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Abstract

Background: The transcriptomes of several cyanobacterial strains have been shown to exhibit diurnal oscillation
patterns, reflecting the diurnal phototrophic lifestyle of the organisms. The analysis of such genome-wide
transcriptional oscillations is often facilitated by the use of clustering algorithms in conjunction with a number of
pre-processing steps. Biological interpretation is usually focussed on the time and phase of expression of the resulting
groups of genes. However, the use of microarray technology in such studies requires the normalization of
pre-processing data, with unclear impact on the qualitative and quantitative features of the derived information on
the number of oscillating transcripts and their respective phases.

Results: A microarray based evaluation of diurnal expression in the cyanobacterium Synechocystis sp. PCC 6803 is
presented. As expected, the temporal expression patterns reveal strong oscillations in transcript abundance. We
compare the Fourier transformation-based expression phase before and after the application of quantile
normalization, median polishing, cyclical LOESS, and least oscillating set (LOS) normalization. Whereas LOS
normalization mostly preserves the phases of the raw data, the remaining methods introduce systematic biases. In
particular, quantile-normalization is found to introduce a phase-shift of 180°, effectively changing night-expressed
genes into day-expressed ones. Comparison of a large number of clustering results of differently normalized data
shows that the normalization method determines the result. Subsequent steps, such as the choice of data
transformation, similarity measure, and clustering algorithm, only play minor roles. We find that the standardization
and the DTF transformation are favorable for the clustering of time series in contrast to the 12 m transformation. We
use the cluster-wise functional enrichment of a clustering derived by LOS normalization, clustering using flowClust,
and DFT transformation to derive the diurnal biological program of Synechocystis sp..

Conclusion: Application of quantile normalization, median polishing, and also cyclic LOESS normalization of the
presented cyanobacterial dataset lead to increased numbers of oscillating genes and the systematic shift of the
expression phase. The LOS normalization minimizes the observed detrimental effects. As previous analyses employed
a variety of different normalization methods, a direct comparison of results must be treated with caution.
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Background
Photosynthetic organisms such as cyanobacteria have
been shown to employ complex diurnal regulatory pat-
terns to prepare the organism for the light period [1-3].
The extent, purpose and mechanism of diurnal and circa-
dian oscillations have been reported to differ significantly
among various cyanobacterial species. In particular, the
reported estimates of the number of oscillating transcripts
differ strongly between studies, ranging between 9-80%
of protein-coding genes in microarray time series [4-8].
Random insertion of a luciferase reporter system indi-
cated that up to 100% of genes may be under circadian
control [1,9]. Although microarray technology is a power-
ful genomic approach to quantify the expression levels of
large numbers of genes simultaneously, there are technical
limitations which significantly complicate the quantifi-
cation and interpretation of such global transcriptional
rearrangements. Here, we consider a large number of
combinations of methods required in a typical microar-
ray analysis pipeline to evaluate the impact of each step
on the results. In addition to time series-specific descrip-
tors, clustering is used due to its importance as tool for
biological interpretation of microarray data.

Microarray platform-inherent technical limitations
cause the resulting data to contain systematic or random
technical variation in addition to the biological variation
of interest [10]. Differences in the distribution of the
measured fluorescence values are commonly attributed to
variations in the quality of RNA extraction (experimental
variation) and of individual arrays (technical variation).
Based on assumptions about biologically plausible varia-
tion, a range of normalization methods attempt to reduce
the technical variation between chips. The expected
amount of change in gene expression is a crucial element
in the design of normalization methods. This can be a
hen-egg-problem in less well studied experimental sys-
tems, for which little or no information is available on
the expected global remodeling of the transcriptional
landscape. Various normalization methods have been
employed in previous studies to describe the transcrip-
tional landscape in cyanobacteria. A combination of
LOESS and quantile normalization was used by Vijayan
et. al [11,12]. While spike-in standards were incorporated
in these studies, normalization was performed without
application of this additional information. Kucho et al.
[4] and Straub et al. [8] employed LOWESS normaliza-
tion. A modified LOWESS normalization was used in the
work of Stöckel et al. [3]. As described in more detail by
Calza et al., the assumption of constant expression for
traditional housekeeping genes does not hold under all
conditions. Considering the high percentage of diurnally
varying genes in cyanobacteria [9] including central cellu-
lar processes such as translation [3], an a priori definition
of housekeeping genes is not possible for cyanobacteria.

Correspondingly, reports employing housekeeping gene-
based normalization are not known to the authors.

It is known that the application of such global nor-
malization methods has significant impact on subsequent
analyses, in particular when some of the underlying
assumptions on data structure are not or only partially
fulfilled [13]. Global normalization methods may change
the set of differentially expressed genes [14,15] or lead to
significant changes in the observed correlation between
genes [16,17]. While cross-validation of expression mea-
surements can be used to discover methodological prob-
lems [18], the lack of diurnal expression datasets from
alternative techniques, such as RNA-Seq, impedes such
verification in the case of cyanobacteria. These obser-
vations raise the question, how normalization and other
preprocessing steps affect commonly used descriptors for
periodic expression, e.g., the number of oscillating genes
(by tests of significance of oscillation) and the circadian
phase of peak transcript levels [11,19,20]. Such phase
information is usually used to derive a temporal order
of the observed processes. It is, therefore, of paramount
importance to prevent systematical errors in the primary
phase information.

In addition to the normalization steps, microarray anal-
yses require a transformation which accounts for its semi-
quantitative nature. Calibration methods for sequence-
dependent hybridization energies and unspecific cross-
hybridizations have been proposed [10,21,22], but are not
yet an established standard and so far only implemented
for Affymetrix arrays. The interpretation of microarray
data in terms of absolute mRNA copy numbers is cur-
rently not possible. Instead, data transformations are used
to normalize a given transcript time series to the mean
value or to the distribution of fluorescence intensities: the
fold-change or log2 mean ratio transformation (in the fol-
lowing: 12 m) removes the mean, while standardization
(z-score transformation, in the following: std) addition-
ally normalizes the standard deviation in order to focus on
the pattern of change rather than its amplitude [23]. We
also consider the discrete Fourier transformation (DFT)
in the context of data transformation. The removal of the
first DFT component results in a normalization by the
expression mean in the 12 m, and an amplitude scaling
serves to de-emphasize the amplitude [24], comparable to
std. Notably, only this transformation from time to fre-
quency space considers explicitly the time series character
of the data.

The biological interpretationof microarray data is pos-
sible only after the application of the transformation
and normalization. Due to its high-dimensional nature, a
standard step in the interpretation of microarray data is
clustering. A variety of clustering algorithms have been
proposed, making it necessary to systematically evaluate
theperformance ongeneexpressiondata [25,26]. However,



Lehmann et al. BMC Bioinformatics 2013, 14:133 Page 3 of 16
http://www.biomedcentral.com/1471-2105/14/133

due to the diversity of the data domain, a recent work
concluded that the choice of a clustering algorithm might
depend on the specific experiment [26]. In the case of
time series analysis, it has been noted that most cluster-
ing algorithms do not consider the pattern of change over
time, but treat each sample independently of the tempo-
ral order. An increasing number of algorithms propose
solutions to this issue [27-31], but there is no accepted
standard. An interesting approach specifically designed
to cluster periodic time series has recently been pro-
posed for the analysis of respiratory oscillations in bud-
ding yeast culture [24]. Here, the DFT of the time-series
was clustered with a model-based algorithm that uses t-
distributions as a model (flowClust [32]). However, the
impact of data transformation and normalization of time
resolved microarray data, the clustering algorithm, and
the similarity measure on the corresponding clustering
result have not been fully described.

Several studies on various model organisms have
reported that accepted standard normalization methods
lead to inaccurate results under certain experimental con-
ditions. A recent study of a human B cell line verified
an increase of the global mRNA abundance per cell.
This violation of a common assumption for normaliza-
tion challenges the conclusions of a wide range of studies
(LovÃl’n2012). Furthermore, a work from Machné and
Murray [24] compares two independent measurements of
the oscillatory transcriptional changes of budding yeast
under continuous culture conditions. Due to the global
nature of the observed oscillations, an alternative nor-
malization scheme was employed to avoid detrimental
effects of standard methods. This normalization method
is included in this study. We therefore expect, that the
conclusions drawn from our study are also valid for other
model systems. However, cyanobacteria are a highly spe-
cific model system featuring, e.g., a small number of
genes with a high fraction of diurnally oscillating genes.
Therefore, we address the case of cyanobacteria with
this systematic analysis of normalization methods and
demonstrate how to circumvent problems while analyzing
diurnal expression data.âĂİ

The quantification of diurnal expression in the
cyanobacterium Synechocystis sp. PCC 6803 using micro-
array technology poses new problems for old methods
of data normalization, transformation and clustering.
We compare four multi-array normalization methods
and three data transformations with respect to diurnal
expression oscillation strength and phase. Furthermore,
we use a variety of clustering algorithms to examine the
global expression landscape. The results of seven cluster-
ing algorithms are integrated to verify whether and how
normalization shapes the results of downstream analyses.
Our analysis demonstrates that normalization methods
have significant impact on the estimated number and

phases of oscillating transcripts, with major consequences
for subsequent analysis and biological interpretation. We
identify LOS normalization as the preferable method.

Results and discussion
A diurnal trend in the total chip signal
Cultures of the cyanobacterium Synechocystis sp. strain
PCC 6803 were synchronized with three cycles of
light/dark (LD) 12 h:12 h. During the fourth cycle, six
samples were taken in two biological replicates, yield-
ing 12 microarrays. Since the biological replicates were
obtained from independent culture flasks, their informa-
tion content complements each other. In order to utilize
the entirety of the available information, we concatenated
the two replicates into one time series encompassing 12
points over two consecutive days and comprising 3,347
protein-coding genes, which served as the starting point
for further analyses. Sampling times are given in hours
of circadian time (CT), which defines light onset as time
point 0 h. A diurnal pattern of the total microarray sig-
nal is observed in the raw data (Figure 1A), despite the
application of similar amounts of RNA (1.5 μg) to each
individual chip as in most microarray protocols. Such a
diurnal variation of the total mRNA amount has not been
reported along with genome-wide expression time series
of other cyanobacterial species. However, we recently
observed a similar trend in transcriptome time-series
of budding yeast respiratory oscillations [24]. We pro-
vide plausible interpretations of this observation in the
conclusion.

To characterize the periodicities present in the unnor-
malized data set, we calculated the phase of peak
transcript levels and amplitudes for all protein-coding
transcripts from the DFT component corresponding to
the two LD cycles. Since our samples were taken at
non-equidistant sampling intervals, the phases do not
linearly correspond to the time domain, but reflect accu-
rately the temporal sequence of transcript level peaks.
The significance of periodic transcript levels (posc) was
calculated from a permutation-based background model
[19,20,24]. The majority of transcripts peak at phases 250-
350° (Figure 1B), corresponding to an expression during
the light phase. Strong oscillators (posc < 0.05) reflect
the observed global trend, while weak oscillators contain
both this global trend and additional peaks at CT17.5,
i.e., during the dark phases (Figure 1A). These observa-
tion indicate that central assumptions of several common
normalization methods may be violated. On the other
hand, the additional peaks at CT17.5 may reflect tech-
nical rather than true biological variability or represent
a mixture of night-activation of gene expression with a
global trend, where all transcripts are present at higher
levels. Prior to further analysis, the dataset needs to be
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Figure 1 Oscillation of the unprocessed total signal. A) Prior to any pre-processing, the mean transcript abundance for all genes on the chip
(blue dashed) and all 3347 protein-coding genes (black solid) exhibits diurnal oscillations. Significantly oscillating genes (posc < 0.05) resemble the
oscillation of the total intensity (black dotted), whereas the non-significantly oscillating genes (posc > 0.05) exhibit show increased expression over
the day and a peak at 17.5 CT (gray dashed). B) The majority of genes exhibit a phase angle φ in the range of 250 − 350 corresponding to expression
over the day. C) The histogram of Spearman correlation coefficients γ between all pairwise combinations of the 3447 protein coding genes shows
that most genes strongly correlate. Only a small amount of pairs is uncorrelated or anti-correlated.

normalized to distinguish array-to-array noise from true
biological signal.

Normalization leads to changed diurnal expression times
We tested the impact of four normalization meth-
ods which have either been previously used to analyze
the temporal expression organization in cyanobacterial
species [11,12,33] (median polishing, quantile normal-
ization) or have become an established standard [34]
(cLOESS). Additionally, we tested a recently proposed
procedure which employs a set of least variant genes as
reference set for LOESS smoothing [13]. Importantly, the
least variant genes method was modified by using the sig-
nificance of periodicity (posc, as above) in the raw data to
define a least-oscillating set (LOS) of reference genes [24].
Comparison of the periodicity descriptors from unnor-
malized and normalized data showed that the number of
significantly diurnal transcripts was strongly affected, e.g.,
a cut-off posc < 0.05 retrieved 25% of all transcripts from
raw data, 58% from median polished, 60% from quantiles-
normalized, 64% from LOS-normalized and 35% from
cLOESS-normalized data. At a very conservative cut-off
of posc < 0.001, the number of significant oscillators in
cLOESS (1.7%) decreased below the level of raw data (raw:
2.2%; quantiles: 4.4%; median polishing: 4.9%; LOS: 7.8%).

While such numbers are interesting to illustrate the
extent of transcriptional remodeling, the goal of a
microarray analysis is to obtain a temporally resolved
picture of the transcriptional landscape. Commonly, the
time-series is reduced to a phase angle corresponding to
the time during the course of a day where a transcript’s
level peak. Thus, we tested the agreement of phase angles
φ between unnormalized data and each normalization

(Figure 2E–2H). A systematic deviation of strong oscilla-
tors (posc < 0.05) from the diagonal can be observed for
all but the LOS-normalized data. The deviation follows a
strong systematic trend of the weakly or non-oscillatory
transcripts (posc > 0.05) towards earlier phases of tran-
script peaks. LOS-normalization has an opposite effect
only on the weak oscillators, and shifts them systemati-
cally towards later phase, while strong oscillators remain
unaffected. Under the assumption that technical noise is
independently identically distributed amongst the indi-
vidual samples (microarrays) of a time series, the removal
of such noise contributions should not alter the observed
phase of a periodic signal or introduce oscillatory behav-
ior. Since quantile normalization, median polishing and
cLOESS compensate for the observed global oscillatory
trend, an anti-phase oscillation is introduced into weak
oscillatory profiles leading to the large number of genes
with phases < φ 125°, which corresponds to expression
during the night. In contrast, phases of weak oscillators
are shifted towards the day time by LOS normalization.
These systematic shifts percolate into the mean profiles
of our set of strong and weak oscillators. While quantile
normalization, median polishing and cLOESS all enhance
the night-peak and remove the global trend from weak
oscillators, the LOS normalization has the opposite effect,
i.e., it reinforces the global day-peak and removes the
night peak from the mean time courses of all weak oscilla-
tors (Figure 2A–2D). Additionally, cLOESS normalization
severely dampens the periodicity of all genes, explaining
the decrease in the number of significant oscillators at
conservative cut-off thresholds.

To better understand the effects of the different normal-
ization methods, we chose another way of characterizing
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Figure 2 Normalization changes phase angles and expression correlation. Systematic comparison of important properties of the expression
profile set after normalization with different methods. Columns one to four correspond to the methods quantile normalization, median polishing,
LOS, and cLOESS, respectively. Rows one to three correspond to plots of prominent average expression profiles, expression phase comparisons, and
pairwise correlation distributions. The mean expression profiles for different gene groups illustrate the impact of normalization methods. A
comparison of the unnormalized mean expression profile of all genes (dashed blue) with the normalized mean over all genes (black solid),
significantly oscillating genes (posc < 0.05 in unnormalized data - black dotted) and not oscillating genes (posc > 0.05 in unnormalized data - gray
dashed) is shown in panel A to D. The time of maximal expression in oscillatory profiles, measured using the Fourier transformation, is frequently
altered by the normalization method. Panel E to H show the comparison between expression phases observed in the unnormalized (x-axis) versus
normalized (y-axis) data. Profiles with significantly oscillating expression (posc < 0.05) are shown in black, whereas weak or non-oscillators are shown
in gray (posc > 0.05). The histogram of pairwise Spearman correlation coefficients between expression profiles as proxy of the diversity of the global
expression landscape is shown in panels I to L.

the data, i.e., the pairwise correlation between expression
profiles. Before normalization, the distribution of the pair-
wise Spearman correlation (Figure 1C) is unimodal with
a pronounced peak at 0.8 attesting a very high degree
of correlation without significant uncorrelated or anti-
correlated pairs. The absence of uncorrelated pairs could
be induced by both, the global oscillatory trend that may
be present in a majority of transcripts, or by common
array-to-array noise. Quantile normalization and median
polishing lead to bimodal correlation distributions with
comparable numbers of correlating and anti-correlating
pairs and many uncorrelated gene pairs (Figures 2I, 2J).
This is explained by the overcompensation of the global
oscillation with simultaneous introduction of anti-phase
oscillation into the weakly or non-oscillatory expression

profiles. This massive overcompensation is not observed
for cLOESS (Figure 2L) which yields a unimodal sym-
metric distribution with a peak at zero. This indicates
that a large amount of correlation in the dataset is being
removed. This is again consistent with the decrease of the
number of significant oscillators and with the dampen-
ing of the global diurnal trend. While LOS normalization
is the only method which preserves the correlation and
phase characteristics of the unnormalized data, it intro-
duces a small number of anti- and non-correlating pairs.
This is potentially due to the removal of the positive
correlation cause by real array-to-array noise.

It has been noted before, that not only the back-
ground model, but also the type of data preprocessing can
strongly affect the observed periodicity in a microarray
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dataset [35]. Normalization can significantly increase or
decrease the number of oscillating transcripts. More
importantly, however, normalization also introduces sys-
tematic biases into the transcripts peak phases, and can
either reinforce or remove weak oscillatory signals that are
in anti-phase to a global trend of the data. In the context
of diurnal expression patterns, day-expressed transcripts
may be converted to night-expressed ones and vice versa,
depending on the choice for a normalization method. This
fact can be expected to have extensive effects on subse-
quent analysis steps and the biological interpretation of
results.

Normalization and transformation shape clustering results
A common way of interpreting microarray expression
data is clustering analysis. Clustering of data is often
used to identify the temporal or functional organization
of regulatory processes occurring, e.g., over one diurnal
cycle [3,24]. As normalization methods can influence the
expression profile similarity landscape on a global scale,
we examined the impact of the normalization on the
clustering analysis result. A large number of clusterings
was generated, using all combinations of the described
normalization methods, data transformations (12 m, std,
DFT), and clustering algorithms. The obtained clusterings
were analyzed for similarity.

This study focusses on a selection of seven popular clus-
tering approaches based on diverse underlying principles
which are described in more detail in the methods section.
With K-means [36] and Partitioning Around Medoids
(PAM) [37], the two well-established non-hierarchical
clustering methods were included. The Self-Organising
Tree Algorithm (SOTA) [38] and Hclust [39] represent the
class of hierarchical methods. The Self-Organizing Maps
(SOM) algorithm [40], an approach related to SOTA, was
also included. Furthermore, two model-based methods
Mclust [23] and flowClust [32] were considered. The flow-
Clust clustering algorithm provides the Bayesian informa-
tion criterion (BIC) as an estimate of the optimal number
of clusters present in the data. As the BIC reached a
plateau between eight to ten clusters for the different
normalization-transformation combinations (Additional
file 1: Figure S2), the following analysis is performed using
clusterings with eight clusters.

The Euclidean distance and Spearman correlation coef-
ficient were used separately as similarity measure if
allowed by the clustering algorithm. Both measures differ
fundamentally, since the Euclidean distance captures the
absolute difference between each value of two time series
whereas the Spearman correlation focusses on the relative
differences.

To explore the large number of clusterings obtained
from all combinations of the considered processing steps,

the pairwise similarity between clusterings was measured
using mutual information (MI, see Methods section for
details). These pairwise similarities can be arranged in
a matrix where each row and column corresponds to
one individual clustering. When rows and columns are
ordered identically this yields a diagonal matrix as shown
in Figure 3. This similarity matrix can now be clustered
again to reveal subgroups of particularly similar clus-
terings. We used a hierarchical clustering obtained with
Hclust due to the intuitive dendrogram visualization.

We now asked whether the branches of the dendrogram
correspond to particular parameters chosen to obtain the
corresponding clustering. The specific parameter com-
bination for each row of the similarity matrix is repre-
sented as annotation matrix on the right. This annotation
matrix contains a column for every clustering algorithm,
transformation, and similarity measure and black marks
indicate usage in corresponding rows clustering. The nor-
malization method is color-coded on the left/top of the
similarity matrix.

Visual inspection of the normalization method pattern
and the annotation matrix reveals six large subgroups
A–F (Figure 3). Subgroup F constitutes the only clus-
terings that are dominated by the clustering algorithm.
They are most distant to all other clusterings. Cluster-
ings in this subgroup are derived using all normaliza-
tion methods and mostly the SOTA and SOM algorithm.
Large branch length and small numbers of leaves in the
dendrogram show that clusterings in this subgroup are
very diverse. Manual inspection reveals that all cluster-
ings feature at least one small cluster (<10 genes). These
observations indicate that these clusterings do not rep-
resent stable solutions and are disregarded. Inspection of
the color-coded normalization methods (Figure 3, left)
reveals that subgroups A to E are each dominated by
one normalization method. That is, subgroup A con-
tains mostly clusterings of quantile normalized data and
subgroup B contains mostly clusterings of unnormalized
data, but both contain a further sub-branch. Subgroups
C, D, and E exclusively contain clusterings of median pol-
ished, LOS normalized, and cLOESS normalized data,
respectively. Thus, the normalization method strongly
influences the outcome of the clustering, overlaying
potential differences in clustering algorithm or similarity
measure.

Subgroups A and B, quantile-normalized and raw data,
contain a sub-branch of clusterings that are based on other
normalization methods. Inspection of the data transfor-
mation methods (Figure 3, right panel) reveals that these
sub-branches contain mostly clusterings based on 12 m
transformed data. We speculate, that the observed domi-
nance of the 12 m transformation over the normalization
method, i.e., higher clustering similarity due to transfor-
mation instead of normalization, reflects the design of the
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Figure 3 Clustering results are determined by the normalization. Pairwise similarity between all clusterings with eight clusters, similarity is
measured using mutual information. White encodes minimal similarity over gray to black for maximal similarity. Rows and columns of the
symmetrical matrix are ordered identically according to hierarchical clustering (Hclust, complete link method) of the similarities, represented as
dendrogram on the left. The normalization method applied to the data before clustering is color-coded: no normalization - blue, median polishing -
yellow, LOS - green, cLOESS - cyan, quantile normalization - red. The remaining processing steps (clustering algorithm, similarity measure,
transformation) are represented as black bars in the corresponding column on the right. The column “correlation” marks the usage of the Spearman
correlation coefficient as similarity measure except for clusterings obtained from SOTA, which only allows usage of the Pearson correlation.

12 m transformation to retain part of the amplitude infor-
mation, whereas the std and our amplitude-scaling DFT
transformation aim at its removal.

The similarity matrix in Figure 3 is shown only for clus-
terings with eight clusters, but the presented features are
consistent within the range of five to fourteen clusters.
Furthermore, the presented patterns are also found when
using the normalized Variation of Information (Additional
file 1: Figure S3) as clustering similarity measure. Appli-
cation of the adjusted Rand index as clustering similarity
measure also yields subgroups of clusterings of similarly
normalized data (Additional file 1: Figure S4), but the
hierarchical tree varies.

Comparison of the pairwise clustering similarity shows
that the normalization method determines the clustering
result more than any other step. Furthermore, the dif-
ference of the 12 m to the other transformations has a
strong influence on the clustering. The 12 m removes the
mean level but preserves amplitude differences in fluores-
cence intensity. Whether these differences are biologically
meaningful or of technical character can not be deter-
mined due to the semi-quantitative nature of the microar-
ray technology. It is therefore recommendable to focus on
the pattern of change over time, which can be achieved

by standardization or DFT with amplitude scaling [23]. In
contrast, the choice of the clustering algorithm itself has
the least impact on the obtained clustering result.

LOS agrees best with biological knowledge
The implications of the observed normalization effects
for the biological data interpretation are demonstrated for
selected genes as well as the functional enrichment of a
complete clustering result. First, we examined the set of
significantly oscillating genes which exhibit large phase
shifts after data normalization. As an example, the expres-
sion profiles of four such genes are shown in Figure 4. The
LOS normalized profiles closely resemble the unnormal-
ized profiles and exclusively dampens or remove expres-
sion spikes at the CT 17.5 samples. Whereas all genes
exhibit an induction of expression over the day, applica-
tion of quantile normalization always leads to a phase shift
of ≈ 130 − 160° and, therefore, expression during the
night as well as a dampening of the oscillation amplitude.
Median polishing shows more diverse effects on the indi-
vidual gene profiles. For gene ycf37 (ORF slr0171) shown
in Figure 4A, median polishing preserves the oscillation
phase in the first period, but severely attenuates oscilla-
tory behavior in the second period. For gene psbN (ORF
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Figure 4 Phase changes in high amplitude diurnal expression profiles due to normalization. The expression profiles of four genes with clear
diurnal oscillations before and after normalization with several methods using 12 m transformed data. The expression profiles are shown in different
colors as provided in the legend. The gray shaded area marks the subjective night. The genes ycf37 (A) and psbN (B) are functionally associated with
the photosynthesis and exhibit induced expression over the day. The expression phase φ after quantile normalization is shifted by ≈ 130°. The
genes ssl2789 (C) and ISY120b (D) have transposon-related functions and are phase shifted by ≈ 160° after quantile normalization.

smr0009) and ISY120b (ORF sll1156) shown in panel B
and D, the median polished profiles closely resemble the
unnormalized profiles, while median polishing leads to no
discernible oscillatory behavior for gene ssl2789 (C). Sim-
ilar to median polishing, cLOESS shows diverse effects for
the different genes.

For the gene ycf34, the first peak is preserved whereas
the second period oscillation is removed. In case of the
genes ISY120b and psbN, the cLOESS normalized pro-
files resemble the unnormalized and LOS normalized
profiles, but feature oscillations with severely dampened
amplitude. While on one hand, the diurnal oscillations
of the raw data are entirely suppressed in the profile of
gene ssl2789, on the other hand the amplitude of a neg-
ative anti-phasic spike at the first 0.5 CT sample is even
increased.

As demonstrated, the choice of normalization methods
can change the qualitative properties of the experimental
data. While it is possible, that the global oscillatory trend
is an experimental artifact and thus should be removed,
this removal (e.g. by quantile normalization) leads to
the conversion of day-active oscillators into night-active
ones. Especially for the two photosynthesis-related genes
ycf37 and psbN (Figure 4A, B) this is counter-intuitive

and contradicts previous findings [41]. Only LOS normal-
ization yields expression profiles which widely resemble
the unnormalized profiles, while dampening the presum-
ably noise-related peaks at both 17.5 CT samples. As
already shown in the correlation distributions, cLOESS
suppresses oscillatory behavior while preventing intro-
duction of anti-phasic oscillations.

Conservative normalization gives biologically reasonable
results
Finally, it remains to be shown that the presented data set
and the processing provide a biologically reasonable pic-
ture. As demonstrated, the LOS normalization shows the
least impact on the data and was consequently used in
this analysis step. Visual inspection of clustering results
revealed very good performance of flowClust with DFT
transformation, where cluster-wise coherence of shape
and phase of expression profiles were used as prominent
criteria. From the range of optimal cluster numbers (8-
10) according to the Bayesian information criterion as
obtained from flowClust (see Additional file 1: Figure S2),
we used ten clusters to ensure a finer resolution of the
data for the following biological interpretation. Figure 5
A shows this clustering after reordering the clusters
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A B

Figure 5 Clustering after LOS normalization yields coarse biological program. The clustering of LOS normalized DFT transformed data using
the flowClust approach with ten clusters is shown in panel A. The gray lines represent individual gene profiles, the solid colored line marks the cluster
mean profile, and the dashed colored lines mark the 5% and 95% quantiles. For visualization the 12 m transformed data are used. On the upper left
corner of every profile plot, the cluster index is given followed by the number of genes in the corresponding cluster. The gray shaded area marks the
dark period. The clusters are sorted by the mean phase angle φ. A graphical representation of the cluster-wise functional enrichment of the
clustering shown in A is presented. The rows of this matrix correspond to biological functions whereas the columns correspond to clusters, where
the color marks on the top match the colors used for the cluster mean profiles. The number of genes with the corresponding function is shown on
the top of each cell and the enrichment p-value on the bottom. Furthermore, the enrichment p-value is color-coded in the cell background, marking
highly significant enrichments in black and non-significant enrichments in white. The rows were rearranged to reveal the temporal ordering.
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according to the mean expression phase φ of the cor-
responding cluster members. Functional category anno-
tations for the enrichment analysis were obtained from
the Cyanobase database [42]. For every individual cluster,
the probability of the observed frequency of annotations
was calculated assuming a hypergeometrical distribution
(see Methods section for technical details). A visually
enhanced version of the resulting table of enriched func-
tional annotations for every cluster is shown in Figure 5B.
To allow for comparison, the corresponding results for the
other normalizations and unnormalized data are provided
as Additional file 1: Figures S5–S8.

Most importantly, the three photosynthesis-related
clusters 5,7, and 8 peak as expected in the morning, mid-
day, and evening, respectively. The expression of compo-
nents of the transcriptional and translational machinery in
cluster 1 increases sharply during the DL transition. This
could be explained by the extensive metabolic changes due
the transition from respiration to photosynthesis as well
as the induction of a variety of processes to utilize the
readily available photosynthetic energy. Only with slight
delay, the expression of amino acid biosynthesis related
genes increases possible to provide the basic elements for
protein synthesis. In contrast to protein synthesis, CO2
fixation related genes show an increased expression in the
second half of the day (cluster 8). This behavior might
reflect a separation between protein synthesis and cellular
maintenance during the first half of the day and an accu-
mulation of storage metabolites during the second half as
preparation for the night as observed, e.g., in Cyanoth-
ece sp. ATCC 51142 [43]. The enrichment of genes with
regulatory functions in the non-oscillating cluster ten is
reasonable, since many regulatory mechanisms must be
expected to respond to specific non-periodic cues.

Conclusions
The expression of a large number of genes oscillates
diurnally in a variety of cyanobacterial strains. In the
microarray-based evaluation of diurnal patters in the tran-
scriptome of the cyanobacterium Synechocystis sp. PCC
6803 presented here a large number of diurnally oscillat-
ing expression patterns was found in combination with
a global diurnal oscillation. This global oscillation posed
a problem for commonly used multi-chip normalization
methods. Several methods that have been applied previ-
ously in a similar context attribute such a global oscilla-
tory trend to technical variation and aim at its removal.
We used several time series descriptors (phase, oscilla-
tory p-value posc) and clustering analyses to systematically
compare the impact of four normalization methods on the
presented dataset.

We found that the popular methods median polish-
ing, quantile normalization and cyclic LOESS (cLOESS)
normalization systematically change the expression phase

of oscillating genes compared to the unnormalized data.
This expression phase information is best preserved by the
least oscillating set (LOS) normalization, which attributes
changes in the least oscillating genes to technical variation
and preserves the global oscillatory trend. Analysis of the
expression profile correlation shows only minimal impact
of the LOS normalization. In contrast, quantile normaliza-
tion and median polishing strongly alter the original cor-
relation structure by introducing anti-phasic oscillations.
Only cLOESS suppresses oscillations without introduc-
ing anti-phasic ones. Moreover, the numbers of oscillating
genes differ vastly between the different normalization
methods. The reason for these normalization side effects
is the oscillation in the mean transcript abundance. Only
LOS normalization avoids the removal of this global trend
and thereby avoids introduction of new anti-phasic oscil-
lations or severe dampening of observed oscillators. On
the other hand, LOS normalization may de-emphasize
potential real but weak biological periodicities that are
superimposed by the global trend, i.e., transcripts that
may specifically peak during the night phase. The mecha-
nism which leads to the oscillation in the mean transcript
abundance, despite the consistent application of 1.5μg
RNA on each individual microarray chip, may have sev-
eral not mutually exclusive sources. Firstly, microarrays
probe only a subset of the potentially expressed genomic
sequences. A diurnal variation of the fraction of probed to
non-probed transcripts in the total RNA extract may thus
underlie our observation. Secondly, sequence properties
such as the GC content introduce a bias into the resulting
microarray signal. Strong overrepresentation of sequences
with similar bias-introducing properties in the set of day-
or night-expressed genes might therefore cause an oscil-
lation. This explanation would predict the observation
of a similar oscillation when using RNA-seq instead of
microarrays, since sequencing-based techniques possess
a similar bias. While the normalization of the microarray
signal to the cell number via spike-ins proved useful to
examine a global expression induction [18], this approach
would not be sufficient in the presented case. Further
experimental characterization of this diurnal trend is
required to understand this phenomenon. It was shown
that the result of a clustering analysis is governed by
the choice of the normalization method rather than by
the data transformation, similarity measure, or cluster-
ing algorithm. The only exception is the log2 mean ratio
transformation, which emphasizes amplitude information
more than the standardization and DFT transformation.
Since this amplitude information can not be interpreted
in a quantitative manner, it should be removed by stan-
dardization and DFT transformation to allow for exclusive
clustering by the pattern of change. Comparison of exist-
ing biological knowledge shows that the combination of
LOS normalization, clustering using flowClust and DFT
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transformation, and functional enrichment analysis of the
resulting clusters outline the basic diurnal biological pro-
gram of Synechocystis sp. PCC 6803. Other normalization
methods cause large phase shifts or the attenuation of
diurnal oscillations, which are in some cases inconsistent
with biological knowledge.

In the light of these analyses, it is possible that the
descriptions of large scale oscillatory gene expression and,
in particular, expression timings in different cyanobac-
terial species are biased by the normalization methods
employed in the analysis. To overcome this challenge,
more robust multi-chip normalization methods must be
considered when studying temporal expression organiza-
tion. Importantly, the exact source of a diurnal trend in
the total chip signal, despite experimental normalization,
requires further experimental characterization.

Methods
The synechocystis sp. PCC 6803 time series expression
dataset
Synechocystis sp. strain PCC 6803 was grown in BG11-
medium [44] at 30°C under continuous illumination with
white light of 120 μmol of photons m−2s−1 and a contin-
uous stream of air. The optical density of the culture was
monitored by measuring the absorbance at 750 nm. Cul-
tures were synchronized with three cycles of light/dark
12 h:12 h prior sampling. Aliquots were taken at OD750
0.5. Over a 24 h time course, 6 samples for RNA isolation
were taken at the following time points: 30 minutes before
and after light is switched off, (sample 1 - CT 11.5 and
sample 2 - CT 12.5), 30 minutes before midnight (sam-
ple 3 - CT 17.5), 30 minutes before and after light onset
(sample 4 - CT 23.5 and sample 5 - CT 0.5) and 30 min-
utes before noon (sample 6 - CT 5.5). Cells were filtered
rapidly through Supor 0.45 m membrane filters (PALL),
immediately stowed with TRIzol reagent (Invitrogen) and
frozen in liquid nitrogen. Total RNA samples stored at -
20°C were transferred directly to a 65°C waterbath for 5
minutes, mixed with 0.2 ml chloroform per ml of TRI-
zol and incubated for 15 minutes. The dissolving of the
membrane and lyses of the cells were supported by vor-
texing. Centrifugation at maximum speed for 10 min at
4°C separated the phases. The RNA in the supernatant
was precipitated by adding 0.5 ml of isopropanol per ml
TRIzol used in the initial homogenisation. Two replicates
were prepared from two synchronously growing cultures.
The microarray design and hybridization procedure have
been described previously [45]. The custom made Agilent
single channel expression microarray holds probe sets for
all annotated genes from the chromosome (NC_000911)
as well as the seven plasmids. The detailed description of
the employed microarray is deposited at gene expression
omnibus (GEO) under the series identifiers GSE16162 and
GSE14410. The extracted RNA was labeled directly for

microarray hybridization to avoid labeling artifacts from
reverse transcription and second strand synthesis during
cDNA synthesis. The same amount of 1.5μg RNA was
applied for every array, i.e. time point. The spot inten-
sities were extracted with the ‘Agilent Feature Extraction
Software 10.5.1.1’ using the Protocol GE1_105_Dec08. No
background correction was performed. Probe summariza-
tion yields expression values for 8907 mRNAs, of which
3242 can be mapped onto protein coding genes located on
the chromosome and 105 located on plasmid pSYSA. We
selected only those genes for further analysis.

Data transformation
The brightness of spots in a microarray experiment, from
which the expression strength is derived, depends not only
on the number of mRNAs in the sample, which is applied
to the array chip. Large differences in hybridization energy
and experimental effects like cross hybridization lead to
expression values, which span several orders of magni-
tude and of which only relative changes for one probe
set between the conditions can be interpreted. By the use
of different transformations, it is common to bring raw
expression data into the same order of magnitude. To
allow for comparability, we also include the raw data in
every step of our analysis.

Log2 mean ratio
The 12 m mean ratio is defined as

x′ = log2
x
x̄

,

where x, x̄, and x′ denote the original time series, the aver-
age expression over the genes entire expression profile,
and the transformed time series, respectively.

Standardization (Z transformation)
The standardization is defined as

x′ = (x − x̄)

σx
,

where σx denotes the standard deviation of the genes
expression profile from its average, which is calculated as

σx =
√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2

for an expression profile x of length N.

Discrete fourier transformation
A series of measurements x = {x0, ..., xN−1}, acquired at
times {t0, ..., tN−1}, can be approximated as a set of sine-
functions with different frequency and amplitude. This
transformation into frequency-space is done by applying



Lehmann et al. BMC Bioinformatics 2013, 14:133 Page 12 of 16
http://www.biomedcentral.com/1471-2105/14/133

the Discrete Fourier Transform (DFT) to each gene’s time
series

Xk =
N−1∑
n=0

xne−2π i kn
N , k = {0, . . . , N − 1} ,

where X is a vector of complex numbers representing
the decomposition. Each component Xk represents a sine
with period Pk = (tN−1 − t0)/k where X0 represents the
non-oscillating component or an offset from 0 of the time
series. For each component Xk the amplitude Ak and the
phase angle φk can be calculated as Ak = |Xk|/N and
φk = tan−1(Im(Xk)/Re(Xk)). Since the obtained spec-
trum is symmetrical relative to k = N/2, it can be
restricted to 0 < k < N/2 (in this case 0 to 6) without loss
of any information. It must be noted that the computed
phase angles φk provide a distorted measure of the diur-
nal expression time due to the non-equidistant sampling.
However, the phase angles provide an excellent means to
obtain a temporal order of oscillating expression patterns.

To be able to cluster these frequency spectra, we dis-
card the uninformative non-oscillating component X0 and
the highest frequency component X6 and create a series of
values out of the 5 real and imaginary parts of the remain-
ing frequency spectrum for every gene. This component
omission can be interpreted as subtracting the mean for
each gene’s time series. For the remaining components
Xk , the amplitude is scaled to emphasize the shape of
the expression pattern instead of the absolute amplitude,
which is less informative for microarray data. Therefore,
the scaled amplitude ak is the amplitude at component k
divided by the mean of amplitudes at all other non-zero
components, ak = Ak/Āi�={0,k}.

Detection of periodic expression profiles
As proposed previously, a permutation-based method is
used to detect diurnal periodic expression profiles [20].
As diurnal periodicity is reflected in a large magnitude
of the corresponding Fourier component Xk , its signifi-
cance can be assessed by the probability posc to observe
Xk in a random permutation of the original time series.
We, therefore, calculated the Fourier spectra of 100000
random permutations of each time series and calculated
the empiric relative probability for each Xk to observe a
Fourier coefficient equal or larger in a random permuta-
tion.

It must be emphasized that the Fourier transform uses a
sine function as underlying model which in case of a sinu-
soidal expression profiles leads to a distinct peak in X at
the corresponding frequency k. For periodic signals with
non-sinusoidal shape, e.g. spike-shaped, the magnitude
of the corresponding frequency component is distributed
across the harmonic and neighboring frequency com-
ponents. This hampers the detection of low-amplitude

periodic non-sinusoidal profiles in comparison with sinu-
soidal profiles, since the lower magnitude of Xk receives a
higher probability in the permutation background model.

Data normalization
Strategies for the compensation of experimental varia-
tions in multi-chip experiments are generally considered
necessary. Basis for such approaches are assumptions of
similarity between different arrays in the same experi-
ment.

The quantile-normalization approach by Bolstad et al.
[46] assumes that the real distribution between the arrays
is identical and only a small number of genes show differ-
ential expression due to the experiment. To perform the
array-wide normalization we used the R-implementation
in package limma [47] (normalizeBetweenArrays with
method quantile).

Median polishing [48] is a classical method in
exploratory data analysis. It is used within the RMA and
GCRMA preprocessing protocols to summarize the probe
sets. In this study, it is used to remove differences in
the total median between individual arrays. We, thereby,
illustrate the relaxation of the assumption of similar dis-
tribution shape, which is made in quantile normalization,
while maintaining the assumption that the majority of
genes are not differentially expressed.

With the LOESS normalization [34], another non-
microarray specific normalization method finds wide
acceptance. In this method, the observation of an
expression amplitude-dependent non-linear relationship
between multiple microarrays is accounted for using a
polynomial correction function instead of a linear one for
the equalization of two arrays. For the extension of this
pairwise normalization, the gene-wise mean expression
over all samples can be used as reference array for each
individual sample array. In the work of Bolstad et al. [46],
the cyclical application of the LOESS normalization was
included, which we refer to in our comparison as cLOESS.
We use the implementation in the R-package Limma using
the method normalizeCyclicLoess using the default
settings.

In addition, with the least oscillatory set (LOS) normal-
ization we propose a method which is related to the least
variant set normalization (LVS) [13] in its basic idea of
selecting a subset of expression profiles for the fitting of a
LOESS polynomial.

While LVS attempts to define a set of housekepping
genes by finding profiles with minimal array-to-array vari-
ation (after partitioning the observed variation into array-
to-array variation, within-probeset variation and residual
variation), LOS follows a more intuitive approach. Here,
housekeeping genes are defined as the set, which exhibits
the least pronounced diurnal oscillations (measured
by oscillatory p-value posc). Defining the lower cutoff
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posc > 0.7 and considering all transcripts on the chip
yields a LOS set of 1173 expression profiles. The global
mean expression for each array is shown in Additional
file 1: Figure S1 A together with the mean expression pro-
files of LOS sets of different size. The mean expression for
each of these LOS profiles is used to fit a LOESS normal-
ization curve to each individual array, which is then used
to perform the normalization. For the presented dataset,
LOS normalization leads to the dampening of the spike at
the first CT 17.5.

Clustering algorithms
From the plethora of clustering algorithms, which have
been proposed for the clustering of expression data, we
chose a diverse set of 7 methods which cover different
principles of clustering.

K-means
The non-hierarchical K-means clustering algorithm is
implemented in the R-function Kmeans (package: amap).
In this function, 100 random starting sets of k cluster cen-
ters are used to run 1000 iterations of the Lloyd-Forgy
algorithm [36] each. From the set of available distances
measures, we chose the Euclidean distance and Spearman
correlation coefficient ρ. In this case as in every follow-
ing correlation coefficients have been transformed into a
distance measure by:

ρ̂ = 1 − ρ

taking 1 minus the correlation coefficient.

Partitioning Around Medoids (PAM)
Similar to K-means, PAM is a non-hierarchical clustering
algorithm that partitions the data by attempting to min-
imize the squared error of a distance measure [37]. In
contrast to K-means PAM takes data points as cluster cen-
ters, which are then called exemplars or medoids. We are
using the R-implementation pam (package: cluster) with
Euclidean and Spearman correlation distance.

Hclust
The bottom-up hierarchical cluster [39] analysis included
in this study is implemented in the R-function hclust

(package: stats). The clustering is based on a set of dissim-
ilarities between the samples. Here, we have used dissimi-
larities based on the Euclidean distance and the Spearman
correlation coefficient together with Ward’s method [49].

Self-Organizing Maps (SOM)
The non-hierarchical Self Organizing Map (SOM)
approach represents multidimensional data in a low-
dimensional topological map. The grid used here is
one-dimensional and the number of grid points equals
the number of clusters [40]. The implementation of SOM
in the R-function som (package: kohonen) [50] is used.

During the training phase the data are presented for 3000
times to the network.The learning rate alpha is set to
start from 0.5 and decreases linearly to 0.05 over the 3000
repetitions. As topology we chose a rectangular network
with 1 by k nodes.

Self-organising tree algorithm (SOTA)
The top-down approach called self-organising tree algo-
rithm or SOTA was proposed as strategy for phyloge-
netic reconstruction [38]. It has also been used to cluster
microarray gene expression data [40]. In a top-down fash-
ion, SOTA produces a hierarchical binary tree structure
by repeatedly training a neural network and splitting the
most diverse neuron into two neurons of the new net-
work. We used the R-implementation clValid (package:
clValid) with default parameters [38].

Mclust
We included a non-hierarchical model-based clustering
approach using expectation maximization initialized by
hierarchical clustering for parametrized Gaussian mixture
models [23]. Each mixture component represents a clus-
ter. The full set of 10 possible models is calculated for each
number of clusters k and the model yielding the highest
Bayesian information criterion (BIC) is selected. The R-
implementation Mclust (package: Mclust) is employed
with default parameters.

flowClust
As a second member of the family of model-based cluster-
ing methods we chose flowClust [32]. The main difference
to Mclust is the usage of a multivariate t distribution
as model for each cluster instead of a Gaussian dis-
tribution. We used the R-implementation flowClust
(package: flowClust) with default parameters. The appli-
cation of flowClust to standardized and unnormalized
data prevented the convergence of the algorithm or lead
to clusterings that include clusters of less than 10 genes.
This suggests incompatibility of the algorithm to these
transformations and justified the exclusion of these com-
binations from further analysis.

Clustering comparison
Adjusted rand index
The Rand index [51] between two clusterings counts for
all pairs in the dataset how often both are in the same clus-
ter (a) or in different clusters (b) within both clusterings
(agreement of clusterings). Also the number of disagree-
ments in between all pairs is counted, i.e., for how many
pairs both are in the same cluster in clustering 1, but not
in clustering 2 (c) and vice versa (d). The counts are then
combined to a score:

R = a + b
a + b + c + d
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The adjusted Rand index furthermore accounts for sim-
ilarities in the clusterings which are expected by chance.
The adjusted Rand index values are of interval [0,1]
where 1 is reached by maximally similar and 0 by maxi-
mally dissimilar clusterings. We use the R-implementation
of the adjusted Rand index in function cluster.stats
(package: fpc).

Mutual information
The mutual information is defined as

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(x, y)log
(

p(x, y)
p1(x)p2(y)

)
,

where p(x, y) is the joint probability function for elements
of the two clusterings x ∈ X, y ∈ Y and p1(x), p2(y) are the
marginal probabilities for elements in the individual clus-
terings. The joint probability function is estimated by a
contingency table whereas the marginal distributions are
estimated by a histogram with each cluster being one bin.
The mutual information values range from 0 for maxi-
mally dissimilar clustering to a maximum of the entropy
of one clustering when both are identical. Therefore, the
maximum mutual information increases with the cluster
number enabling for a larger entropy value in a clustering.
We used the R-implementation of the mutual information
in function mi.empirical (package: entropy).

Normalized variation of information
The variation of information was proposed by Meila [52]
is defined as follows:

VI(X, Y ) = H(X) + H(Y ) − 2I(X, Y )

nVI(X, Y ) = VI(X, Y )

H(X, Y )

where H(X), H(Y ) are the entropies of the individual
clusterings, I(X, Y ) is the already introduced mutual infor-
mation. Instead of the variation of information VI(X, Y )

we used the normalized variation of information to facil-
itate comparability between e.g. clusterings with different
k. Values of the normalized Variation of Information are
of interval [0,1] where 0 is reached by maximally sim-
ilar and 1 by maximally dissimilar clusterings. We use
the R-implementation of the VI in function cluster.stats
(package: fpc) with subsequent normalization.

The construction of a clustering result comparison sim-
ilar to Figure 3 is demonstrated in Additional file 2 using
the statistical programming language R.

Functional enrichment analysis
The functional enrichment analysis was performed using
the gene annotations as provided by the Cyanobase

database [42]. The overrepresentation of genes with a cer-
tain functional annotation was then computed with the
R-library topGO [53], using the classic algorithm and the
Fisher test statistic.

Additional files

Additional file 1: Supporting Information. A document providing
supplementary figures.

Additional file 2: R Script demonstrating application of the
considered clustering algorithms. A document, describing the
application of clustering algorithms to time series expression data, using
the statistical programming language R.
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