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Abstract: Systems biology is a rapidly expanding fi eld that integrates diverse areas of science such as physics, engineering, 
computer science, mathematics, and biology toward the goal of elucidating the underlying principles of hierarchical meta-
bolic and regulatory systems in the cell, and ultimately leading to predictive understanding of cellular response to perturba-
tions. Because post-genomics research is taking place throughout the tree of life, comparative approaches offer a way for 
combining data from many organisms to shed light on the evolution and function of biological networks from the gene to 
the organismal level. Therefore, systems biology can build on decades of theoretical work in evolutionary biology, and at 
the same time evolutionary biology can use the systems biology approach to go in new uncharted directions. In this study, 
we present a review of how the post-genomics era is adopting comparative approaches and dynamic system methods to 
understand the underlying design principles of network evolution and to shape the nascent fi eld of evolutionary systems 
biology. Finally, the application of evolutionary systems biology to robust biological network designs is also discussed from 
the synthetic biology perspective.

Introduction
The notion of system-level understanding in biology has a long history (von Bertalanffy, 1993; Wiener, 
1948), but has not received a large amount of genome sequencings until now. Genome sequences can 
tell us the whole static information of gene, regulatory regions, proteins, tRNAs, repeats and so on 
underlying DNA sequences (Lander, 1999). At the same time, the development of other high through-
put technologies also provides us a comprehensive set of dynamic data: DNA microarrays, protein 
microarrays, ChIP-chip data and so forth. All these developments have transformed biological research 
from a data-poor state to a data-rich state and provided us an excellent opportunity to analyze biology 
on the system level (Schwikowski et al. 2000). Therefore, system theory and cell biology have enjoyed 
a long relationship, which in the context of systems biology have received renewed interest in recent 
years. Systems biology is concerned with the dynamic behavior of biochemical networks within cells 
and in cell populations. A principal goal of systems biology is to turn these static maps into dynamic 
models (Kitano, 2002).

For a long time, biologists have found that many biological functions and diseases cannot be explained 
by the function of an individual gene or protein. Instead, they should be the exhibition of an interactive 
network of protein-protein or protein with other molecules (Hartwell et al. 1999; Eisenberg et al. 2000). 
They also found that some particular characteristics of biological systems could display perfect adapta-
tion and homeostatic regulation despite large changes in the environment or alternations in the internal 
parameters of the system (Alon et al. 1999; von Dassow et al. 2000). Such robustness undoubtedly is 
the result of the organism’s evolution over a long time to be able to adapt to the environmental changes. 
To understand the magic biological functions and robustness of biological networks, we have to integrate 
the information of genome sequences, mRNA expression, proteome and so on from the system-level 
point of view and to analyze the composition of biological systems on various levels: interactions among 
modules, system dynamics, underlying control methods and design principles in the evolutionary process 
(Tong, 2004).

The complexity of biological systems does not reside solely in the number of components and inter-
actions, or in their associated structural and physico-chemical properties, but in the hierarchical network 
connections across space and time scales from gene level to cell level to tissue level to organism level 
and fi nally to population level (see Fig. 1). Further, all biological systems are complex adaptive systems, 
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in which high level networks refl ect the collective 
dynamics of lower level networks and then feed-
back to affect high-level network dynamics 
(Medina, 2005). Evolutionary changes operate on 
multiple levels and multiple scales: from genetic 
networks, to biochemical networks, to physiolog-
ical systems, to organisms, to populations, to com-
munities and to the biosphere (Freeman and 
Herron, 2001; Medina, 2005; Koonin and Wolf, 

2006). Although the lower-level networks govern 
the behavior of higher-level networks, the under-
standing of these lower-level networks is not 
suffi cient for comprehending how macroscopic 
features emerge, how natural selection operates to 
lead to those features, where those features refer 
to the properties of the organism. How natural 
selection operates to modify the details, such as 
the rules that govern organismal development due 
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Figure 1. The natural selection process on the interplaying of hierarchical biological networks. The high-level selection will become the 
selection force on low level. The natural selection on organisms selects its favored organisms. Once the favored organisms are selected, 
the low-level biological networks have to maintain the favored physiological systems of the selected organisms. Hence, these favored organ-
isms become the selection force to select their favored physiological systems. The favored physiological systems will lead to the selection 
force on biochemical networks. The favored biochemical networks by natural selection will become the selection force on genetic networks. 
On the other hand, the lower-level selected networks will feedback to infl uence the higher-level networks in evolution. Therefore, the natural 
selection actually acts on the interplaying of the multiple bionetworks.
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to feedbacks from fitness differences among 
organisms? What features convey robustness to 
biological systems? How different should we 
expect the robustness of different biological 
systems to be, depending on whether natural selec-
tion is operating primarily on the whole system or 
on its parts? How does robustness trade off against 
adaptability? How does natural selection deal with 
environmental disturbances or noises? When does 
synchrony emerge and what is its implication for 
robustness? When and how does cooperative 
behavior emerge? These are the fundamental ques-
tions of biology from the evolution perspective 
(Stevens, 2004; Levin, 2006). This review tries to 
highlight these problems and to give some answers 
from the systems biology perspective.

Systems biology is not merely a contemporary 
manifestation of traditional biological engineering. 
The crucial difference is that the kinds of measure-
ment and manipulation in modern systems biology 
is at the molecular level, and the data sets being 
generated and considered are highly multivariate 
because of the existence of high-throughput 
experimental assays at the genomic, proteomic, 
and metabolic levels. Systems biology aims at 
fi nding the true molecular and cellular mechanisms 
underlying the operation of biological systems, 
rather than phenomenological descriptions to 
which higher levels of organization (e.g. tissue, 
organ, and organism) are restricted (Wolkenhauer, 
2001; Hood, 2003). Therefore, the approach of 
systems biology evolution is different from the 
conventional approach of biological evolution. In 
a study of conventional biological evolution, most 
contemporary phylogenetic trees are constructed 
from sequence data and, are usually developed 
from point mutations (substitutions, additions, or 
deletions) in a single gene. Each tree is an evolu-
tionary hypothesis (Koonin and Wolf, 2006). 
Typically, to improve the confi dence in the validity 
of any given tree, we use larger sets of sequence 
data from more organisms. Further, some notable 
microbiologists argue that phylogenetic trees rep-
resent inadequately the evolutionary history and 
that such trees do not do justice in portraying 
adequately the importance of the phenomena such 
as hybridization, endosymbiosis, recombination 
and horizontal gene transfer because these static 
trees cannot describe the underlying mechanisms 
of adaptive evolution (Kirschner, 2005).

At present, there are two prevailing interpreta-
tions of what systems biology is: (1) the integration 

of data obtained from experiments at various lev-
els and associated with the “omics” of technologies 
and (2) the dynamic interactions of gene products, 
proteins and cells that bring about the structures 
and functions of cells, higher levels of the organi-
zation, such as tissues, organs and so on (Ideker 
et al. 2001; Ideker, 2004). The fi rst view is more 
an informatics perspective, developing tools for 
data integration and fusion, while the second 
approach is motivated by data-based mathematical 
modeling and simulation. The fi rst camp would 
often motivate their work by referring to a blood 
of data, while those interested in dynamic model-
ing of networks are concerned about the each of 
the quantitative data set. Therefore, the systems 
biology approach to biological network evolution 
is also discussed from two perspectives, i.e. data 
integration-based systems biological evolution and 
dynamic interaction-based systems biological 
evolution. They will be reviewed in the following 
paragraphs.

Because post-genomics research is taking place 
throughout the tree of life, comparative approaches 
offer a way for combining data from many organ-
isms to shed light on the evolution and functions 
of biological systems from the gene to organismal 
levels (Graur and Li, 2000; Doolittle, 2005; 
Gelfand, 2006). Although comparative genomics 
has benefi ted from a long tradition of theoretical 
work by molecular evolutionists (Stearn and 
Magwene, 2003; Evangelisti and Wanger, 2004; 
Doolittle, 2005), new datasets provided by systems 
biology are offering theoreticians new ways to 
study evolutionary processes (Koonin and Wolf, 
2006). Comparative studies can give insight into 
even the highest-level principles of life. For 
example, revolutionary fi ndings in network theory 
have in part come from genomic data from a wide 
range of organisms, leading researchers to propose 
laws that seem to govern biological networks 
(Gelfand, 2006). Different types of cellular net-
works (e.g. protein interaction and metabolic 
networks) seem to share with other complex bio-
networks properties such as their “scale-free” 
nature and “small world” organization (Barabasi 
and Albert, 1999; Wagner and Fell, 2001; Koonin 
and Wolf, 2006).

In scale-free networks, a few nodes (hubs) have 
the largest number of connections to other nodes, 
whereas most of the nodes have just a few connec-
tions (Babu et al. 2006; Babu et al. 2007). This 
property is refl ected in power-law distribution of 
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connectivities. In practical terms, this relationship 
means that, in protein interaction networks, most 
proteins interact with a couple of others whereas 
a few proteins (hubs) interact with a large number 
of proteins, and that, in a metabolic network, a few 
molecules (hubs) participate in most reactions 
whereas the rest participate in one or two reactions. 
The “small world” concept refers to the property 
of such spoke-and-hub networks that the path 
length between nodes is short. This property means 
that a path of just a few interactions or reactions 
will connect almost any pair of molecules in the 
cell (Koonin, 2005; Koonin and Wolf, 2006). 
Understanding the additional levels in the hierar-
chy of biological networks and interactions 
between them will allow for integration of data and 
new theoretical predictions (Stearn and Magwene, 
2003). Processes widely studied by evolutionary 
biologists such as selection, gene duplication, and 
neutral evolution are being examined in the context 
of network models as opposed to the level of 
individual genes or molecules, i.e. from data 
integration-based systems biology perspective. As 
researchers look more closely at the network 
structure, network features of higher order emerge. 
Networks with power-law distributions of con-
nectivities can still differ in terms of clustering, 
motif frequency, nestedness, and fractal structure. 
However, the role that natural selection has in the 
evolution of network structures remains unknown 
(Babu and Aravind, 2006; Babu et al. 2007).

In recent years, bio-networks have been con-
structed using dynamic model based on time 
profi les of microarray data and ChIP-chip data via 
reverse engineering methods (Chen et al. 2004; 
Chang et al. 2005; Lin et al. 2005; Li et al. 2006; 
Wu et al. 2006; Chang et al. 2006; Chiang and 
Chao, 2007). Then, according to the dynamic 
models of biochemical networks and gene regula-
tory networks, the stability, robustness and noise 
fi ltering properties could be analyzed from the 
system theory perspective (Chen and Wang, 2006; 
Chen and Wu, 2006). Robustness is a ubiquitously 
observed property of biological systems (Freeman, 
2000; Stelling et al. 2004; Chen et al. 2005). It is 
considered to be a fundamental feature of complex 
evolvable biological systems. It has been pointed 
out that robustness facilitates evolvability and 
robust traits are often selected by evolution 
(Kitano, 2004), i.e. complex biological systems 
must be robust against environmental and genetic 
perturbations to be evolvable. Evolution often 

selects bio-networks that might enhance the 
robustness of organisms (Kitano, 2004). The cen-
tral role of biochemical networks in the cellular 
function provides a strong motivation to search the 
underlying principles of adaptive evolution in bio-
networks. In order to test whether the physiological 
function would prevail under a new environment 
or not, the robustness and sensitivity criteria are 
developed to measure the tolerance of metabolite 
concentration variations of a biochemical network 
in face of environmental changes (Chen et al. 
2007a). That is, these two robust criteria are 
derived as the selection forces for the metabolite 
networks to be preserved by natural selection in 
the evolutionary process. In fact, robustness allows 
changes in the structures and components of the 
biological system owing to gene mutations and 
environmental variations, but specifi c functions 
are maintained. Hence, robustness facilitates evolv-
ability and evolution selects robust bio-networks 
(Yi et al. 2000; Kitano, 2004). By systems biology, 
the design principles of biochemical networks via 
natural selection in evolution are not in conceptual 
description but the underlying selection mecha-
nisms should be investigated according to 
mathematical natural selection principles for bio-
chemical networks (Chen et al. 2007a).

Evolutionary Systems Biology: 
Integration Data-Based Approach
Network representations provide us with an excel-
lent conceptual framework to understand the 
structure of transcriptional regulation, both at local 
and global level of organization. Several studies 
suggest that the graph theoretical principles of 
transcriptional networks could be employed to 
infer some of the signifi cant properties of such 
networks for investigating the evolution of the 
transcriptional regulatory networks across diverse 
organisms (Janes and Yaffe, 2006).

Transcriptional regulators and their target genes 
form large gene regulatory networks. These and 
other molecular networks, such as protein interac-
tion networks and metabolic networks, are 
intensely studied because their characterization has 
been greatly facilitated by new techniques in 
genomics and bioinformatics (Jungck et al. 2006). 
There has been signifi cant progress in unraveling 
the transcriptional regulatory networks of various 
model organisms such as E. Coli and B. subtilis. By 
using computation methods such as orthology 
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methods and binding-site profile methods, 
information of transcriptional regulatory networks 
is obtained from model organisms to poorly stud-
ied organisms by exploiting the publicly available 
completely sequenced genomes (Babu et al. 2006). 
The availability of the complete genome sequences 
of over 300 prokaryotes and the understanding of 
the structure of transcriptional regulatory networks 
have allowed us to address several fundamental 
questions on the evolution of transcriptional regu-
latory networks, which will provide us with an 
opportunity to identify the distinct evolutionary 
trends in shaping transcriptional regulatory net-
works at various levels of organization (Jungck 
et al. 2006; Babu et al. 2006).

The information regarding the structure of 
molecular networks opens a new dimension to the 
studies of molecular evolution because it allows 
inquiries that go beyond the evolution of individual 
genes. On one hand, we know that mutations at the 
level of individual genes infl uence the structure of 
these networks. On the other hand, natural selection 
acting on the global structure of networks may 
infl uence what kind of mutations can be tolerated 
on the gene level (Wagner, 2000, Sole et al. 2002). 
However, the structure of networks may infl uence 
the evolution of genes and vice versa. This inter-
play is part of the reason why network evolution 
is an intriguing and increasingly popular subject 
of evolution.

At present, we know very little empirically 
about the evolution of large genetic networks. More 
knowledge of the basic characterization of network 
structure and connectivity of genes is required for 
understanding the evolution of genes and the 
function of networks (Shiu and Borevitz, 2006). 
Regulatory motifs and their target genes which 
when put together reconstruct the entire network. 
Analysis of the conservation patterns of these 
network motifs across 175 genomes (Babu et al. 
2006) revealed the contrary that network motifs 
are not conserved as complete units in other 
organisms. It was also found that organisms that 
were close evolutionary relatives did not conserve 
regulatory network motifs whereas several 
organisms that were distantly related conserved 
orthogolous network motifs. A comprehensive 
assessment for similarity in their network motif 
content revealed a statistically signifi cant trend that 
organisms with similar lifestyle tend to regulate 
their target genes by means of similar network 
motifs (Barrett and Palsson, 2006). Several 

observations reveal an important principle in 
evolution of network motifs that orthologous genes 
in related organism living in different environments 
may require distinct patterns of gene expression 
by embedding them in an appropriate motif context 
in order to adapt better to the changing environment 
(Bjornstad and Harvill, 2005; Dekel and Alon, 
2005; Fong et al. 2005; Babu and Aravind, 2006). 
That is, different organisms arrive at the best pos-
sible solutions to regulate the same gene by tinker-
ing specifi c regulatory interactions (i.e. adjusting 
the edges among these nodes in the network) in 
order to optimize expression levels rather than by 
duplicating groups of genes that are already a part 
of a motif. In this context, other studies on dupli-
cated genes within the transcriptional regulatory 
networks of E. Coli and yeast (Babu and Teichmann, 
2003; Conant and Wagner, 2003; Teichmann and 
Babu, 2004) have shown that network motifs have 
not evolved by duplication of complete ancestral 
motifs, supporting the hypothesis that some inter-
actions, which form a part of a motif in one organ-
ism, could have existed in different regulatory 
contexts in the ancestral genomes. Modular com-
ponents make transcriptional networks very plastic 
during evolution and are able to readily incorporate 
new genes and new regulations. In fact, transcrip-
tional networks can evolve rapidly: the edges in 
transcriptional networks appear to evolve on a 
faster time scale than the coding regions of genes. 
For example, related animals, such as mice and 
humans, have very similar genes, but the transcrip-
tion regulation of these genes, which governs when 
and how much of each protein is made, is evidently 
quite different. In other words, many of the differ-
ences between animal species appear to lie in the 
differences in the edges of the transcriptional net-
works, rather than in the differences in their genes 
(Alon, 2007).

At the global level of evolutionary network 
structure, results from graph theoretical studies and 
the fact that global regulatory hubs control the 
expression of several genes suggest a trend that 
such hubs would assume importance in transcrip-
tional networks and hence be more conserved in 
evolution than transcription factors. However, 
several analyses showed that there is no such trend 
and that regulatory hubs tend to evolve like any 
other transcription factors in the genome. This 
suggests that regulatory hubs have been indepen-
dently innovated to regulate orthologous target 
genes in organisms living in different environments. 
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These observations provide a strong support that 
hierarchical structure of these networks has con-
verged to a similar scale-free topology, though with 
independent recruited regulatory hubs (Balaji et al. 
2006; Pal et al. 2006; Korcsmaros et al. 2007). The 
reason may be that the binding affi nity and speci-
fi city of a transcription factor and its target site can 
be affected by relatively small changes in the DNA-
binding interface of the transcription factor, or in 
the binding site. As a result, DNA-binding domain 
could evolve new target sites relatively easily, 
resulting in rapid de novo emergence of new tran-
scriptional interaction (Babu et al. 2006). There-
fore, the extent of advantage conferred by 
orthologous transcription factors in terms of fi tness 
to an organism might vary across organisms 
depending on the environment and hence during 
the course of evolution different proteins may 
emerge as global regulatory hubs in organisms. 
Then, through the emergence of different proteins 
as global regulatory hubs, transcriptional regula-
tory networks tend to approximate a scale-free 
topology. The overall scale-free topology is main-
tained, suggesting that such a structure has evolved 
convergingly and is an emergent property in evolu-
tion (Pal et al. 2006).

The above evolutionary network analyses are 
made by comparing topologies of transcriptional 
regulatory networks of different organisms, i.e. 
graphs with different nodes representing transcription 
factors and target genes, and directed edges con-
necting the former to the latter to represent the 
modifi cation and diversifi cation of the network 
structure of various organisms in the course of 
evolution. However, these approaches cannot gain 
insight into the dynamic mechanisms of networks 
in the evolutionary process, such as robust stability 
on mutations, sensitivity to environmental distur-
bance and noise fi ltering ability of gene networks, 
which are the main selection forces of the network 
evolution and play the important role of design 
principles of bio-networks in the evolutionary pro-
cess from the systems biology perspective.

Network Evolution: Dynamic Model 
Approach
Robustness is a ubiquitously observed property of 
biological systems. It is considered to be a funda-
mental feature of complex evolvable systems. It is 
pointed out that robustness facilitates evolvability 
and robust networks (or the corresponding traits) 

are often selected by evolution (Kitano, 2004), i.e. 
complex biological networks must be robust against 
environmental and genetic perturbations to be 
evolvable. Evolution often selects biological net-
works that might enhance robustness of the organ-
ism. In the past, most molecular biologists and 
biochemists assumed that variations in biological 
networks were due to historical accidents and 
natural selection. However, the design principles 
of biochemical networks via natural selection in 
evolution are still in conceptual description but not 
yet in mathematical rules. Can these mathematical 
natural selection principles for biological networks 
in evolution be unraveled? The investigation of 
design principles of biological networks in evolu-
tion is in its infancy and more underlying rules 
remain to be discovered. In fact, robustness allows 
changes in the structure and components of bio-
logical networks owing to intrinsic perturbations 
and extrinsic disturbances, but specifi c functions 
are still maintained (Chen et al. 2007a).

According to the hierarchical network interplay-
ing of Figure 1, the higher-level selected networks 
will specify a selection force for lower levels. Just 
as external environment molds the evolution of local 
adaptation of organisms by natural selection, the 
internal biological network environment of popula-
tions is expected to head to the evolution of local 
biological networks in a favorable manner (Lynch 
and Walsh, 1998). Once the favored organisms are 
selected by natural selection, the lower-level net-
works have to maintain proper functions of the 
physiological systems of the favored organism. 
Therefore, the favored organisms are the selection 
force of the physiological systems. Since biochem-
ical networks are the backbone of the physiological 
systems of organisms, in order to maintain the 
favored physiological system by natural selection, 
a biochemical network should be suffi ciently robust 
to tolerate variations and environmental changes in 
the evolutionary process. Therefore, the favored 
physiological systems specify the selection force of 
biochemical networks. Similarly, in order to main-
tain the robustness of the favored biochemical 
networks, the gene regulatory network should be 
designed with enough robustness to tolerate gene 
mutations and to fi lter environmental noises. On the 
other hand, the lower-level networks will feedback 
to infl uence the higher-level networks in evolution. 
Therefore, the natural selection actually acts on the 
interplaying of the multiple networks. Hence, the 
revelation of robust adaptive design rules of 
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biological networks by natural selection can gain 
much insight into the evolutionary mechanisms of 
biological networks (Chen et al. 2007a). The robust 
evolution principles of genetic networks and bio-
chemical networks will be discussed in the follow-
ing subsections.

Adaptive design principles of genetic 
networks in the evolutionary process
As seen in Figure 1, the genetic network evolution 
lies at the lowest level of the biological network 
evolution. In order to maintain the proper function 
of the favored biochemical networks at high level, 
the lower-level genetic networks have to function 
properly. Therefore, robust stability is the natural 
selection force specifi ed by the higher-level net-
works. Genetic networks are combined through 
feedback and feedforward loops so that normal 
favored cellular physiological and biochemical 
process in higher-level networks can be maintained 
in evolution. This intrinsic robustness of a genetic 
network enables co-option, so that new traits (or 
corresponding new genetic networks) can be gen-
erated in the evolutionary process (Kitano, 2004). 
The proposed robust adaptive rule via natural selec-
tion can mimic the evolution of genetic networks 
by computational simulation. For the convenience 
of illustration, we consider only the following 
linear genetic network (Chen and Wang, 2006)
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in which xi (t) denotes the concentration of the 
ith gene and Nij denotes the interaction between 
gene j and gene i in the genetic network.

Suppose the linear genetic regulatory network 
suffers from intrinsic molecular fl uctuations due to 
thermal variation, alternative splicing, stochastic 
mutation, and so on (Graur and Li, 2000) so that 
stoichiometric matrix N is perturbed as N + ∆N,  the 
intrinsic molecular fl uctuation ∆N could be modeled 

as a Wiener process ∆N = Mn(t),  where M denotes 
the locations and magnitudes of the perturbation and 
n(t) is a standard white Gaussian noise with unit 
variance to denote the stochastic part of the fl uctua-
tion (Zhang and Chen, 2006). That is, the stochastic 
part of the fluctuation is absorbed to n(t) with 
dw(t) = n(t)dt. w(t) is a standard Wiener process (or 
Brownian motion) to denote the stochastic process 
in the genetic fl uctuation due to DNA mutations 
(McAdam and Arkin, 1997; McAdam and Arkin, 
1999; Rao et al. 2002). Therefore, the genetic net-
work under stochastic perturbation could be repre-
sented by (Chen and Wang, 2006)

 dx(t) = Nx(t)dt + Mx(t)dw(t) (2)

The last term Mx(t)dw(t) in (2) denotes the term 
due to intrinsic fl uctuation ∆Nx(t). Because it is 
state-dependent, it will infl uence the stability of 
genetic network. In genetic network evolution, 
robust stability is the main selection force on 
genetic networks to tolerate this intrinsic fl uctuation. 
According to stochastic Lyapunov stability (i.e. for 
a Lyapunov function V(x) > 0, E V xd

dt ( ) ,( ) ≤ 0  
where E denotes expectation. In the case of a linear 
system, we always choose) V(x) = xT(t)Px(t). ), it 
has been shown that the perturbative genetic net-
work in (2) is stable in probability if the following 
Lyapunov type equation (Chen and Wang, 2006)

 PN + N TP + M T PM ≤ 0 (3)

has a symmetric positive defi nite solution P > 0.

Remark 1
(i) For the intrinsic perturbation-free case, the 
stable condition is that the matrix inequality PN + 
NT P ≤ 0 has a symmetric positive solution P > 0. 
It means that all eigenvalues              of 
system interaction matrix N of a linear genetic 
network should be on the left-hand side of the 
s-complex domain (i.e. σi ≤ 0 in Fig. 2) (Franklin 
et al. 1994; Qu, 1998). The existence of a sym-
metric positive solution P > 0 in (3) is stricter than 
that of PN + NT P ≤ 0 because the eigenvalues of 
the system matrix N should be located at the far 
left-hand side of the s-complex domain with large 
negative real values (i.e. σi ≤ –σ0 in Figure 2, where 
the value of σ0 depends on the magnitude of per-
turbation M ) in order to overcome the extra 

λ σi i ijw= +
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positive term MTPM due to intrinsic noises induced 
by genetic variations. If some eigenvalues of the 
system interaction matrix N of the genetic network 
are near the jw axis, then these modes (i.e. with 
eigenvalues in the zone between σ = 0 and σ = −σ0) 
are more easily perturbed by intrinsic molecular 
fl uctuations across the jw axis such that the linear 
perturbed network becomes unstable and will be 
eliminated by natural selection in the evolutionary 
process. Therefore, the smallest distance from the 
locations of the eigenvalues of N to jw axis can be 
considered as the robustness measure of a linear 
genetic network (Franklin et al. 1994). For exam-
ple, if the eigenvalues of N are all on the left-hand 
side of σ = −σ0 (see Fig. 2), then the robustness of 
this genetic network is σ0. If the magnitudes of 

intrinsic perturbations are larger than the robust-
ness of the genetic network, it may be eliminated 
in the evolutionary process except when some new 
gene circuits are generated by intrinsic DNA muta-
tions to improve its robustness.

If the genetic network also suffers from extrin-
sic disturbances v(t) outside the network, then the 
stochastic equation of the genetic network in (1) 
is modifi ed as follows (Chen and Wang, 2006)

 dx(t) = (Nx(t) + Hv(t))dt + Mx(t)dw(t) (4)

where H is a coupling matrix which denotes the 
infl uence of the environmental disturbance on the 
state x(t) of the genetic network.

σ

jw

0

σ=0σ σ0=−σ σ1=−

S-complex domain

Figure 2. Stability region and robust stability region in S complex domain. All the eigenvalues on the left-hand side of jw axis (i.e. σ = 0) 
ensure that the network is stable. All the eigenvalues on the left-hand side of axis σ = −σ0 mean the network with stability margin (or robust-
ness) σ0. If the eigenvalues are all on the left-hand side of axis σ = −σ1, it means the network is with robustness σ1. A genetic network with 
larger robustness means it can tolerate larger intrinsic genetic variations and fi lter larger extrinsic disturbances.
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In this situation, the natural selection acting on 
the genetic network lies in the tolerance of the 
intrinsic noises due to mutations and the fi ltering 
ability of extrinsic disturbances v(t) to maintain 
the robust properties of the genetic network to 
guarantee the proper functions of high-level bio-
chemical networks and physiological systems. In 
this case, the robust fi ltering of the genetic network 
is defi ned as follows (Zhang et al. 2005)

 x t

v t
x t v t

( )
( )

( ) ( )2

2
2 2≤ ≤ρ ρ or  (5)

for some positive ρ. If  ρ < 1, we say that the extrin-
sic disturbance is filtered (attenuated) by the 
genetic network. In order to tolerate the intrinsic 
fl uctuation and to avoid the infl uence of environ-
mental disturbances v(t) to achieve a fi ltering 
ability ρ < 1 in (5), the genetic network should 
satisfy the following inequality (Chen and Wang, 
2006)

PN N P M PM I PHH PT T T+ + + + 1 02ρ
≤

In order to achieve a robust fi ltering ability to toler-
ate the intrinsic noise and to attenuate the extrinsic 
disturbance to maintain the function of a genetic 
network, all the eigenvalues of system interaction 
network N of a gene network should be further on 
the left-hand side of the s-complex domain, for 
example on the left-hand side with σ ≤ −σ1 in Figure 
2 (Franklin et al. 1994). That is, the genetic networks 
with eigenvalues in the zone between σ = 0 and 
σ = σ1 may be eliminated by natural selection under 
the requirement of robust stability and fi ltering 
ability ρ < 1 Therefore, the robust stability and fi lter-
ing ability according to the inequality in (6) could 
be considered as a rule or mechanism of natural 
selection for linear genetic networks in evolution. 
If a genetic network cannot satisfy the robustness 
and fi ltering requirement of (6), then it cannot toler-
ate intrinsic fl uctuations due to mutations or fi lter 
the external disturbances and will thus be eliminated 
by natural selection. The above evolution analysis 
is performed only on the linear genetic network. 
However, in practical genetic networks, their 
dynamic equations are always nonlinear. In order 
to consider the nonlinear stochastic regulatory net-

works, the linear stochastic system in (4) should be 
generalized as the following Langevin equation (Qu, 
1998; Rao et al. 2002)

 dx(t) = (N(x) + H(x)v(t))dt + M(x)dw(t) (7)

where N(x) denotes the nonlinear interactions of 
nonlinear genetic regulatory networks, M(x)dw(t) 
denotes the nonlinear intrinsic fl uctuations due to 
genetic mutations and H(x)v(t) denotes the external 
disturbances v(t) through a coupling matrix H(x). 
Recent studies have found that the dynamic model 
of genetic network in (7) could be identifi ed by 
microarray data via the so-called reverse engineer-
ing methods (Tsai et al. 2005; Ko et al. 2006).

In general, the phenotype of a nonlinear genetic 
network is close to one of the equilibrium points 
of Langevin equation in (7). If a specifi c equilib-
rium point of phenotype is of interest, the origin 
should be shifted to that equilibrium point for the 
convenience of discussion. In evolution, the 
genetic network in (7) must have enough robust 
stability and fi ltering ability to tolerate both intrin-
sic noises and extrinsic disturbances to maintain 
their functions, or they will be shifted to another 
equilibrium point to change their phenotype or be 
eliminated by natural selection.

If the nonlinear genetic network of (7) satis-
fi es the robust fi ltering requirement in (5), it has 
robust stability to tolerate intrinsic noises and 
fi ltering ability to attenuate external disturbances 
to a desired level ρ. From the results in (Chen 
and Wang, 2006), according to nonlinear robust 
fi ltering theory (Zhang et al. 2005), it is found 
that if the following inequality holds for some 
V(x) > 0,
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then the robust stability and fi ltering ability in (5) 
is achieved in evolution, i.e. the inequality in (8) 
is the mechanism of natural selection for nonlin-
ear genetic networks. If it is violated, the pheno-
type of the nonlinear genetic network will be 
shifted from this equilibrium point to another 

(8)

(6)
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equilibrium point or it will be eliminated by 
natural selection.

In general, it is not easy to solve the nonlinear 
inequality of natural selection in (8) to gain more 
insight into the adaptive evolution mechanism of 
nonlinear genetic networks. In this situation, for a 
better understanding, the global linearization tech-
nique is employed to discuss the selection force in 
(8) of the nonlinear genetic network in (7).

Suppose the global linearization of N(x), H(x)   
and M (x) in (7) is defi ned as

∂
∂
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R n n
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Ω 3

for all x(t) and suppose the polytope Ω of all linear-
ized systems is bounded by the following convex 
hull with m vertices (see Fig. 3)
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where C0 { } denotes the convex hull consisted of 
vertices {…}. Therefore, the nonlinear genetic 
network in (7) can be interpolated and represented 
by the following m linearized genetic networks at 
vertices (Boyd et al. 1994)
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Then, according to the linear robust stability and 
fi ltering ability (Chen and Wang, 2006), if the 
following inequalities are all satisfi ed for a common 
ρ > 0

 

PN N P M PM I

PH H P i m

i i
T

i
T

i

i i
T

+ +

+ ≤ =

+
1 0 12ρ

, , ,�
 

(11)

then both the robust stability and fi ltering ability 
ρ are achieved for the nonlinear genetic network 
(7) in evolution, i.e. the robust stability and fi lter-
ing ability according to the m inequalities in (11) 
are the natural selection rules in evolution, which 

( 1 1 1, ,N H M

( )2 2 2, ,N H M

( , ,m m mN H M

( ), ,i i iN H M
Convex set of all 

linearized systems

Ω

Figure 3. The generalized linear systems are all in the convex set Ω and (Ni, Hi, Mi), i = 1, … , m denoted the system parameters of the 
vertices of the convex hull C0{…} of Ω. Then the robust stability and fi ltering ability of the nonlinear system could be characterized by these 
linear systems in the vertices.
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could be considered as an equivalent linear solution 
to the nonlinear inequality in (8). In the natural 
selection rule in (11), all the eigenvalues of Ni of 
all linearized genetic networks at the vertices in 
(10) should be all on the left-hand side of the axis 
σ = −σ1 in Figure 2 so that the nonlinear genetic 
network in (7) has enough robustness to tolerate 
intrinsic variations due to mutations and to fi lter 
environmental disturbances in evolution to avoid 
extinction by natural selection. The genetic muta-
tions, which could lead to feedback gene circuits 
to improve robustness and fi ltering ability, i.e. to 
satisfy the selection force in (11) are favored by 
natural selection in the evolutionary process. How-
ever, some mutations, which could make the cor-
responding internal variation matrices Mi and 
coupling matrices Hi small, such as redundancy, 
duplication and self-regulation so that the selection 
rule in (11), is not easy to violate due to these 
buffers, are also favored by natural selection 
(Isaacs et al. 2003; Langkjaer et al. 2003; Kellis 
et al. 2004; Teichmann and Babu, 2004).

If ρ < 1 in (11), the eigenvalues of Ni should be 
in the far left-hand side (i.e. σ1 is large) to attenuate 
the environmental noise. If ρ > 1, it is easier for Ni 
to satisfy the fi ltering ability in (11). In this situation, 
the genetic network is much infl uenced by the envi-
ronmental noise to easily move toward another 
equilibrium point so that the genetic network is more 
adaptive to the environmental changes in the evo-
lutionary process, especially for ρ >> 1, to generate 
a new phenotype to a new environment. This is a 
tradeoff between robust stability and adaptability of 
genetic networks in the evolutionary process.

Adaptive design principles 
of the biochemical networks 
in evolutionary process
The central role of the biochemical networks in 
cellular function provides a strong motivation to 
search for the underlying principles of the adaptive 
evolution of biochemical networks. As seen in 
Figure 1, the favored physiological systems will 
lead to a selection force on biochemical networks 
in the evolutionary process. Because the biochem-
ical networks are the backbone of the physiologi-
cal systems, they should have enough robustness 
to tolerate parameter variations and less sensitivity 
to attenuate the infl uence of external disturbance 
so that the favored physiological functions could 
be preserved in the evolutionary process. In order 

to test whether a physiological function would 
prevail under a new environment or not, the robust-
ness and sensitivity criteria have been developed 
to measure the tolerance of the variations in 
metabolite concentration of a biochemical network 
in face of environmental changes (Chen et al. 
2005). The design mechanisms for the biochemical 
networks by selection force in the evolutionary 
process will be described as follows.

The dynamic system of a biochemical network 
can be represented in the following S-system 
(Savageau, 1976; Voit, 2000).
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where x1,… , xn+m are metabolites, such as sub-
strates, enzymes, factors or products of a bio-
chemical network, in which x1,… , xn denote the 
n-dependent variables (intermediate metabolites 
and products) and xn+1,… , xn+m denote the inde-
pendent variables (initial reactants and enzymes), 
αi and βi denote the rate constants, and gij and hij 
represent the kinetic parameters of the biochemical 
network. These parameters could be estimated by 
experimental data or microarray data (Tsai and 
Wang, 2005; Ko et al. 2006).

The evolutionary time is much longer than the 
transient time of the nonlinear biochemical network 
in (12) and the phenotype of a biochemical network 
is close to the steady state. Therefore, for simplic-
ity, we shall focus on the relationship between the 
robustness and evolution design principles of a 
biochemical network at the steady-state case.

Consider the steady state of biochemical net-
work in (12), we get
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Taking the logarithm on both sides of (13), introduc-
ing new variable yj = ln xj, aij = gij – hij, bi

i

i
= ( )ln ,β

α
 

and after some rearrangements, we get
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The above equations could be represented by the 
following steady-state equation (Voit, 2000)

 A Y b A YD D I I= −  (15)

where
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in which AD denotes the system matrix of the 
catalytic interactions among the dependent vari-
ables YD and AI indicates the catalytic interactions 
between the dependent variables YD and the inde-
pendent variables YI (i.e. the environmental 
medium of the metabolic system). From the simple 
algebraic steady-state equation in (15), obviously, 
the S-system in (12) is a useful model for describ-
ing the phenotype of biochemical networks (Voit, 
2000).

If the inverse of AD exists, the steady state (or 
phenotype) of the biochemical network is solved 
by (Voit, 2000)

 Y A b A YD D I I= −−1( )  (16)

The steady state YD in (16) is one of the equilibrium 
points of the nonlinear biochemical network in 
(12). Actually, there are many equilibrium points 
for (12), which represent different phenotypes. 
Only the equilibrium point (or phenotype) in (16) 
is favored by natural selection in the evolution via 
specifi cation of parameters AD, b, AI and environ-
mental enzymes YI in (16). Biochemical networks 
perform their physiological functions within some 
local regions of the equilibrium point. In the evo-
lutionary process, suppose that there exist some 
parameter variations, ∆αi, ∆βi, ∆hij, ∆gij, and  ∆YI 
in (12), which could be considered as design 
parameters in the evolutionary process owing to 
genetic mutations or environmental changes (Graur 
and Li, 2000). Then the corresponding perturbative 

steady state of the biochemical network is given 
by (Chen et al. 2005)

 ( )( )
( ) ( )( )

A A Y Y

b b A A Y Y
D D D D

I I I I

+ Δ + Δ
= + Δ − + Δ + Δ

 

Because the biochemical networks are the back-
bone of physiological systems of organisms, a 
biochemical network should be suffi ciently robust 
to tolerate the variations due to genetic mutations 
and environmental changes to maintain its function 
properly in the evolutionary process. It is found 
that if the following robustness condition holds 
(Chen et al. 2005)

 � �A A or A A A AD D D D
T

D D
T− Δ < Δ Δ <1

2 1  (18)

then the phenotype of the perturbed genetic net-
work exists as follows
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If the robustness condition is violated, the steady 
state of the perturbed biochemical network in (19) 
may cease to exist or move to another equilibrium 
point with a change of the phenotype. The changes 
∆b, ∆YI, and ∆AI will influence the phenotype 
variation ∆YD in (19). Their effects on the pheno-
type have been discussed by the following sensitiv-
ity analysis of biochemical network (Voit, 2000; 
Chen et al. 2005).
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In order to tolerate the variations ∆b, ∆YI, and ∆AI 
to preserve the favored phenotype of a biochemical 
network in the evolutionary process, the sensitivi-
ties in (20) should be below some values as follows 
(Chen et al. 2007a):
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or equivalently

 I s A A A A s A A Y Y s A AD D
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where s1, s2 and s3 are some small sensitivity values 
so that the phenotypes YD + ∆YD of perturbed bio-
chemical networks would not change too much in 
(19) in comparison with the nominal values in (16) 
(i.e. ∆YD in (19) should be small enough) and can 
be favored by natural selection.

Remark
(i) According to the above analyses, the perturbed 

biochemical networks with parameter variations 
that violate the robustness criterion in (18) will 
be eliminated by natural selection. Therefore, the 
perturbed biochemical network should satisfy 
the robustness criterion in order to guarantee not 
to be perturbed too much from its equilibrium 
(for the normal physiological function) in the 
evolutionary process. Because the violation of 
(18) means a lethal perturbation, the robustness 
criterion in (18) is the necessary condition for 
survival under natural selection (Chen et al. 
2007a). From the robustness criterion in (18), 
natural selection favors the perturbed biochem-
ical networks with small perturbations Δ ΔA AD D

T  
so that the robustness criterion is not violated. A 
biochemical network with redundancy and self-
regulation can attenuate perturbation ∆AD. Fur-
ther, a biochemical network with adequate 
negative feedbacks can increase A AD D

T  to toler-
ate large parameter variations Δ ΔA AD D

T  in the 
evolutionary process. These robust adaptive 
designs with feedbacks are also favored by 
natural selection in the evolutionary process of 
biochemical networks. This is why there is so 
much redundancy due to duplicated genes, 
modularity, self-regulation and feedback path-
ways in the biochemical networks in organisms 
(Isaacs et al. 2003; Langkjaer et al. 2003; Kellis 
et al. 2004; Teichmann and Babu, 2004). A scale 
free structure could reduce the effect of Δ ΔA AD D

T  
on the stability of bio-networks and is favored 
by nature selection in evolution.

(ii) The sensitivity criteria in (21) or (22) determine 
the ranges of the sensitivities of phenotype change 
∆YD to parameter variations and environmental 
changes by natural selection in the evolutionary 
process. For a functional biochemical network, it 

should satisfy the sensitivity criteria to prevent 
the metabolite concentration from being changed 
too much by environmental changes. Hence, the 
steady state (phenotype) of a biochemical network 
can be preserved while exposing the parameter 
variation and environmental changes to natural 
selection in evolutionary process. The assumption 
that the three sensitivity criteria in (21) all hold 
for natural selection is derived from the fact that 
biochemical networks are the backbone of phys-
iological systems and cannot be too sensitive to 
environmental changes especially for some core 
(conserved) biochemical networks. Actually, the 
specifi cation of sensitivities si, i = 1, 2, 3 in (21) 
or (22) is case by case. If some sensitivity criteria 
in (21) are relaxed, i.e. some of the inequalities in 
(21) are violated or some si are specifi ed much 
larger, the phenotypes with changes to some 
environmental variations will also be favored by 
natural selection. In this situation, the phenotype 
of biochemical networks are much infl uenced by 
environmental variations to move toward another 
equilibrium so that they may be more adaptive to 
environmental changes in the evolutionary pro-
cess. In this case, new phenotypes are more easily 
generated in order to be more adaptive to the new 
environment. This is a tradeoff between robust-
ness and adaptability in biochemical networks in 
the evolutionary process.

 (iii) The robustness criterion in (18) and sensitivity 
criteria in (21) are called the adaptive design rules 
of natural selection on biochemical networks in 
the evolutionary process. There are many per-
turbed biochemical networks that can satisfy the 
adaptive design rules of natural selection in the 
evolutionary process (Chen et al. 2007a). If they 
are selected by natural selection, there are some 
differences in phenotype among these selected 
biochemical networks. After several generations 
in the evolutionary process, due to co-option of 
existing biochemical networks, diversities of the 
biochemical networks with conserved physiolog-
ical function but with different structures will be 
developed (Freeman, 2000). This is the origin of 
the diversities of biochemical networks within 
organisms in evolution. However, if the require-
ments on the robustness in (18) and sensitivities 
in (21) are stricter (or more conservative), only a 
few solutions (or structures) can be selected by 
natural selection to meet these requirements. This 
is the reason why a conserved core biochemical 
network has less diversity (Chen et al. 2007a).

(22)
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Network Evolution from Synthetic 
Biology Point of View
The adaptive design rules of natural selection in 
the evolutionary process not only gain much insight 
into the evolutionary mechanism but also provide 
systematic robust genetic and biochemical circuit 
design methods of synthetic biology for biotech-
nological and therapeutic purpose in the future. 
Since systems biology is a foundation for genome-
scale synthetic biology, it will provide insight into 
the evolution of cellular systems. These insights 
will illustrate how changes in network topology, 
biochemical parameter values due to biochemical 
alterations, and molecular structures mediating the 
evolution of circuits. High-throughput measure-
ments will be necessary for determining what is 
evolved and how engineering genetic networks 
in vivo are contributed by mimicking the evolution-
ary process of genetic networks (Hasty et al. 2000; 
Hasty et al. 2002; Savageau, 2001; Voit, 2003). An 
approach involving directed evolution has been 
applied to rationally designed synthetic network 
in vivo. In this case, the synthetic circuit was 
already well described and the target mutation, 
together with screening according to fl uorescent 
reporter properties, was employed to make a non-
functional circuit functional. This synthetic biology 
involved a combination of the rational circuit 
design and evolution to improve performance 
(Altamirano et al. 2000; Wang et al. 2000; Farmer 
and Liao, 2000). Unfortunately, synthetic biolo-
gists will always be confronted by the inaccuracies 
of their design algorithms in modeling reality, with 
its vast number of biochemical parameters (Benner 
and Sismour, 2005; Church, 2005; Sprinzak and 
Elowitz, 2005). To over this drawback, the adaptive 
design algorithm in the above section could be 
modifi ed to guarantee a desired robust stability and 
fi ltering ability of synthetic biological networks.

Application of evolutionary systems 
biology to robust genetic network 
design
Consider the stochastic perturbative genetic net-
work in (2). If the perturbative genetic network 
does not have enough robust stability to tolerate 
stochastic parameter variations due to genetic 
mutation, then some feedback circuits F are 
designed to robustly stabilize the perturbative 
genetic network as follows (Chen and Wu, 
2006)

 dx t N F x t dt Mx t dw t( ) ( ) ( ) ( )= +( ) +  (23)
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Fij denotes the designed feedback interaction from 
gene j to gene i, which could be implemented 
through transformation and transfection biotech-
nologies. Fij = 0 if no feedback design exists from 
gene j to gene i.

According to stochastic Lyapunov stability 
as (3), if the following inequality holds, for 
P = PT > 0 (Chen and Wu, 2006)

 P N F N F P M PM
T T+( ) + +( ) + ≤ 0  (24)

then the perturbative genetic network is robustly 
stabilized by the feedback circuit design F .

The feedback circuit design F in (24) could be 
considered as the circuits favored by the designer 
rather than by natural selection in evolution. There-
fore, it is a potential application of network evolution 
to synthetic biology. In synthetic biology, the feed-
back design F satisfying the requirement in (24) can 
guarantee the genetic circuit to tolerate intrinsic sto-
chastic parameter perturbations  Mx(t)dw(t) in (23).

If the perturbative genetic network in (23) also 
suffers from external disturbances as follows (Chen 
and Wu, 2006)

 dx t N F x t dt Mx t dw t Hv t dt( ) ( ) ( ) ( ) ( )= +( ) + +  

and the fi ltering ability ρ cannot be achieved, then 
the feedback circuit F to be designed not only 
should tolerate intrinsic parameter variations but 
also fi lter environmental disturbances. According 
to the robust fi ltering in (6), if F is specifi ed such 
that the following inequality holds for P = PT > 0
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then the robust fi ltering ability ρ in (5) is guaran-
teed, i.e. the feedback circuit F should be designed 
in (25) to satisfy the inequality (26) (Chen and Wu, 
2006).

If the nonlinear genetic network in (7) cannot 
achieve robust stability and fi ltering ability ρ, the 
feedback circuit F should be designed to improve 
its robust stability and fi ltering ability

 dx t N F x H x v t dt M x dw t( ) ( , ) ( ) ( ) ( ) ( )= +( ) +  

where N(F, x) denotes merges of feedback circuit 
into nonlinear N(x). By a similar method as in (10) 
and (11), if the following inequalities hold for 
common P = PT > 0
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then the robust stability and fi ltering ability in (5) 
is guaranteed, where Ni (F) denotes the matrix Ni 
that contains the elements of matrix F. Therefore, 
the robust circuit design principle is to select 
adequate feedback circuits F so that the inequalities 
in (28) have a common solution P > 0. The above 
is an application of evolutionary systems biology 
to the robust genetic network design from the 
synthetic biology perspective, with the designer, 
instead of natural selection, selecting F in the 
design procedure. In the next subsection, applica-
tion of evolutionary systems biology to robust 
biochemical networks will be introduced from the 
synthetic biology perspective.

Application of evolutionary systems 
biology to robust biochemical network 
design
The robustness criterion in (18) and sensitivity 
criteria in (21) may be violated by large parameter 
perturbations ∆AD, ∆b, and enzyme change ∆Y1 
due to genetic mutations, environmental changes 
and diseases in the evolutionary process. Accord-
ing to the design principles of natural selection, a 
robust design method in the above section can be 
developed for biochemical networks to improve 

robustness to compensate parameter perturbations 
and to attenuate external disturbances, which are 
useful for synthetic biologists when the synthetic 
biochemical networks have to work robustly with 
proper functions under both intrinsic variations and 
extrinsic disturbances.

Suppose a robust circuit control design is devel-
oped for a biochemical network in (12) by a state 
feedback method as follows (Chen et al. 2007b)
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where xk
fik denotes a biochemical control circuit via 

xk  for regulating the production of xi  with a kinetic 
parameter fik  and xk

eik  denotes a biochemical con-
trol circuit via xk  for regulating the degradation of  
xi with the kinetic parameter eik .

The choice between regulating objects, xk  and 
xi , and the specifi cation of kinetic parameters, fik  
and eik , are to be made according to the feasibility 
of biochemical circuit linkages to achieve both the 
robust stability to tolerate ΔAD  within a prescribed 
range of kinetic parameter perturbations and the 
desired sensitivities to attenuate the other param-
eter perturbations Δb,  ΔAI , and the environmental 
disturbance ΔYI .  Since fik  and eik  are the elas-
ticities of the corresponding enzymes in the 
designed control circuits, the implementation of 
control circuits are highly dependent on the spec-
ifi cation of elasticities of these enzymes (Chen 
et al. 2007b).

According to the robustness analysis in the 
above section, a biochemical circuit design scheme 
for robust control of biochemical networks is 
developed. Consider the robust control systems of 
the biochemical network in (29). Using a similar 
procedure from (13) to (17), we obtain
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where the control parameter matrix is defi ned as
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where fik  and eik  are the kinetic parameters of the 
biochemical control circuits to be specified 
in (29).

By the robustness criterion in (18), if

 � �A F A or A A A F A FD D D D
T

D D

T+( ) Δ < Δ Δ < +( ) +( )−1
2 1  

(32)

then the phenotype of the perturbed biochemical 
network is preserved, i.e. the circuit control F  can 
improve the robustness to tolerate larger parameter 
perturbations ΔAD for a biochemical network. 
Similarly, if the desired sensitivity of biochemical 
networks cannot be achieved to attenuate variation 
of the other parameters and external disturbances 
in (21), the circuit control F could be designed as 
follows (Chen et al. 2007b)

  

to achieve some desired sensitivities s1 , s2 and s3  
in (21) so that the phenotypes of the perturbed 
biochemical network will not change too much.

According to the above analyses made using 
the design principles of natural selection in 
evolution, if we specify circuit control matrix F
of the biochemical network in (29) to satisfy the 
requirements of robustness in (32) and sensitivi-
ties in (33), then the biochemical network could 
tolerate prescribed ranges of parameter variations 
and also achieve desired sensitivities. These are 
potential applications of network evolution to 
robust design of synthetic biochemical networks 
in the future.

Discussion and Conclusion
The ultimate goal of systems biology is to achieve 
an integrated understanding of life forms with all 
their complex characteristics at multiple levels. An 
important step of systems biology is to create bio-
logically realistic models of network formation, 
evolution and function. From a more general per-
spective, evolutionary systems biology focuses on 
one core problem of systems biology, the evolu-
tionary interplay between the genotype and phe-
notype. It is interesting that selected units in 

biological networks are not genetic sequences, but 
topological properties of the networks. The inter-
play between the selection forces and selected 
robust properties in multi-level biological network 
is a signifi cant point of systems biology. Network 
evolution encompasses many different computa-
tional approaches and dynamical models to deal 
with the analyses of vast experimental data, 
especially microarray data, for probing and 
understanding the evolution of biological systems. 
These computational approaches and models have 
multiple applications in synthetic biology, with 
potential for genetic circuit designs and drug 
designs (Chen and Li, 2007).

For evolutionary biological networks, the com-
plex interplaying of biological systems poses a 
tremendous challenge to evolutionary systems 
biologists, as does the uncertain and noisy nature 
of large-scale data. The fi rst challenge that evolu-
tionary systems biologists must overcome is the 
construction of biological system models accord-
ing to genetic networks and protein-protein inter-
action networks by means of microarray data. With 
respect to the structures of genetic networks and 
protein-protein interaction networks, the second 
challenge arises from how to get the information 
of gain and loss of network components by muta-
tion and natural selection in the evolutionary pro-
cess of bio-networks.

Concerning analyses of system dynamics and 
selection forces of an evolutionary biological net-
work, another challenge arises from the fact that 
many biological systems are nonlinear. For non-
linear stochastic genetic networks or biochemical 
networks, some advanced nonlinear robust stabil-
ity theory and fi ltering theory is necessary for the 
analyses of evolutionary systems biology and its 
application to synthetic biology. Obviously, the 
proposed global linearization method are useful to 
analyze the robustness and fi ltering of the nonlin-
ear biological networks in the evolutionary process. 
Recently, fuzzy approximation theory becomes 
also an effi cient method to treat nonlinear robust 
stabilization and fi ltering ability of nonlinear sto-
chastic systems (Chen et al. 2007c). It may be a 
potential method for network evolution and syn-
thetic biology.
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