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Despite important advances in the treatment of myocardial infarction that have

significantly reduced mortality, there is still an unmet need to limit the infarct size

after reperfusion injury in order to prevent the onset and severity of heart failure.

Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been

developed to effectively protect the myocardium from reperfusion-induced cell death

in preclinical studies. Nonetheless, the translation of these therapies from laboratory to

clinical contexts has been quite challenging. Comorbidities, comedications or inadequate

ischemia/reperfusion experimental models are clearly identified variables that need to be

accounted for in order to achieve effective cardioprotection studies. The aging heart

is characterized by altered proteostasis, DNA instability, epigenetic changes, among

others. A vast number of studies has shown that multiple therapeutic strategies, such as

ischemic conditioning phenomena and protective drugs are unable to protect the aged

heart from myocardial infarction. In this Mini-Review, we will provide an updated state of

the art concerning potential new cardioprotective strategies targeting the aging heart.
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INTRODUCTION

Although the available treatments of acute myocardial infarction (MI) have improved in the
past decades, the consequent heart failure is consistently rising and thus, effective protection of
the heart to preserve ventricular function and reduce myocardial remodeling is still an unmet
need (1). Several years of research have established that cardiomyocytes have signaling pathways
that, upon activation, can reduce the damage elicited by ischemia/reperfusion (I/R) injury, such
as the Reperfusion Injury Salvage Kinases (RISK) and the Survivor Activating Enhancement
Factor (SAFE) (2–4). There are numerous cardioprotective strategies that can be induced by
different ischemic conditioning procedures and drugs with successful results in preclinical
studies (5). Nonetheless, translation of cardioprotection from bench to bedside has been highly
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challenging (6). Remote ischemic conditioning (RIC) is an
important example of this. This cardioprotective maneuver has
been thoroughly established as a potent therapeutic strategy in
multiple preclinical studies, as well as small clinical trials (5).
However, the CONDI-2/ERIC-PPCI trial showed solid evidence
that RIC does not provide protection after 1 year in patients
with ST-elevation myocardial infarction treated with primary
percutaneous coronary intervention (7). It is currently proposed
that this discrepancy between preclinical and clinical settingsmay
be attributed to factors such as comorbidities and comedications
(8), as well as sex and age (9, 10).

In the context of myocardial infarction and cardioprotection,
aging is increasingly attracting attention, due to its rising
prevalence. Over the past decades, life expectancy has
been steadily increasing (11). It has been estimated that
by 2050, a quarter of the global population will be over 65
years old, with the exception of Africa (12). Importantly,
although life expectancy has increased, disease-free lifespan
has not been markedly increased as compared with lifespan,
thereby increasing the burden of age-related diseases, such
as cancer, neurodegenerative and cardiovascular diseases
(11). Indeed, aging is considered a significant risk factor
for cardiovascular diseases (13, 14) and particularly, for
MI (15). Accordingly, chronic low-grade inflammation
associated with aging is known to promote endothelial and
vascular smooth muscle dysfunction, thus exacerbating
atherosclerosis and increasing the risk of plaque rupture and
thrombus formation (16).

The hallmarks of myocardial aging may account for the
reduced tolerance against myocardial I/R injury in preclinical
studies (17) and thus, its understanding may enable the
development of new and effective therapies to reduce cardiac
damage after MI in the context of aging. This mini review
aims to discuss potential cardioprotective approaches in the
aging heart such as the use of senolytics, as well as therapeutic
strategies that aim to decrease mitochondrial damage and
reduce inflammation.

THE AGING CARDIOMYOCYTE

One of the key features of the aging heart is mitochondrial
dysfunction, characterized by increased mitochondrial
fragmentation, ROS production and mitochondrial
permeability transition pore opening, as well as reduced
mitochondrial biogenesis and electron transport chain
activity (17–19). Furthermore, senescent cardiomyocytes
also undergo DNA instability, mostly related with telomere
shortening and mutations of nuclear and mitochondrial
DNA (20). Altered proteostasis is another important feature
of aging cardiomyocytes, whereby a reduction in protein
synthesis/turnover is associated with a decreased efficiency
of the ubiquitin-proteasome system and autophagy (21). The
main features of the aged cardiomyocyte are summarized in
Figure 1A. In addition, Ruiz-Meana et al. provide an in depth
analysis and discussion of the aged cardiomyocyte in the context
of cardioprotection (17).

POTENTIAL CARDIOPROTECTIVE
THERAPIES IN THE AGED HEART

Senolytics: Cardioprotective Potential in
the Aged Heart
Senescent cells increase in aged tissues, which has been associated
with the progression of age-related diseases (22). In this context,
senescence markers are augmented in aged cardiomyocytes (23),
which has been linked to higher risk of cardiovascular diseases
(24). Senolytics are agents that can selectively target pro-survival
proteins of senescent cells, inducing cell death. Regarding the
heart, there are three major senolytics that have been widely
studied in vivo and in vitro; Dasatinib, Quercetin, and Navitoclax
(24). These senolytics have been shown to improve vascular
function (25, 26). Importantly, a study performed by Walaszczyk
et al. showed that oral administration of navitoclax to aged mice
before in vivo myocardial infarction reduced morality, as well as
age-related myocardial remodeling and improved left ventricular
function (27).

Despite the beneficial effects of senolytics on a preclinical
level, there are only two clinical studies showing that these
drugs can decrease senescent cells in humans (28, 29). Justice
et al., showed that a combination of Dasatinib + Quercetin in
patients with idiopathic pulmonary fibrosis can improve physical
function (29), while Hickson et al. observed that administration
of Dasatinib+Quercetin in patients with diabetic kidney disease
elicited a decrease in senescent cells of adipose tissue (28).
Despite showing efficacy in treatment of myocardial infarction
in the aged heart, Navitoclax has yet to be tested in humans
with cardiovascular diseases. Overall, senolytics are a promising
pharmacological approach, which appears to effectively reduce
senescent cells in humans, but additional preclinical evidence is
warranted before they can be translated into the clinical setting of
cardioprotection in the elder population.

Currently, there are ongoing efforts to identify new or old
compounds that can decrease the number of senescent cells
(30). For instance, cardiac glycosides (CGs), have been recently
identified as potential senolytic compounds that can successfully
decrease the number of senescent cells in the context of cancer in
old mice (31) and senescence-induced lung fibrosis (32) in mice.
Both of these studies showed that the senolytic effect exerted
by CGs depends on the inhibition of Na+/K+ ATPase pump
(31, 32). Nonetheless, despite the novelty of using these old drugs
to clear senescent cells, there are currently no studies showing
whether CGs can protect the adult or aged myocardium from
I/R injury and thus, this research field is still in preliminary
stages in the context of cardioprotection. Moreover, Ouabain
is a cardiac glycoside that has been shown to impair growth
of proliferative cells in human epithelial cells in a context of
oncogene-induced senescence (33) and thus, the specificity of
these drugs for senescent cells must be thoroughly evaluated
before considering their use in MI.

Recently, an interesting non-pharmacological approach has
been investigated. Amor et al. showed that the urokinase-type
plasminogen activator receptor (uPAR)-a cell-surface marker
that is overexpressed in senescent cells- is a target for chimeric
antigen receptor (CAR) T cells, which can clear senescent
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FIGURE 1 | (A) Aging cardiomyocytes are mainly characterized by mitochondrial dysfunction, senescence, altered proteostasis and DNA instability. (B) Improvement

of mitochondrial dysfunction in aged cardiomyocytes may be achieved by inhibition of Thbs-1 and Sestrin-2, which can decrease Drp-1-mediated mitochondrial

fission. Moreover, thioredoxin can promote mitochondrial biogenesis and melatonin can improve bioenergetics by reducing ROS production and improving

mitochondrial membrane potential. Other compounds such as Fisetin and hydralazine can confer cardioprotection by reducing mitochondrial dysfunction, but whether

these compounds can effectively limit the infarct size and improve left ventricular function of the aging heart remains to be elucidated. Senolytics can clear senescent

cells by inhibiting anti-apoptotic proteins. However, only Navitoclax has been tested in the aged heart. However, other senolytics such as Dasatinib, Quercetin, and

cardiac glycosides are yet to be evaluated in the settings of cardioprotection and aging. Furthermore, activation of telomerase in order to preserve telomere length and

integrity is a promising candidate for cardioprotection in the aging heart. Another emergent target is to inhibit the inflammasome by compounds such as

n-butylidenephtalide. Finally, the transplantation of preconditioned mesenchymal cells may have an important therapeutic role in the protection of the aged

myocardium.
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cells in mice both in vitro and in vivo in the context of
lung adenocarcinoma and liver fibrosis (34), thus providing
a promising proof of concept of therapeutic agents for the
treatment of senescence-associated diseases, such as MI of the
aging heart. However, concerns have been raised over the
adverse effects of this therapy. The most frequently reported
side effects are cytokine release syndrome and neurotoxicity,
but cardiovascular toxic effects, such as systolic dysfunction,
arrhythmias, or hypotension have also been reported and
thereby, a thorough assessment of cardiac imaging and
evaluation of reliable biomarkers is needed to identify at-risk
population and establish the safety of this therapy (35).

Role of Mitochondria in Cardioprotection
of the Aged Heart
The mitochondria have been identified as an important target to
reduce myocardial ischemia/reperfusion injury in the aged heart
(36). The mitochondria in aging cardiomyocytes shows elevated
ROS production, higher fragmentation and reduced biogenesis,
thus producing mitochondrial dysfunction, which can contribute
to the increased susceptibility of the aged heart to ischemic
injury (17). Therefore, therapies targeting the mitochondria are
an attractive area of research in cardioprotection.

It has been reported that Thrombospondin-1 (Thbs-1), which
is known to induce ROS production after I/R, regulates Drp-1
dependent mitochondrial fission after MI in both young and old
mice (37). Thus, inhibition of Thbs-1 levels after I/R may reduce
mitochondrial fission and ROS production, thereby protecting
the aging heart against I/R injury. Furthermore, it has been shown
that overexpression of thioredoxin -a cytosolic redox protein
with reducing properties- in aged mice subjected to in vivo
I/R, improved mitochondrial function and biogenesis, as well as
reducing the infarct size and left ventricular dysfunction (38).
Another potential target for cardioprotection is Sestrin2. This
protein is induced by stress and forms a complex with AMP-
activated protein kinase (AMPK), thus promoting autophagy.
Importantly, its cellular levels drop with age, and it’s been shown
that a Sestrin2-KO promotes mitochondrial fission and damage
after myocardial I/R in mice (39). Moreover, overexpression of
Sestrin2 in aged mice hearts improved the heart’s response to
MI (39). Finally, melatonin is a molecule secreted by the pineal
gland in humans. It exerts antioxidant and anti-inflammatory
properties that may play a cardioprotective role (40). A study
in aged rats showed that administration of melatonin and
nicotinamide mononucleotide reduces the infarct size and
improves left ventricular function after I/R injury by reducing
mitochondrial ROS and improving mitochondrial membrane
potential (41). Moreover, it has been suggested that melatonin
protects against I/R injury via the RISK and SAFE pathways (42).
Interestingly, a small clinical trial has provided proof of concept
that the timing of administration of melatonin in infarcted
patients undergoing percutaneous coronary intervention is key
for its effectiveness (43). However, this observation needs to be
confirmed in large randomized controlled clinical trials.

There are multiple strategies and treatments that target the
mitochondria to achieve cardioprotection that have not been yet

studied in the context of aging. We will discuss two of them:
fisetin and hydralazine. Fisetin is a flavonoid found inmany fruits
with senolytic properties (44). Recently it’s been shown that it
can also confer protection in I/R settings. A preliminary study
showed that fisetin can inhibit H9c2 cardiomyoblast apoptosis
after hypoxia/reoxygenation, as well as to reduce mitochondrial
ROS production and inhibit the activation of caspases 3 and
9 (45). In addition, adult rats pre-treated with fisetin and
subjected to ex vivo I/R showed a reduced infarct size, reduced
mitochondrial oxidative stress and improved mitochondrial
structure and function by a mechanism that appears to involve
inhibition of GSK3β activity (46). Hydralazin, is an FDA
approved drug currently used as an anti-hypertensive agent and
in the treatment of chronic heart failure. Recently, it has been
described that it can confer cardioprotection in mice using in
vivo, ex vivo and in vitro experimental models of I/R injury via
inhibition of Drp-1-mediated mitochondrial fission (47). These
twomolecules have in common their capacity to protect the heart
from I/R injury by improving mitochondrial function and thus,
these therapeutic agents are promising candidates to protect the
aging heart from MI. Therefore, future studies should explore
this possibility.

Inflammasome: Importance of NLPR3 in
Aging
During MI, a pathogen/antigen-independent inflammatory
response, known as sterile inflammation, takes place (48). Due
to the rupture in the cellular structure that occurs during MI,
damage-associated molecular patterns (DAMPS) mediators are
released and are recognized by pattern recognition receptors
(PRRs), which in turn mediate the initiation of the inflammatory
response (49). NLPR3 inflammasome is a multiprotein complex
formed by the activation of PRRs, thereby increasing the
production and release of proinflammatory cytokines via
activation of caspase-1 (50). NLPR3 has attracted attention as
a mediator of damage produced by I/R injury (51). Mastracola
et al. tested the role of NLPR3 in C57B1 male mice fed with
a high fat high fructose diet (HFHF) using an ex vivo I/R
model. The authors found that the HFHF diet upregulated
NLPR3 protein content, and this elevation downregulated the
RISK/HIF-2alpha pathways (51–53). Furthermore, NLPR3 has
also been proposed as a target in the aging myocardium. Lee
et al. has explored this hypothesis in a recent study where
they use n-butylidenephthalide as a preconditioning agent and
tested the capacity of human adipose–derived stem cell (hADSC)
engraftment in the recovery of infarcted myocardium of young
and old Wistar rats (54). The study showed NLPR3 activity
and ROS production was significantly increased in old rats
after MI, as compared with young rats. Transplantation of
hADSC reduced NLPR3 activation and ROS levels in both
young and old rats, but this response was significantly more
effective in young rats. The authors discovered that the NLPR3
inflammasome mediates the difference of the response to the
engraftments in old and young rats. They also reported that
n-butylidenephthalide reversed the complex microenvironment
that impedes engraftment success (54).
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Interestingly, pharmacological inhibition of caspase-1
reduced the infarct size in isolated rat hearts (55). Also, caspase-1
inhibition was also shown to provide additional protection
when combined with remote ischemic preconditioning in rats
subjected to in vivo myocardial infarction (56). This study is
particularly interesting, since these experiments were performed
using a co-medication model, consisting of co-administration
with an opioid agonist, heparin and a platelet-inhibitor to mimic
a clinical setting, thereby highlighting the translational value
of this cardioprotective therapy (56). This promising evidence
merits further research to evaluate whether this approach
may have a significant impact in the cardioprotection of the
aged heart.

Telomerase Activity in Aging and
Cardioprotection
Telomeres are repeated hexanucleotide sequences at the end
of eukaryotic chromosomes. Their presence is associated with
DNA protection during cell division. Division of the cell as well
as oxidative stress shortens these structures, leading the cell to
a senescent state or apoptosis (57). Telomere length has been
associated with coronary artery disease and therefore, it has
been proposed as a biomarker for cardiovascular diseases (58).
Telomerase is a key regulator of telomere length and integrity
(20) and as such, has gained attention for its potential benefits
in age-related cardiovascular diseases. For instance, absence of
telomerase has been associated with increased susceptibility to
ischemic injury (59). By the same token, overexpression of
telomerase can confer cardioprotection in mice hearts (60).
Furthermore, overexpression of growth differentiation factor 11
(GDF11) in mice subjected to in vivo I/R injury showed a
reduced infarct size, activation of telomerase, longer telomeres
and increasedmitochondrial biogenesis (61). In a clinical context,
Gupta et al. have published a pilot study that proposes telomere
length as a screening tool for patients with acute myocardial
infarction (62). Their study revealed that telomere length was
reduced in young patients without risk factors who underwent
MI, as compared with young patients withoutMI (62). Moreover,
Maier et al. have published the design of a pilot trial that
uses the telomerase activator TA-65MD, which is a purified
and encapsulated form of cycloastragenol, in elderly patients
with acute coronary syndrome (63). The aim of this study is
to assess whether this therapy can reverse inmmunosenescence,
which is associated to the pathophysiological progression of
coronary artery disease. The results to this trial are scheduled
to be published in 2021 (63). Although more preclinical data is
required to accurately assess whether this therapeutic strategy
can reduce cardiac damage in aging, telomerase appears to be an
essential player in cardioprotection.

Other Potential Therapies to Protect the
Aged Myocardium From I/R Injury
In addition to the aforementioned strategies, there are other
approaches that may wield cardioprotective effects in aging
conditions. An interesting study has suggested that necroptosis
may contribute to ischemic susceptibility in the aging heart

and that metformin reduces necroptosis elicited by alterations
of autophagy during myocardial aging (64). Another potential
therapeutic target may be the JAK/STAT pathway. It has
been reported that inhibition of JAK in old mice has been
linked with reduced senescence-associated secretory phenotype
and frailty (65). Moreover, deletion of Kcne4 in old mice
has been found to sex-specifically induce arrhythmias by a
mechanism that involves defective signaling of the RISK/SAFE
pathway mediated by testosterone (66). Furthermore, it has
been observed that the JAK/STAT pathway is activated in aging
humans, which is associated with chronic inflammation and
increased cardiovascular risk (67). However, whether targeting
the JAK/STAT pathwaymay restore the effectiveness of protective
strategies in the context of MI remains to be elucidated.

Aging has also been described to alter mesenchymal stem
cell function, which impairs their cardioprotective effects (68).
It has been recently identified that miR-155-5p can regulate
mesenchymal stem cell senescence (69). This study demonstrated
that inhibition of miR-155-5p reduced senescence in aged
mesenchymal stem cell, thus improving their ability to protect
the aged heart fromMI in mice (69).

Finally, a study by Crewe et al. revealed that adipocytes can
secrete small extracellular vesicles that can transport damaged
mitochondria, which can precondition the heart by inducing a
short period of mitochondrial oxidative stress, which eventually
leads to an antioxidant effect that can effectively protect the heart
fromMI (70). While this effect has not been evaluated in the aged
heart, protection elicited by transport of mitochondria by small
extracellular vesicles via hormesis may be an effective therapy,
given the importance of this organelle in the aging myocardium.

Conclusions and Future Perspectives
The aged heart is more susceptible to I/R injury. Moreover,
multiple cardioprotective maneuvers have been shown to be
ineffective under these conditions, highlighting the need to
develop therapies that can provide clinical efficacy in the
reduction of infarct size. Clearance of senescent cells by the
senolytic drug navitoclax has shown clear protection of aged
hearts from MI, but the current evidence is still preliminary and
more senolytics need to be tested to establish the real potential of
these agents. Moreover, the clinical evidence regarding the use
of these drugs is still in early stages, especially since there are
no studies testing their effects in MI patients. Cardioprotective
approaches targeting the mitochondria in the aged heart are
promising, although the current evidence is mainly centered
in preclinical studies, suggesting that the translational value
of these therapies remains to be tested in clinical settings.
Similarly, targeting of the inflammasome or telomerase activity
are research areas of interest, but further studies are certainly
required to evaluate whether these therapeutic strategies can be
translated from bench to bedside. Currently, cardioprotection
in aging can be tested using primary cells, ex vivo and in
vivo animal models to evaluate the effect of protective drugs
or conditioning maneuvers (17). The use of cell lines may be
useful to assess stress-induced premature senescence and thus
generate a preliminary proof-of-concept regarding a potential
senolytic therapy, but while this allows to avoid the use of
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animals, this approach only elicits a senescence-like phenotype
(71). Therefore, this model may have a low translational value.
Regarding cardioprotection research, preclinical models are
solid in the early stages, but clinical studies are strong in the
follow-up process (72). In this context, Heusch has proposed
to use integrative large animal models and study the whole
process: from acute myocardial infarction to a 12 months
follow-up (72) and this idea is certainly valid for the study
of cardioprotection in aging as well. Furthermore, it’s crucial
to consider the importance of generating reliable evidence to
drive cardioprotection research forward by adhering to proposed
guidelines to ensure rigor and reproducibility, such as the ones
presented by Bøtker et al. (73). Finally, while the potential
therapies we have reviewed are promising (Figure 1B), it is
important to acknowledge a lack of studies in this field. For
instance, while aging can impair the cardioprotective effect of
conditioning strategies in preclinical studies (8) a retrospective
study showed that age did not disrupt cardioprotection in
coronary artery bypass graft patients with or without RIC (74).
Thus, while the evidence showing aging as a confounding
factor in cardioprotection is thorough, clinical evidence is

mainly obtained from retrospective secondary analyses (8),
highlighting the distance between bench and bedside, which is
barrier that needs to be overcome to protect the elderly from
myocardial infarction.
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