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Abstract: Neutrophils are one of the first cells to arrive at the site of infection, where they apply several
strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil
extracellular traps (NETs). Antibiotics have an immunomodulating effect, and they can influence the
properties of numerous immune cells, including neutrophils. The aim of this study was to investigate
the effects of azithromycin and chloramphenicol on degranulation, apoptosis, respiratory burst,
and the release of NETs by neutrophils. Neutrophils were isolated from healthy donors by
density-gradient centrifugation method and incubated for 1 h with the studied antibiotics at different
concentrations (0.5, 10 and 50 µg/mL—azithromycin and 10 and 50 µg/mL—chloramphenicol).
Next, NET release was induced by a 3 h incubation with 100 nM phorbol 12-myristate 13-acetate
(PMA). Amount of extracellular DNA was quantified by fluorometry, and NETs were visualized by
immunofluorescent microscopy. Degranulation, apoptosis and respiratory burst were assessed by
flow cytometry. We found that pretreatment of neutrophils with azithromycin and chloramphenicol
decreases the release of NETs. Moreover, azithromycin showed a concentration-dependent effect
on respiratory burst in neutrophils. Chloramphenicol did not affect degranulation, apoptosis nor
respiratory burst. It can be concluded that antibiotics modulate the ability of neutrophils to release
NETs influencing human innate immunity.
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1. Introduction

Neutrophils are the most abundant immune cells in human peripheral blood, and play a crucial
role in the innate immune response by defending the body against pathogens. They are major
antimicrobial effector cells designed to kill microbes by several strategies: degranulation, phagocytosis,
generation of reactive oxygen species (ROS), and by the—recently discovered—release of neutrophil
extracellular traps (NETs) in a process called NETosis. NETs are fragile fibers of decondensed chromatin
decorated with antimicrobial proteins and histones [1]. These web-like structures are released from the
cell to form a physical barrier for the pathogens that limits their spread throughout the organism, and to
generate a high local concentration of antimicrobial factors. Despite their beneficial role, NETs have
been also reported to contribute to the development of several diseases, including rheumatoid arthritis,
diabetes, and thrombosis [2]. Therefore, a substantial effort is being made to identify agents modulating
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the function of neutrophils, as this may help develop new therapeutic strategies for the treatment of
patients suffering from NET-related diseases.

It is proposed that antibiotics may act as agents affecting NET release. The influence of antibiotics
on the immune system has been an object of investigation for nearly 70 years [3]. There are many
reports regarding their immunomodulating effect on granulocytic and lymphocytic functions [4–6].
Hoeben et al. have demonstrated that antibiotics affect the respiratory burst activity and phagocytosis
of neutrophils [7]. Moreover, Lai et al. report that azithromycin-loaded neutrophils are more effective in
bacterial killing by phagocytosis [8]. One of the first groups to describe the impact of antibiotics on the
release of NETs was Jerjomiceva et al., who observed enhanced NETosis in bovine granulocytes
pretreated with enrofloxacin [9]. To date, there have been few studies regarding the impact of
antibiotics on NET release; thus, we decided to widen knowledge about this topic. There are findings
concerning the link between antibiotic treatment and NETosis; however, these predominantly describe
the induction of NET release by the addition of bacteria to the cell containing the antibiotic [10,11].
The aim of this study was to investigate changes in the functions of neutrophils (NETosis, degranulation,
oxidative burst) caused by the presence of antibiotics in the cell medium.

2. Results

2.1. Degranulation

Phorbol 12-myristate 13-acetate (PMA) was used as an inducer of degranulation during analysis
of the morphological complexity of neutrophils in the side scatter channel (SSC) by flow cytometry.
We found that none of the studied antibiotics alone caused cell degranulation (Figure 1). Instead,
we found that azithromycin at doses of 10 and 50 µg/mL prevented cell degranulation upon
PMA treatment.
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Figure 1. Effect of azithromycin and chloramphenicol on neutrophil degranulation assessed by
measuring the granularity degree of neutrophils in the side scatter channel (SSC). 100 nM phorbol
12-myristate 13-acetate (PMA) was used as a positive control of degranulation (n ≥ 3) (* p ≤ 0.05 vs.
unstimulated (Un) cells).

2.2. Apoptosis

Incubation of granulocytes with antibiotics did not induce cells apoptosis, although a slight,
non-significant increase in the number of annexin V positive neutrophils compared to control,
untreated cells was observed after the incubation of the cells with 50 µg/mL azithromycin (Figure 2).



Int. J. Mol. Sci. 2017, 18, 2666 3 of 9
Int. J. Mol. Sci. 2017, 18, 2666 3 of 9 

 

 

Figure 2. Effect of azithromycin and chloramphenicol on apoptosis assessed by annexin V-FITC and 
propodium iodide binding; paraformaldehyde (PFA) constituted positive control (n = 6) (** p ≤ 0.01 
vs. unstimulated cells (Un)). 

2.3. Oxidative Burst 

None of the studied antibiotics alone affected oxidative burst in neutrophils. However, 
pretreatment of cells with 50 μg/mL azithromycin significantly inhibited ROS production after 
stimulation with PMA (p ≤ 0.05) (Figure 3). 

 

Figure 3. Effect of azithromycin and chloramphenicol on respiratory burst (n = 6), $$ p ≤ 0.01 vs. 
unstimulated cells (Un), * p ≤ 0.05 vs. phorbol 12-myristate 13-acetate (PMA). 

2.4. NETosis 

Our studies revealed that pretreatment of the cells with 10 μg/mL chloramphenicol alone led 
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in NET release after stimulation with PMA (p ≤ 0.05 for 10 μg/mL azithromycin and p ≤ 0.01 for 10 
μg/mL chloramphenicol (Figure 4). Fluorescent microscopy confirmed the above results (Figure 5). 

Figure 2. Effect of azithromycin and chloramphenicol on apoptosis assessed by annexin V-FITC and
propodium iodide binding; paraformaldehyde (PFA) constituted positive control (n = 6) (** p ≤ 0.01 vs.
unstimulated cells (Un)).

2.3. Oxidative Burst

None of the studied antibiotics alone affected oxidative burst in neutrophils. However, pretreatment of
cells with 50 µg/mL azithromycin significantly inhibited ROS production after stimulation with PMA
(p ≤ 0.05) (Figure 3).
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Figure 3. Effect of azithromycin and chloramphenicol on respiratory burst (n = 6), $$ p ≤ 0.01 vs.
unstimulated cells (Un), * p ≤ 0.05 vs. phorbol 12-myristate 13-acetate (PMA).

2.4. NETosis

Our studies revealed that pretreatment of the cells with 10 µg/mL chloramphenicol alone led
to reduced spontaneous release of NETs by cells (p ≤ 0.01). Moreover, we found that incubation of
the cells with 10 µg/mL azithromycin and 10 µg/mL chloramphenicol caused a significant decrease
in NET release after stimulation with PMA (p ≤ 0.05 for 10 µg/mL azithromycin and p ≤ 0.01 for
10 µg/mL chloramphenicol (Figure 4). Fluorescent microscopy confirmed the above results (Figure 5).
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Figure 4. Effect of azithromycin and chloramphenicol on NET release. 100 nM phorbol 12-myristate
13-acetate (PMA) was added to stimulate the release of NETs, neutrophils treated with antibiotics
without stimulation served as the negative control (n = 6).
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Figure 5. Visualization of the release of NETs performed by fluorescence microscopy after incubation
with azithromycin and chloramphenicol, with or without stimulation with 100 nM PMA. The green
color represents MPO, red DNA (n = 6).

3. Discussion

In this study, we were able to show that azithromycin and chloramphenicol can modify the
functions of neutrophils. Although these antibiotics at the tested concentrations do not affect neutrophil
degranulation and apoptosis, they may inhibit NETosis and affect production of ROS.

Azithromycin belongs to the group of macrolides, which are able to accumulate in tissues,
most importantly in white blood cells [12]. Therefore, intracellular activity of macrolides against
pathogens is much stronger than that of other antibiotics [13], as they can be easily transported to
the site of infection [14]. In our study, azithromycin exerted a concentration-dependent effect on ROS
production, and degranulation by PMA-stimulated neutrophils. Although this effect was significant
only at concentrations of 50 µg/mL for ROS release, we observed that increasing concentrations of
azithromycin tended to gradually decrease the ability of neutrophils to produce ROS. Regarding
degranulation, azithromycin at high concentrations (10 and 50 µg/mL) did cause less effective
degranulation of neutrophils after stimulation with PMA. Overall, this could suggest an inhibiting
or stabilizing effect of azithromycin on stimulated neutrophils. What is more, azithromycin had
an inhibitory effect on NET release, with a significant decrease at a concentration of 10 µg/mL
azithromycin vs. PMA only. Surprisingly, this effect was no longer observed at a concentration
of 50 µg/mL. As PMA is a ROS-dependent inducer of NETosis [15], and azithromycin showed an
inhibitory effect on ROS production, we hypothesize that azithromycin at least partially influences the
release of NETs by affecting ROS production. The fact that the highest concentration of azithromycin
does not significantly inhibit NETosis despite a strong decrease in ROS production may be surprising.
However, one should be aware that NET release is, without a doubt, a complex process, involving a
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number of molecular events, not only ROS production. Therefore, it cannot be excluded that at the
highest concentration of azithromycin, other processes that promote NETosis may be upregulated.

Chloramphenicol was introduced for use in 1949; but after only 48 years, it was banned from use,
as it had been reported to cause, among other things, aplastic anaemia. Nowadays, it is mostly used
as a drug of last resort, but is still a first line drug for bacterial conjuctivitis [16]. To our knowledge,
the impact of chloramphenicol on the process of NETosis has not been investigated, yet. In our
study, chloramphenicol at a concentration of 10 µg/mL decreased the release of NETs after incubation
with PMA. Moreover, pretreatment of cells with 10 µg/mL chloramphenicol reduced the number
of cells undergoing spontaneous NETosis in unstimulated samples. Hoeben et al. reported that
chloramphenicol may reduce myeloperoxidase (MPO) activity in bovine granulocytes [7]. Considering
the fact that, during NETosis, chromatin decondensation occurs due to the synergistic work of MPO
and neutrophil elastase [17], it seems feasible that chloramphenicol inhibits NETosis via the inhibition
of MPO.

Antibiotics, aside from their antimicrobial properties, can induce an immunomodulating effect
on cells [18–21], which varies depending on the antibiotic used, its concentration, and the target cells.
In our previous studies, we have already demonstrated the impact of clindamycin, amoxicillin,
gentamicine and cefotaxime on the release of NETs [22,23]. We found that amoxicillin induces
NET release, and that gentamicine inhibits NETosis; meanwhile, we found that cefotaxime and
clindamycin have no effect of NET release. Based on our current investigation, it can be concluded
that both azithromycin and chloramphenicol may influence innate immunity by reducing the ability
of neutrophils to release NETs. Overall, as the effects of different antibiotics on neutrophils are quite
distinct, it cannot be excluded that the effect of a given drug may depend on its chemical composition
and mechanism of action.

When interpreting data of our study, one should bear in mind the limitation that we analyzed the
influence of antibiotics solely on the basis of NET formation induced with an artificial stimulus, PMA.
Even though PMA is considered to mimic signals derived from microbes or immune products [24],
the availability of data using physiological stimuli, e.g., lipopolysaccharide, would further support
our conclusions, and it would be beneficial to perform such studies in the future. What is more,
we would like to point out that the influence of antibiotics on neutrophils in vivo may be influenced
by extracellular milieu, such as the changes in local pH during infection or availability of plasma
proteins [25,26], whilst our studies were performed in protein-free medium, and the pH was stabilized
with HEPES buffer.

NETs play an important role in the innate immune system, as they form a physical barrier for the
pathogens that limits their spread throughout the organism, and generate a high local concentration of
antimicrobial proteins, increasing their efficacy [1]. Disorders in NET formation have been shown to
cause increased susceptibility to opportunistic infections. Despite their beneficial role, NETs have also
been reported to damage cells located near the web-like structures, and contribute to the development
of several diseases. As NETs constitute a considerable source of autoantigens, most often they
are described as contributors to autoimmune diseases such as systemic lupus erythematosus and
rheumatoid arthritis [2]. Identification of agents modulating the function of neutrophils has become
an important goal for the scientific community, as it may help develop new therapeutic strategies
for the treatment of patients suffering from NET-related diseases. When it comes to antimicrobial
therapy, the choice of an antibiotic that decreases NETosis may impair natural mechanisms of innate
immunity, while at the same time diminishing the release of autoantigens stimulating autoimmune
processes. It would be thus advantageous for patients suffering from autoimmune diseases if doctors,
whenever possible, chose antibiotics that negatively influenced NET release.
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4. Materials and Methods

4.1. Antibiotics

Azithromycin and chloramphenicol were purchased from Sigma-Aldrich and diluted in
protein-free RPMI medium supplemented with 10 mM HEPES (ThermoFisher Scientific, Waltham,
MA, USA) to give a final concentration of 0.5, 10 and 50 µg/mL (azithromycin) or 10 and 50 µg/mL
(chloramphenicol) in each experiment. The concentrations used in the study for chloramphenicol
are the same as its therapeutic serum concentration, which is 2–50 µg/mL [27]. For azithromycin,
we used concentrations similar to those achieved in white blood cells during therapy (0–40 µg/mL;
serum concentrations: up to 0.4 µg/mL) [28].

4.2. Neutrophil Isolation and Preparation

Peripheral venous blood was collected from healthy donors into citrate tubes. All experiments
were approved by Ethics Committee at Medical University of Warsaw. Written informed consent
was obtained from each volunteer. Neutrophils were isolated by the density-gradient centrifugation
method, as described previously [22].

In all the performed experiments, neutrophils were preincubated with the studied antibiotics for
1 h at 37 ◦C, 5% CO2.

4.3. Degranulation

Degranulation was analyzed using flow cytometry [9] (Cytomics FC500 Beckman Coulter,
Beckman Coulter Inc., Brea, CA, USA) by assessing the granularity degree of neutrophils in the
side scatter channel (SSC). For this purpose, 2.5 × 105/mL neutrophils were incubated with the studied
antibiotics for 1 h at 37 ◦C, 5% CO2. Positive control with 100 nM phorbol 12-myristate 13-acetate
(PMA, Merck Millipore, Burlington, MA, USA) was used, whereas granulocytes with RPMI alone
constituted negative control.

4.4. Apoptosis

Apoptosis was assessed with Annexin V Apoptosis Detection Kit FITC (eBioscience,
Thermo Fisher Scientific, Waltham, MA, USA) by flow cytometry. After incubation with antibiotics for
1 h at 37 ◦C, 5% CO2, 2.5 × 105/mL of granulocytes were washed, centrifuged, suspended in binding
buffer and double-stained with annexin V-FITC and propidium iodide according to the manufacturer’s
instructions. Positive control (apoptotic cells) was obtained by adding 4% final concentration (f.c.)
paraformaldehyde (PFA) to the cell suspension. Negative control contained cells resuspended in RPMI.

4.5. Respiratory Burst

To analyze the respiratory burst in granulocytes, dihydrorhodamine 123 (DHR 123, (Thermo Fisher
Scientific) was used as a fluorescent marker of the intracellular production of reactive oxygen species
(ROS). For this purpose, 2.5 × 105/mL of neutrophils were incubated with 4 µg/mL DHR123 for
30 min in 37 ◦C, 5% CO2. Subsequently, cells were incubated for 1 h at 37 ◦C, 5% CO2, with the studied
antibiotics. 100 nM PMA, which is an efficient stimulator of ROS production, was used as a positive
control. Fluorescence intensity of rhodamine 123 formed during oxygen burst was measured at the
first fluorescence channel with flow cytometry.

4.6. NET Quantification

Isolated cells were seeded into 96-well black plates at density of 1 × 105 cells/well (5 × 105 cells/mL),
treated with antibiotics or medium alone and left for 1 h at 37 ◦C, 5% CO2. Then, 100 nM PMA was
added to stimulate NETs formation for 3 h at 37 ◦C, 5% CO2. Unstimulated granulocytes were used as
control cells. Post stimulation, 500 mIU/mL of micrococcal nuclease (ThermoFisher Scientific) was
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added for 20 min at 37 ◦C to detach DNA from the bottom of the wells. Reaction was stopped with
5 mM EDTA, and then the plate was centrifuged at 415× g for 10 min. Then, supernatant was collected
to black titer plates and 100 nM Sytox green fluorescent dye (Life Technologies, Waltham, MA, USA)
was added to each well to measure the amount of extracellular DNA by fluorometry.

4.7. NET Visualization

NET formation was visualized using fluorescent microscopy. Briefly, neutrophils (2.5 × 104 cells/well;
6.25 × 104 cells/well) were seeded onto 8-well Lab-Tek Chamber Slides (ThermoFisher Scientific)
and incubated for 1 h at 37 ◦C at 5% CO2 with antibiotics. Subsequently, 100 nM PMA was added to
stimulate NETs release. After 3 h, samples were fixed with 4% f.c. PFA and washed 3 times with PBS.
Cells were permeabilized with 0.1% Triton X (Sigma-Aldrich, St. Louis, MO, USA) and again washed
with PBS. Samples were stained overnight with anti-myeloperoxidase-FITC monoclonal antibody
(1:500, 4 ◦C, Abcam ab11729, Cambridge, UK). DNA was then counterstained with nucleic acid dye
Sytox Orange (Life Technologies, Waltham, MA, USA). NETs were visualized with a Leica DMi8
microscope (Wetzlar, Germany).

4.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v.6.0 (GraphPad Software, La Jolla, CA,
USA). All values were analyzed with one-way ANOVA followed by a post-hoc test for paired data.
All the results have been presented as mean ± standard error of the mean. Results were considered
statistically significant at p < 0.05.
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