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Abstract: Circularly polarized light (CPL) detection and polarization state recognition are required
for a wide range of applications. Conventional polarization detection with optical components
causes difficulties for miniaturization and integration. An effective design strategy is proposed
for direct CPL detection with chiral material. Here, we realized direct CPL detection based on the
combination of chiral photonic cellulose nanocrystal (CNC) and ultraviolet-sensitive ZnO photo-
conductive material. The CNC layer deposited by evaporation-induced self-assembly established
the left-handed chiral nematic structure with a photonic bandgap (PBG) to recognize left-handed
CPL (LCPL) and right-handed CPL (RCPL) at specific wavelengths. The PBG of CNC layer has
been modulated by the adjustment of chiral nematic pitch to match the semiconductor bandgap of
ZnO film in ultraviolet region. The photocurrents under RCPL and LCPL are 2.23 × 10−6 A and
1.77 × 10−6 A respectively and the anisotropy factor ∆gpc of 0.23 is acquired for the CPL detection
based on the chiral photonic CNC. This design provides a new approach to the detection of CPL
polarization state with competitive performance.

Keywords: circularly polarization light detection; cellulose nanocrystal; ZnO photoconduction

1. Introduction

Circularly polarized light (CPL) has attracted great interest in a wide range of appli-
cations, from optical communication [1] and quantum computing [2–4] to biosensor [5]
and substance screening [6]. Conventional polarization detection requires the assistance
of optical components by integrating a non-chiral photodetector with a quarter-wave
plate and a linear polarizer [7,8], but it is difficult to realize miniaturization and integra-
tion. Unlike indirect detection which requires optical elements, direct detection of CPL by
chiral materials with intrinsic advantages can be exploited for integration in more applica-
tions [9]. Directly detectable electronic circuits for CPL can be created by a heterojunction
photodiode [10–12], field-effect transistor [9], and plasmon resonance [13] to distinguish
between different polarization states of CPL. Chiral organic semiconductors can be inte-
grated as the photoactive layer in bulk heterojunction photodiodes to convert CPL into a
polarization-dependent photocurrent [10,14]. Chiral hybrid organic-inorganic perovskites
induce chirality into inorganic sublattice band edge states for efficient charge transport [11].
Chiral metamaterials based on plasmonic elements generate photocurrent from hot carrier
generation and injection [13]. Seeking suitable materials with strong chirality is a main
challenge to direct CPL detection [15], and chiral cellulose nanocrystals (CNCs) offer an
appealing opportunity for integrated CPL detector.

CNCs are a kind of chiral material that is abundant in nature and easy to extract. CNCs
are highly crystalline rod-like nanorods (diameter 3–20 nm) that can be isolated by sulfuric
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acid hydrolysis. After surface-functionalizing with −OSO3− groups, the nanorods are
negatively charged. The electrostatic repulsion between the CNCs results in the formation
of stable suspensions [16]. When the CNC suspensions reach a certain critical concentration,
they self-assemble into a left-handed chiral nematic liquid crystal [17,18]. The chiral
nematic structure can be preserved from the CNC suspensions in the resultant film when
evaporated under controlled conditions [19]. The CNC film is a one-dimensional photonic
crystal with strong optical anisotropy [20,21]. It selectively reflects left-handed circularly
polarized light (LCPL) and transmits right-handed circularly polarized light (RCPL) in its
photonic bandgap (PBG) [22,23]. The PBG of CNC photonic crystal is mainly determined
by Bragg’s law:

λ = nav p cos θ, (1)

where nav is the average refractivity of the extraordinary and ordinary optical indices in
the phase, while p is chiral nematic pitch and θ is the incident angle of light with respect to
the helical axis of chiral nematic phase in CNC film. The PBG of CNC film is intrinsically
related to the pitch, which is influenced by the initial CNC suspension and its drying
process. For instance, sonication treatment with increasing energy input destroys the CNC
aggregates in suspension, resulting in pitch increase and red-shift of the PBG in CNC film.
On the contrary, addition of electrolyte strongly decreases the pitch in CNC suspensions
by decreasing the strength of the electrostatic repulsion between nanorods [24,25]. Several
mechanical and chemical methods can change the chiral nematic pitch of CNC films
to conveniently modulate the PBG [26], exhibiting great potential as chiral material for
CPL detection.

The strong optical anisotropy based on CNC chiral material should translate into
photocurrent anisotropy by the reasonable device design. Photoconductive materials as
photosensitive substrate in CPL detector attract attention for their easy fabrication and
fast response. ZnO is a typical photoconductive material with wide bandgap (3.37 eV)
which has a wide range of applications, e.g., solar cell [27], optoelectronic devices [28], and
ultraviolet (UV) photodetector [29], due to the advantages of safety, high responsivities,
and obvious visible blindness [30–34]. ZnO layer can be prepared by magnetron sputtering,
sol-gel, spray pyrolysis [35–37]. The sol-gel method is chosen for simple equipment, low
cost and large coating area. Since ZnO shows promising prospects of UV photodetection,
the integration of CNC chiral photonic material with ZnO photoconductive detector has
great potential for CPL detection in the UV region.

In this work, we propose a new optoelectronic device to realize the direct detection
of circular polarization states with the combination of chiral photonic CNC material and
ultraviolet-sensitive photoconductive ZnO material. The CNC layer was deposited on
a ZnO layer by evaporation-induced self-assembly (EISA). The PBG of CNC layer has
been modulated to match the bandgap of ZnO photosensitive semiconductor to maximally
convert the selective reflection of CPL into an electrical signal. The strong optical chiral-
ity of CNC ensures high performance to distinguish between LCPL and RCPL without
conventional optical components. The resulting CPL-UV detector reports to have the
photocurrent anisotropy factor ∆gpc of 0.23 in the UV region, realizing high performance
CPL photodetection.

2. Materials and Methods
2.1. Materials

Microcrystalline cellulose (MCC, 11 wt%) was purchased from Sigma-Aldrich Chemistry
(St. Louis, MO, USA). Zinc acetate dihydrate (Zn(Ac)2·2H2O, 99%) and monoethanolamine
(MEA, 99%) were purchased from Aladdin (Shanghai, China). Sulfuric acid (H2SO4, 95%)
and 2-methoxyethanol (C3H8O2, 99.5%) were purchased from Sinopharm Chemical Reagent
Co. (Shanghai, China). All the chemicals were directly used without further purification.
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2.2. Preparation of the Cellulose Nanocrystal Suspension

The cellulose nanocrystal was prepared from MCC. 10 g MCC was added to 100 mL
64% sulfuric acid mixed by 50 mL de-ionized water and 50 mL 98% concentrated sulfuric
acid in ice bath. The suspension was kept in hot water bath at 45 ◦C for 1 h with vigorous
stirring. The suspension was then diluted with cold de-ionized water (~10 times the
volume of the acid solution used) to stop the hydrolysis and settled overnight. The clear
top layer was removed and the remained precipitation was washed by centrifugation with
de-ionized water for several times to remove acidic solution. The sediment was collected
in dialysis membrane tubes and dialyzed against de-ionized water. The dialysis process
lasted for two weeks. After that, the suspension was subjected to sonication treatment for
5 min in an ice bath to disperse uniformly.

2.3. Preparation of the ZnO Layer

The ZnO layer was prepared with spin coating by the sol-gel method. Thus, 0.8 M
Zn(Ac)2·2H2O was first dissolved in 100 mL 2-methoxyethanol. MEA was then dropped
into the solution as stabilizer. The molar ratio of MEA and Zn(Ac)2·2H2O was kept at
1:1. The solution was kept vigorous stirring in hot water bath at 60 ◦C for 1 h to form a
transport sol. After that, the sol aged for 24 h in dark. The quartz substrate (3 cm × 3 cm)
was ultrasonically cleaned with detergent, pure water, and alcohol in turn for 15 min before
spin coating. The sol was dropped on the quartz substrate followed by rotating at the
spinning speed of 3000 rpm for 30 s. The deposited ZnO layer was then preheated on hot
plate at 200 ◦C for 10 min. The spin coating and preheating procedure was repeated for
eight cycles. The deposited ZnO layer was then annealed in ambient air at 600 ◦C for 1 h.

2.4. Device Fabrication

Briefly, 1 mL of CNC suspension was deposited on the ZnO layer with mask on both
sides, followed by evaporation at 30 ◦C to produce the CNC/ZnO photodetector device.
The silver (Ag) electrodes with 2 cm spacing were printed on two sides of ZnO layer acted
as metal contacts.

2.5. Characterization

The cross-sectional morphology of the detector was observed by scanning electron
microscopy (TESCAN MIRA, Brno–Kohoutovice, Czech Republic). The height profile
of the CNC layers after EISA was measured by a surface profilometer (KLA Alpha-step
D600, Milpitas, CA, USA). The crystallization of ZnO layer was determined by X-ray
diffractometry (Bruker D8 Advance, Berlin, Germany) with Kα radiation (λ = 1.5406 Å)
of Cu. Polarized optical microscopy (POM) was performed using a metallurgical micro-
scope (ZEISS Primotech, Oberkochen, Germany). The transmittance spectra and circular
dichroism (CD) spectra were collected by UV-visible-NIR spectrophotometry (PerkinElmer
Lambda 950, Waltham, MA, USA) and CD spectrometry (JASCO J-1500, Tokyo, Japan). The
photoluminescence (PL) spectra were recorded with a photoluminescence spectrometer
(Edinburgh FLS1000, Livingston, UK). The photocurrent measurements of photodetector
were recorded with an electrochemical workstation (Chenhua CHI760E, Shanghai, China).

2.6. Circularly Polarization State Detection Test

The light was generated from light-emitting diode (LED) with a wavelength of 365 nm
(Thorlabs M365L2, Newton, MA, USA). The light intensity is approximately 8.9 µW/mm2.
A linear polarizer (Thorlabs LPUV100, Newton, MA, USA) and a quarter-wave plate
(Thorlabs AQWP05M-340, Newton, MA, USA) were used to obtain LCPL and RCPL. The
unpolarized light went through the combination of a linear polarizer and a quarter-wave
plate with angle ϕ between the polarization direction of the linear polarizer and the fast
axis of the quarter-wave plate. The polarization state of the incident light varied with angle
ϕ. LCPL and RCPL could be generated respectively when the angle ϕ is −45◦ and +45◦.
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The current-voltage and current-time curves of CNC/ZnO photodetector under LCPL and
RCPL illumination were measured using an electrochemical workstation.

3. Results and Discussion
3.1. Fabrication and Structure of CNC/ZnO Photodetector

Figure 1a–d depicts the detector fabrication flow step by step. In order to fabricate the
detector with ZnO as photoconductive UV-sensitive layer, the sol-gel method followed by
annealing at 600 ◦C was used to form ZnO layer on the quartz substrate. Hence, 4.8 wt%
CNC suspension from sulfate acid hydrolysis was sonicated with increasing treatment time
to modulate the chiral nematic pitch of the CNC film cast from EISA. The peak reflection
wavelength of the CNC film increased from 370 nm at 5 min sonication to 650 nm at
20 min sonication (Figure S1). Sonication treatment of CNC suspension for 5 min was
selected to modulate the peak reflection wavelength to the UV region. Hence, 1 mL of CNC
suspension was drop-casted onto the ZnO substrate and kept at 30 ◦C for 1 d for EISA.
Finally, after CNC layer formation, two Ag contacts as electrodes were printed on two sides
of the ZnO layer with constant distance of 2 cm. Figure 1e shows the complete structure of
CNC/ZnO CPL photodetector. The photograph of the detector was taken from the normal
direction (Figure S2). The CNC layer shows an obvious structure color. A weak coffee-ring
effect can be observed at the outer edge of the CNC layer after EISA [38]. The height
profile of the CNC layer (Figure S3) also shows ring-shaped deposition due to the higher
evaporation rate near the edge. The coffee-ring effect of the CNC/ZnO photodetector is
not obvious [39], so it was ignored during the CPL photodetection. Figure 1f provides an
insight into the chiral nematic ordering of the CNC photonic layer by EISA.
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Figure 1. (a–d) Fabrication flow of the CNC/ZnO CPL photodetector. (e) Schematic of CNC/ZnO CPL photodetector.
(f) Chiral nematic ordering of CNC layer.

3.2. Morphological and Chiroptical Study

Figure 2a shows a scanning electron microscopy (SEM) image of the cross section of the
CNC/ZnO CPL photodetector, which are the quartz substrate, ZnO layer and CNC layer
from bottom to top. The macroscopic thickness of CNC layer is measured to be 11.12 µm.
Figure 2b is a high magnification image of the cross section of the CNC layer, which was
cast from the CNC suspension with 5 min sonication treatment. The image shows a periodic
layered structure. CNC nanorods are arranged in a regular way to form a periodic chiral
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nematic arrangement in the CNC layer. The periodic band is a half chiral nematic pitch
( p

2 ) which is related to 180◦ rotation of the chiral nematic direction. The pitch distance of
CNC layer with 5 min sonication treatment is measured to approximately 230 nm [40].
Sonication treatment is an effective physical method to modulate the chiral nematic pitch
of the CNC layer. Sonication treatment will release the ions in the hydrated layer into
the solution, which enhances the dielectronic layer structure of cellulose nanorods. The
electrostatic repulsion between the nanorods increases, and consequently increases the
pitch, so the peak of reflected wavelength is red-shifted after EISA [41]. The sonication
time of 5 min is selected to obtain a CNC layer with peak reflection wavelength in the
UV region. The SEM cross section morphology of ZnO layer is shown in Figure 2c. The
highly faceted granular ZnO grains stack to form ZnO layer with thickness of 180 nm. The
diffraction peaks at 2θ = 31.9◦, 34.6◦, and 36.4◦ in X-ray diffraction pattern representing
(100), (002), (101) planes, exhibit the polycrystalline hexagonal wurtzite structure of ZnO
(Figure S4) [29]. Figure 3a–c are POM images of CNC/ZnO photodetector under left-
handed and right-handed circularly polarizing filters respectively. The clear blue reflection
under the LCPL mode in Figure 3a is observed to completely vanish under the RCPL mode
in Figure 3c. In the POM image (Figure 3b), the CNC layer exhibits a fingerprint texture,
which is characteristic of chiral nematic phase [25].
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After annealing of the ZnO layer, the CNC suspension was deposited on the surface
of ZnO to form the chiral photonic CNC layer. Figure 4a shows the transmittance spectra
of the detector between 250 nm and 800 nm. The ZnO layer has a sharp transmittance
decrease at the absorption edge of 370 nm in the UV region, which is attributed to the
intrinsic ZnO bandgap. The electron transitions from the valence band to the conduction
band when ZnO is illuminated by UV light with higher energy than bandgap. The optical
bandgap can be obtained using the Tauc model:

(αhν)2 = A
(
hν − Eg

)
, (2)
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where α is absorption coefficient, hν is photon eneygy, A is a constant, and Eg is the
optical energy gap. The transmittance and reflectance spectra of ZnO layer is shown in
Figure S5. The low reflectance of ZnO layer can be ignored when the absorption coefficient
is calculated [42]. The absorption coefficient α follows the relation:

α = −1
d

ln T(λ) (3)

where d is the thickness and T is optical transmittance. Eg of ZnO layer is measured to
be 3.28 eV from Tauc’s plot, which is consistent with the absorption edge of 370 nm. The
PL spectra of ZnO layer are measured at room temperature (Figure S6). The PL spectra
of ZnO layer has two emission bands. One is in the UV region, which is attributed to the
near-band-edge emission through exciton–exciton collision processes. The other is in the
visible region, and probably comes from the electron–hole recombination at a deep level
emission in the band gap caused by intrinsic point defects and surface defects, e.g., oxygen
vacancies and zinc interstitials. The PL response of ZnO layer weak so circularly polarized
PL can be ignored [43]. The PBG of the CNC deposited layer was precisely modulated
by sonication treatment to match the ZnO bandgap in the UV region. The transmittance
of the CNC/ZnO CPL photodetector decreases in general when compared with the ZnO
layer and shows a significant gap between 370 and 500 nm, attributed to strong selective
reflection of the photonic crystal near the PBG of the CNC layer.
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CD spectra represent the difference between the absorbance of LCPL and RCPL. The
CNC/ZnO photodetector shows a strong positive CD signal in the same waveband while
the ZnO layer has no CD signal (Figure 4b), which indicates the left-handed chiral structure
of the CNC layer. The strong positive signal with a maximum at 350 nm demonstrates that
the CNC layer selectively reflects LCPL in the UV region. Since CNCs have a reported
average refractive index of 1.56 [44] and chiral nematic pitch is approximately 230 nm,
the PBG is measured to be 360 nm, which is in agreement with the peak of λ = 350 nm in
CD spectra. Consequently, the chiral response region of the CNC layer is modulated to
overlap the absorption edge of the ZnO layer for the high response performance of CPL
photodetection in the UV region.

3.3. Ultraviolet Photoconductivity of ZnO Layer

Figure 5a represents the I–V characteristics of ZnO layer deposited on the quartz
substrate in dark or under UV light illumination. As the applied voltage increased from
−5 V to 5 V, the magnitude of current change is proportional to voltage in the ZnO
photodetectors annealed at 600 ◦C which obeys Ohm’s law, indicating the obvious ohmic
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contact between ZnO layer and Ag electrodes. The difference between currents in the
dark and illumination represents the generation of photocurrent. The dark current is
6.07 × 10−7 A at the bias of 5 V. When the detector is under 365 nm UV irradiation, the
light current is 2.38 × 10−5 A at the bias of 5 V. The light-dark current ratio is measured
to 39.2, indicating the intense increase of ZnO photoconductivity under UV illumination.
When the UV illumination is turned on and off, the photocurrent as a function of the time
at 5 V bias is shown in Figure 5b. The rise time (defined as the time for the photocurrent
to rise from 10% to 90% of the peak value) is found to be 51.3 s and the decay time
(defined as the time for the photocurrent to decay from 90% to 10% of the peak value) is
118.7 s [33]. The photoconductivity of ZnO layer shows a stable behavior, which is desirable
for UV detection.
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The photoresponse of ZnO can be explained by the decrease and increase of conduc-
tivity due to the adsorption and desorption of oxygen molecules on the surface of the ZnO
polycrystalline layer during the switch of UV illumination. In the dark condition, oxygen
will be spontaneously adsorbed on the surface of ZnO where defects or traps exist. The
adsorbed oxygen molecules capture free electrons and create oxygen ions which will create
a thick depletion layer near the surface. Negative oxygen ions don’t participate in the free
charge transport and contribute to a potential barrier, resulting in the low conductivity
and dark current. When UV illumination is turned on, photogenerated electron-hole pairs
are produced by the light absorption and migrate across the depletion layer, leading to
the rapid decrease of photoconductivity. At the same time, the photogenerated holes
recombining with oxygen ions and oxygen molecules would be desorbed from the ZnO
surface, reducing the depletion layer thickness. Holes captured by oxygen ions leaves
photogenerated electrons longer lifetime. The absorption and desorption of oxygen are
slow processes that increase the photocurrent to the saturation value. It is critical to prepare
the ZnO layer of higher crystal quality, which is expected to reduce trap density produced
by defects and accelerate the recombination process of carriers [45].

3.4. CPL Detection of CNC/ZnO Photodetector

LCPL and RCPL are obtained through the combination of a linear polarizer and
a quarter-wave plate from the same UV source at 365 nm wavelength, which have no
difference except polarization states (Figure 6a). Incident lights with different polarization
states travel through the CNC layer, which acts as the CPL filter that reflects back LCPL
and transmits RCPL (Figure 6b). When reaching the ZnO layer, the selective reflection of
CNC results in the distinction of photocurrent, where lower photocurrent is expected for
LCPL and higher for RCPL.
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Figure 7a shows I–V characteristics under illumination of LCPL and RCPL respectively.
The photocurrent is 2.23 × 10−6 A at 5 V under RCPL and 1.77 × 10−6 A at 5 V under LCPL,
both showing linear relationship between photocurrent and voltage bias. The photocurrent
is measured from the most stable cycles with the repetition of LCPL and RCPL from the
fabricated ZnO/CNC photodetector with error bars in Figure S7. The photoconductive
properties of ZnO retain in CNC/ZnO photodetector. The photocurrents under circularly
polarized light decrease because of the extinction ratio of linear polarizer. There is still
remarkable photocurrent discrimination between the illumination of different polarization
states. The dark current of CPL detector is 4.75 × 10−8 A at 5 V. The photodetector has a
light-dark current ratio of 46.9 and 37.2 for RCPL and LCPL, exhibiting a stable sensitivity
of CPL detection. The bias of 5 V was applied and LCPL and RCPL were both illuminated
for 400 s when monitoring the I-t curve of CNC/ZnO photodetector (Figure 7b). There
is no attenuation in CPL detection photocurrent after the repetition of LCPL and RCPL
switching in several cycles. A clear photocurrent gap exists between LCPL and RCPL
illumination. The photocurrent anisotropy factor of different polarization states ∆gpc can
be defined as:

∆gpc =
2(IRCPL − ILCPL)

IRCPL + ILCPL
. (4)
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∆gpc is measured to be a competitive value of 0.23 for the strong chirality of CNC
layer thanks to the macroscopic thickness (Figure S8). The rise time for LCPL and RCPL is
181.3 s and 139.7 s, which is slower than ZnO photodetector, while the decay time for LCPL
and RCPL is 66.7 s and 84.3 s, which is faster than the ZnO photodetector. The mesoporous
structure of CNC layer deposited on ZnO is considered to facilitate the oxygen adsorption
and inhibit the desorption, resulting in the increase of rise time and the decrease of decay
time [46].

The variation in angle ϕ determines the circularity of the polarized light, changing
between linear polarized light (0◦) and circularly polarized light (±45◦). Angle ϕ = 0◦ was
chosen to generate linearly polarized light (LPL), which can also be regarded as a mixture
of equal amounts of RCPL and LCPL. The photocurrent decreases sequentially under
RCPL, LPL, and LCPL under the same bias and light intensity (Figure 8). The photocurrent
is 1.93 × 10−6 A at 5 V under LPL. The photocurrent gap ∆I can be defined as:

∆I = I − ILPL. (5)
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∆IRCPL is measured to be 3 × 10−7 A and ∆ILCPL is measured to be −1.6 × 10−7 A,
showing an appealing potential to reflect the circularity of the polarized light by the
anisotropy factor.

The PBG of the CNC photonic crystal has been modulated to match the semiconductor
bandgap of the photosensitive ZnO layer in the UV region. CD spectra show the highest
selective reflection between LCPL and RCPL near 365 nm for the PBG of the CNC photonic
crystal. Figure 6b presents the schematic diagram of the optical path under the illumination
of different polarization states of light, respectively. The photocurrent distinguishability
originates from the preferential reflection of LCPL by the intrinsic left-handed chiral
nematic structure of the CNC layer. While RCPL will mostly transmit through to reach the
ZnO photosensitive layer to excite electron-hole photogeneration, which in turn increases
photocurrent. The strong chirality of the CNC layer enables the circularly polarized
selective photogeneration efficiency, resulting in the notable photocurrent gap between
LCPL and RCPL.

4. Conclusions

In summary, we have successfully developed an integrated photodetector based on the
combination of photoconductive ZnO and chiral photonic CNC to distinguish polarization
states of CPL. ZnO shows strong absorption in the UV region. The photocurrent of
2.38 × 10−5 A has been achieved at the bias of 5 V with stable cycling performance.
The left-handed chiral nematic structure of chiral nematic phase has been successfully
retained in CNC layer by EISA. The CNC chiral photonic layer acts as a filter to reflect
LCPL and transmit RCPL. The PBG was adjusted to the UV region by controlling the
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sonication treatment to provide a good match for the semiconductor bandgap of ZnO. The
photocurrents under RCPL and LCPL are 2.23 × 10−6 A and 1.77 × 10−6 A, respectively,
with the anisotropy factor ∆gpc of 0.23, and the notable photocurrent gap exists after several
cycles to distinguish between different polarization states. The device realizes the high
performance of polarized-sensitive detection without optical elements, offering exciting
opportunities for broad application prospects in chiroptical imaging and sensing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11113098/s1, Figure S1: CD spectra of CNC film cast from CNC suspension with
increasing sonication treatment time of 5 min, 15 min and 20 min, Figure S2: Photograph of CNC/ZnO
photodetector taken from normal direction, Figure S3: Profilometer scans of the CNC layer after
EISA, Figure S4: X-ray diffraction pattern of ZnO layer, Figure S5: (a) Transmittance spectra of ZnO
layer, (b) Reflectance spectra of ZnO layer, Figure S6: Room temperature PL spectra of ZnO layer,
Figure S7: Photocurrent parameters of CNC/ZnO photodetectors under RCPL and LCPL, error bar
represents standard error in measurement, Figure S8: (a) CD spectra of CNC/ZnO photodetectors
with CNC suspensions of 1000 µL, 500 µL, 200 µL and 100 µL, (b) Normalized I-t characteristics of
CNC/ZnO photodetectors with different volume of CNC suspensions.
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