticles

Medium pH, reaction time, temperature, and
reactant content

Plant part (e.g., leaves, flowers, seeds, barks, fruits,
and roots), plant species, extract content,

temperature, metal in the salt, pH, and contact time

Main applications
Anti-cancer materials, cosmetics and medical

appliances, antimicrobial, antipathogen,
plant-growth stimulation, antifungal activity

Nano-sensors detect biomolecules, environmental
factors, gene delivery cell labelling, magnetically
responsive drug delivery, photothermal therapy

Sources: [92,95,96,99,101,102].

The role of nanomaterials in sustaining the soil and its fertility is a crucial issue that
has been explored by many researchers, especially under soil pollution or degradation
conditions (e.g., [38,62,102–104]). Microbial synthesis of NPs is considered a sustainable
approach for nano-bioremediation of the environment, because these NPs can be non-toxic,
clean, and eco-friendly, and this method allows renewable materials to be used for metal
reduction and NP-stabilization [102].
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6. Nano-Restoration of Soil Fertility

Greater crop productivity is essential to provide global food security with a grow-
ing global population. Without appropriate sustainable plant nutrition, this higher crop
production will not be possible to achieve while providing ecological balance [105]. Nan-
otechnology is a promising approach to support and sustain agricultural production by
tailoring nano-fertilizers, nano-pesticides, or nano-biofertilizers in an eco-friendly manner
to meet the specific needs of cultivated crops [105]. Several applications of nanotechnology
in agriculture are shown in Figure 11. The definition of nanotechnology, methods of pro-
ducing nanoparticles (NPs) or nanomaterials (NMs), and benefits and risks of NPs in the
environment can also be found in Figure 11. A risk–benefit analysis should be undertaken
before applying any new nano-formulation to agricultural use [105].
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Nanoparticles can be synthetized using three methods: physical, chemical, and biolog-
ical (Figure 12). When microorganisms and plants are used in nanoparticle synthesis it is
called green synthesis technology, which is considered cost-effective, biologically safe, and
eco-friendly [95]. Microorganisms such as bacteria [111], algae [112], and fungi or mush-
rooms [34] have the ability to produce and bio-convert inorganic metal ions into nano-sized
compounds. Some of these nano-particles can be used for sustainable agriculture [113].
These biological methods mainly depend on the synthesis of nanoparticles via both extra-
cellular and intra-cellular enzymatic activities and intrinsic metabolic processes [95].
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Restoration of soil fertility in soils degraded by problems such as pollution, saliniza-
tion, desertification, etc. is a crucial global issue. Thus, sustainable approaches for soil
restoration are needed for soil health and regenerative agriculture [114,115]. The sustainable
remediation of degraded soils using nano-remediation or nano-restoration of soil fertility
depends mainly on characterization of both soil and used nanomaterials [103,116,117]. The
fate and behavior of nanomaterials in soil during these restoration processes depends on the
applied nanomaterials, soil solution, and other properties of the soil being remediated [118].

7. Nanoparticle–Plant–Microbe Nexus for Restoring Soil Fertility

Agroecosystems, which include soil, are complex, open, and dynamic systems. There
are several interactions between different compartments of these systems (Figure 13).
Components of an agroecosystem include soil, water, plants, microbes, animals, and
humans. All these components continuously interact. Natural and/or anthropogenic NPs,
like other agrochemicals or pollutants, are included in these interactions. Both positive and
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negative interactions, from a crop production perspective, are possible. Soil may behave
as a natural sink that receives and stores all agrochemicals, NPs, pollutants, nutrients, etc.
Therefore, NPs may be taken up by plants, accumulate in the soil system as nano-pollution,
or be used in the process of remediation of pollutants from soil and water through nano-
remediation [118–120]. The following sub-sections present some different interactions
among these agroecosystem compartments with a focus on nanoparticles, cultivated plants,
and soil microbes. How these interactions can be adopted to restore soil fertility is the main
question posed in these sub-sections.
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Figure 13. A simplified general overview of the interactions among soil microbes, cultivated plants,
soil water (soil solution), and different kinds of nanoparticles (natural and atherogenic) in an agroe-
cosystem. All these components interact together in soil, with many positive and negative impacts
on soil fertility. Sources: [118–120].

7.1. Soil–Plant–Water Interactions

The soil–plant–water system includes the impacts of soil physical, chemical, and
biological properties, cultivated plants (depends on plant species), and soil water (i.e.,
soil solution), in which soil reactions occur. The main factors that control the soil–plant–
water nexus are linked to the different properties of these components. This system is
important for controlling soil health and fertility (Figure 14). For example, if soils are
polluted, different nutrient and pollutants pathways will be present. The management of
polluted soil depends on the kind of pollutant(s) and its (their) concentration, plant species,
and applied soil amendments such as biochar (e.g., [64,66,67,71]), fly ash [121], and organic
amendments [66,84].
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pollutants, agrochemicals, and nanoparticles occur in agroecosystems. These interactions can happen
in the soil, with many positive and negative impacts on soil health and fertility. Sources: [118,122–124].

7.2. Soil–Plant–Microbe Interactions

The rhizosphere is an important area that is characterized by several interactions
between plant root exudates (i.e., amino acids, organic acids, and carbohydrates) and
soil microbes. There is a continuous transformation of soil organic matter to available
nutrients [52]. These nutrients are available to both plants and microbes, which increases
soil fertility. Without this interaction between plants and their associated soil microbes,
many nutrients would not be available for plants (Figure 15). Several agrochemicals
have the potential to be harmful to the soil–plant–microbe system and must therefore be
managed expeditiously [47]. Alternatives to chemical fertilizers should be explored and
developed, such as plant growth promoters (plant growth-promoting bacteria or PGPB and
plant growth-promoting rhizobacteria or PGPR) and biofertilizers, to create eco-friendly
and sustainable agricultural systems [47]. The soil–plant–microbe nexus behaves differently
under different environmental conditions like salinity [52], alkalinity [84], pollution [124],
mining soils [39], and integrated mineral regulation under the plant–microbe system [125].
The role of plants and microbes in the restoration of soil health and fertility can be attributed
mainly to soil nutrient accumulation and vegetation restoration through root exudates
as well as boosted nutritional metabolism of plants via microbial enzymes [39]. A strong
relationship between soil fertility and the interaction between plants/microbes and soil
has been reported in the literature, especially using different indicators of soil health
and/or some soil fertility indices such as biochemical index of soil fertility (Kucharski et al.,
2009) [126]. This index could be calculated from the soil enzyme activities (e.g., nitrogenase,
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urease, dehydrogenases, alkaline and acid phosphatase) and depends on cultivated plant
species, soil characterization, and the time of soil sampling (Symanowicz et al., 2021 [127]).
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7.3. Soil–Water–Nanoparticle Interactions

Nanoparticles can move in the soil–water–atmosphere system through several path-
ways (Figure 16). The main interactions of nanoparticles in soil may include NPs–plant–
microbe interactions, NPs–plant–soil–water–microbe interactions, and NPs–plant–microbe–
pollutant interactions (Figure 17). In the rhizosphere there are strong interactions between
plant root exudates and NPs, which can alter plant root exudates to facilitate transforma-
tions of nanoparticles [119]. The main interactions of NPs in soil may include the following
pathways: mobility of NPs in soil, aggregation, and disaggregation of NPs in soil, NPs’
dissolution or chelation in soil, toxic impacts of NPs on soil organisms, the chemical spe-
ciation and release of metals in soil, and the sorption of NPs on soil particles [118,120].
Factors affecting fate and transport of NPs in soil are particle characterization (size, surface,
content, etc.), solution conditions (pH, ionic strength, OM, pollutants), soil properties
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(physical, chemical, and biological characteristics), and flow characterization (flow rate,
flow conditions, including constant head and constant flow) [119,120].
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Figure 16. The fate and behavior of nanoparticles (NPs) released into the atmosphere–soil–plant–
groundwater system (adapted from [128]).

Factors affecting NP mobility in soil may include NP-properties (mainly bare or coated
NPs, composition, and its concentration), soil properties (e.g., pH, ionic strength, SOM, soil
texture, soil moisture content), effects on NP–bioavailability, NP–reactivity and fate, and
the soil microbial community and activities [118,120]. Chemical speciation and release of
NP–metals may depend on soil properties (e.g., soil pH, SOM, other elements concertation,
etc.), sorption of NPs on soil particles (shape of NPs, their mobility, aggregation in soil,
etc.), and NPs–toxicity on plants and soil microbes [118,120].

7.4. Soil–Plant–Water–Microbe Interactions

Dynamic and intensive interactions among plants, soil, and microbes occur in the
rhizosphere, which supports plant productivity via regulating availability of nutrients,
controlling plant diseases, and signaling secondary metabolites (Figure 18). These pre-
vious mechanisms could be used by plants to deal with environmental stresses. Plants
can shape the structure of the microbes in the rhizosphere with their root exudates, and
many soil microbes (e.g., bacteria, fungi, actinomycetes, etc.) thrive in the rhizospheric
niche [129–131].
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Several mechanisms of these interactions and the processes driving changes in soil
microbes are still unknown, especially in the case of polluted soil and interactions with
nanomaterials or nanoparticles. Research to date has focused on the role of soil microbes
as relates to plant mineral nutrition [130], improving the efficiency of fertilizers [131],
remediation of degraded mine soils [131], soil microbial communities affecting plant pro-
ductivity under climate change [132], plants and microbes for restoring soil fertility [133],
and plants and microbes for restoration of natural vegetation [134]. Restoring soil fertility
utilizing the soil–plant–microbes nexus depends on the biological activity of plants, root ex-
udates, and soil microbial activities and their enzymes, as well as the presence of pollutants
or agrochemicals.
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7.5. Soil–Plant–Microbe–Nanoparticle Interactions

Study of above-ground and below-ground microbes, which may link to plant physi-
ological functions and immunity, is critical in the restoration of soil fertility [133]. Nano-
restoration is a soil remediation process using nanomaterials or nanoparticles. The use of
nanotechnology to restore polluted or degraded soils has received attention in many pub-
lished articles such as Rajput et al. [124]. This approach may include alleviating plant stress
using nanomaterials [135], using halophytic nanoparticles in remediating saline soils [62],
or application of nanoremediation for environmental cleanup [103]. The NPs prevalent
in water, soil, and the atmosphere may interact with plants, leading to accumulation in
those plants. The NPs then enter the food chain, which can cause problems for human
health [119]. Possible interactions among the soil–plant–microbe–NPs nexus are shown in
Figure 19.

The possible ways in which engineered NPs could accumulate in soil include NPs
released during their synthesis from the atmosphere to soil, NPs released during their use in
soil or wastewater treatment, and NPs disposal in landfills or by incineration [100]. The soil
microbiome, and other soil organic matter forms, like humic substances, play a vital role in
plant nutrition and yield. This role may change when NPs, pollutants or agrochemicals are
introduced to soil. In the soil system, a complex, dynamic and open system allows many
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interactions among its components, including plants, microbes, agrochemicals, pollutants,
and NPs. Therefore, studies are needed to cover the many open questions concerning
these interactions.
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8. General Discussion

This review focuses mainly on nano-restoration of degraded, including polluted, soils.
The role of soil microbes and nano-materials in the rhizosphere in promoting (or restricting)
the productivity of cultivated plants under different growth conditions has also been
discussed. The following section will address the meaning of soil fertility, the meaning of
soil degradation, how soil restoration can be achieved in the era of nanotechnology, and
the potential negative side of nano-restoration.

Soil fertility refers to the ability of a soil to support plant productivity. This includes the
supply of nutrients, but also includes other aspects of soil chemical, physical, and biological
properties [136]. The over-application of agrochemicals (e.g., mineral fertilizers, pesticides
including insecticides, fungicides, and herbicides) can upset the delicate equilibrium in the
soil system, negatively affecting fertility. Therefore, agricultural management is vital to
reduce and reverse soil degradation. It is important to sustain fertile soils, including well
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balanced nutrients content, adequate soil organic matter, and diversity and abundant soil
life [136].

Soil degradation is a global issue, that has resulted from several aspects of soil manage-
ment. Nano-restoration represents a new approach to reverse these degradation processes,
but it needs more study to fully understand the positive and negative aspects of nano-
restoration. This work investigated nano-restoration and its role in sustaining soil fertility
relying heavily on a pictorial presentation. Nanomaterials such as nano-silica, carbon-based
nanomaterials, polymer-based nanomaterials, and metal-based nanoparticles can be used in
soil nano-remediation [103]. These nanomaterials can be released into soil unintentionally
or intentionally, during their application and use, during their preparation, or when they
are disposed of in the soil such as in landfills [100].

The ability of soil nanoparticles to be toxic to soil microbes, plants, and then humans
through the food chain are a concern. The published literature documents negative impacts
of nanomaterials applied to soil such as zero-valent iron (nZVI), which can negatively
affect soil microbial activity when over applied [137]. On the other hand, nZVI is ef-
fective at removing nitrate from groundwater [138], which is a positive use. Combined
application of CeO2-NPs and bacteria is an effective approach in alleviating Cr-toxicity in
sunflower plants [139]. Cadmium stress may be alleviated through application of nano-Se
and microbes including Alphaproteobacteria, Anaerolineae, Bacteroidia, Deltaproteobacteria,
Gammaproteobacteria, and Gemmatimonadetes in the rhizosphere [140]. The combined nano-
and bio-remediation approach has also been applied to Pb-diesel fuel co-polluted soil using
nZVI [141]. The nano-toxicity threat to soil micro-organisms, cultivated plants, and then
human health has been confirmed from the over-use of nanofertilizers (e.g., ZnO- and
CuO-NPs) (e.g., [107,142,143]). The suggested mechanism of nano-toxicity on cultivated
plants is oxidative stress and damage in biochemical, morpho-physiological, and molecular
insights in edible plants, which may cause serious impacts on human health [144]. The
impacts nanomaterials on agricultural soil microbiota also were reported [145]. On the
other hand, the suggested mechanisms of applied nanomaterials that may improve plant
salinity tolerance could be presented in Figure 20. These mechanisms depend on the kind
of nanomaterials, the applied dose, and plant species [100,146–148].

Based on the available information covered in this review, there are several open
questions that should be answered. These include, but not limited to:

- What are the roles of microorganisms in their interplay with plants and NPs for
restoring soil fertility?

- What are the evolutionary and ecological basis of microbe–plant–soil interactions?
- What are the dynamics of microbe–plant interactions and their link to plant growth

and soil conditions under the umbrella of nano-restoration?
- What are the broader impacts of the interactions of microbe–plant–soil agroecosystems

or agricultural productivity under soil degradation?
- To what extent will the dynamics of microbe–plant interactions differ in the case of

polluted or otherwise degraded soils?
- What are the crucial roles of soil microbes for plant mineral nutrition and soil fertility

in the presence of pollutants?
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9. Conclusions

Given the increase in global population, an increase in global food production and
other necessities supplied by soil is an urgent issue. About 25% of global soils are degraded
to a point that has created a severely reduced ability to meet human needs. Thus, this
review discusses degraded soils and their restoration. Nano-restoration is the main topic
of this pictorial review, which presents the use of nanomaterials for nano-remediation of
polluted soils with a focus on the role of soil microbes and cultivated plants through the
nanoparticle–plant–microbe nexus and its interactions. However, the over application of
nanomaterials during the nano-remediation process or during agricultural management
may lead to nano-toxicity to cultivated or edible plants that moves through the food chain,
culminating in negative health impacts for humans. Therefore, the nano-restoration of
degraded soils should follow regulations designed to avoid health problems for humans
and the environment. The possible interactions between nanoparticles, plants, and microbes
in degraded or polluted soils need additional study for a better understanding of nano-
restoration to sustain soil fertility. All possible interactions among all soil components
besides water, cultivated or grown plants, any agrochemicals in soil, including pollutants,
fertilizers, or nanoparticles. The expected fate and behavior of agrochemicals in soil–
water–plant–microbe system still needs more and more investigations under different
conditions especially under climate change. Day by day, the role of soil microbes has
increased, and several negatives of these microbes have been changed into a positive impact,
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particularly in the field of pharmaceuticals. The integrative role of soil microbes, plant, and
nanoparticles has gained great concern recently from researchers and companies all over the
world. The interactive systems among soil microbes, plant, pollutant, or agrochemical and
nanomaterials still have a very rich area of scientific research for sustaining the soil fertility.
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