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Abstract: Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium
tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous
fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective
effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microR-
NAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA
candidate. A repressed and forced expression assay in Met5A cells was performed to investigate
the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural
fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG)
pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We
demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased
expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG
pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition.
High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeo-
static response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by
regulating NOX4 and POLDIP2.

Keywords: tuberculosis; fibrosis; NADPH oxidase 4; microRNA

1. Introduction

Tuberculosis (TB) is a global public health problem responsible for 9.9 million incident
cases [1]. TB mortality has reduced, and 85% (66 million cases) of the treated patients
survive [1]. However, approximately half of the TB survivors complain of chronic pul-
monary dysfunction and reduced quality of life despite microbiological cures [2–4]. This
is associated with excessive deposition of the extracellular matrix (ECM), stiffness, and
parenchymal scarring in tuberculous fibrosis [5,6]. Residual distortion of the lung archi-
tecture resulting in pulmonary dysfunction depends on the degree to which the ECM is
degraded [7]. Investigating the underlying immunological mechanism involving tubercu-
lous fibrosis could help identify therapeutic targets.

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) is the main
source of reactive oxygen species (ROS) and is upregulated in several lung diseases, includ-
ing idiopathic pulmonary fibrosis, bleomycin-induced lung injury, and lung cancer [8–12].
We recently reported that NOX4 signaling regulates ERK–ROS signaling and EMT path-
ways, thereby contributing to tuberculous fibrosis [13]. Antagonizing NOX4 expression
restores impaired protective autophagy in tuberculous pleurisy.

Int. J. Mol. Sci. 2022, 23, 2999. https://doi.org/10.3390/ijms23062999 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23062999
https://doi.org/10.3390/ijms23062999
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7691-8403
https://orcid.org/0000-0002-3132-7706
https://doi.org/10.3390/ijms23062999
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23062999?type=check_update&version=2


Int. J. Mol. Sci. 2022, 23, 2999 2 of 15

MicroRNAs (miRNAs) are short, single stranded, noncoding RNA molecules com-
posed of approximately 19–24 nucleotides [14]. miRNAs downregulate target gene expres-
sion mainly by binding to the consensus sequence of the target mRNA and inactivating
the target gene using transcription factor-aided co-action [14–16]. Therefore, miRNAs have
great potential as a therapeutic alternative in cancer, neurodegenerative disorders, cardio-
vascular diseases, and infectious diseases [17]. While some miRNAs are involved in the
pathogenesis of tuberculosis, few studies have explored the role of miRNAs in tuberculous
fibrosis [18].

In the present study, we sought to identify potential miRNA that regulate NOX4
in tuberculous fibrosis and identify new therapeutic targets. Among miRNAs predicted
to bind to NOX4 by bioinformatics analysis, miR-148a was evaluated. To elucidate the
miR-148a–related mechanism in tuberculous fibrosis, a mesothelial cell experiment and
BCG pleurisy mouse model were performed. The expression of miR-148a in tuberculous
pleural effusion, a clinical specimen corresponding to a chronic condition after tuberculous
infection, was compared with transudate.

2. Results
2.1. NOX4 and POLDIP2 Expression in Mesothelial Cells Is Upregulated after Treatment with HKMT

Our previous study showed that HKMT treatment enhanced the expression of NOX4,
POLDIP2, and collagen-1A in mesothelial cells (Figure 1A). HKMT treatment increased
the expression of NOX4 and POLDIP2 in an interdependent manner. The downregulation
of NOX4 decreased the expression of POLDIP2 and vice versa (Figure 1B,C). Immuno-
precipitation verified the direct interaction between NOX4 and POLDIP2 (Figure 1D).

Figure 1. NOX4 and POLDIP2 mutually mediate HKMT-induced collagen-1A synthesis (A) NOX4,
POLDIP2 and collagen-1A mRNA expression in the Met5A cells over time after HKMT treatment
(B) NOX4, POLDIP2 and collagen-1A mRNA expression in the Met5A cells with HKMT treatment in
the presence of SiCtrl and SiRNA targeting NOX4 (SiNOX4) (C) NOX4, POLDIP2 and collagen-1A
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mRNA expression in the Met5A cells with HKMT treatment in the presence of SiCtrl and SiRNA
targeting POLDIP2 (SiPOLDIP2) (D) Interaction between NOX4 and POLDIP2 in Met5A cells af-
ter HKMT treatment confirmed by western blot and immunoprecipitation * significant difference
(p < 0.05) compared to control group (SiCtrl), ** significant difference (p < 0.01) compared to (SiCtrl),
# significant difference (p < 0.05) compared to HKMT group (SiCtrl + HKMT), ## significant difference
(p < 0.01) compared to HKMT group (SiCtrl + HKMT).

2.2. miR-148a Is Underexpressed during the Initial Stage of Exposure to Tuberculosis but
Increases Later

The TargetScan prediction software identified several miRNAs that are broadly con-
served among vertebrates and putatively bind to sites in the untranslated regions (3′ UTRs)
of NOX4 mRNA (Supplementary Figure S1). We evaluated the expression of candidate
miRNAs in mouse pleural mesothelial cells (mPMCs) obtained from Wild type (WT) or
NOX4 KO mice, with and without the 3 h HKMT treatment (Figure 2A). Of the candidate
miRNAs, miR-9, miR-148a and miR-196 were higher in the mPMCs of NOX4 KO mice
than in WT mice. After 3 h HKMT treatment, the expression of miR-9 and miR-148a was
downregulated in both WT mPMC and Met5A cells (Figure 2B, C). Knocking out NOX4 or
SiRNA NOX4 treatment did not reverse the decrease in miR-9 and miR-148 induced by 3 h
HKMT treatment.

Figure 2. miRNA expression in mesothelial cells with HKMT treatment. (A) miRNA expression
in mPMCs of WT mouse and NOX4 KO mouse (n = 3) (B) miRNA expression in mPMCs of WT
mouse and NOX4 KO mouse following stimulation with and without HKMT. * significant difference
(p < 0.05) compared to control group (WT mPMC Non), # significant difference (p < 0.05) compared
to WT mPMC HKMT group (C) miRNA expression in human Met5A cells transfected with SiCtrl or
SiNOX4 following stimulation with and without HKMT. ** significant difference (p < 0.01) compared
to (SiCtrl), # significant difference (p < 0.05) compared to HKMT group (SiCtrl + HKMT), ## significant
difference (p < 0.01) compared to HKMT group (SiCtrl + HKMT).
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We evaluated the changes in miRNAs over time after HKMT treatment in human
Met5A cells and mPMCs (Figure 3A–D). miR-148a showed a clear trend over time. miR-148a
expression decreased initially after HKMT treatment but tended to increase after long-term
exposure. NOX4 and miR-148a showed differences in expression over time. In particular,
in the mPMC experiment, NOX4 increased at 24 h and then decreased at 72 h, whereas
miR-148a decreased at 24 h and then showed a marked increase at 72 h. This change of
miR-148a encouraged us to focus on miR-148a as a potential candidate for the regulation of
NOX4 in tuberculous fibrosis. The binding site of miR-148a was computationally predicted
in the 3′ UTRs of NOX4 mRNA (Supplementary Table S1).

Figure 3. miR-148a decreased in the early stage of HKMT stimulation but increased as the exposure
time increased. (A) NOX4, POLDIP2 mRNA expression in the Met5A cells pre-incubated with HKMT
(10 ng/mL) for indicated times (n = 3). (B) qRT-PCR analysis of miRNA expression in Met5A cells
pre-incubated with HKMT (10 ng/mL) for indicated times (n = 3). Results are presented as the
mean ± SEM (C) NOX4, POLDIP2 mRNA expression in the WT-mPMCs pre-incubated with HKMT
(10 ng/mL) for indicated times (n = 3). (D) qRT-PCR analysis of miRNA expression in WT-mPMCs
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pre-incubated with HKMT (10 ng/mL) for indicated times (n = 3). Results are presented as the
mean ± SEM (E) The expression of circulating miRNA levels in tuberculous pleural effusion and
transudate. * significant difference (p < 0.05) compared to control group (Non), ** significant difference
(p < 0.01) compared to control group (Non).

TB-PE indicates a chronic status after TB exposure. Consistent with Met5A with long
term HKMT exposure, the expression of circulating miR-148 was higher in TB-PE than in
the transudate (Figure 3E).

2.3. miR-148a Regulates Expression of NOX4/POLDIP2 in Met5A Cells

To validate the correlation between NOX4 and miR-148a in tuberculous fibrosis, we
investigated whether the expression level of miR-148a affects the expression level of NOX4
using a synthetic mimic and inhibitor of miR-148a. Met5A cells were transfected with
miR-148a mimic or miR-148a inhibitor and treated with HKMT for 3 h. Figure 4b shows that
increasing miR-148a levels remarkably decreased HKMT-induced transcription of NOX4
and collagen-1A. Conversely, miR-148a knockdown using miR148a-inhibitor significantly
increased the levels of NOX4, POLDIP2, and collagen-1A (Figure 4C).

Figure 4. miR-148a can reduce tuberculous induced collagen-1A expression by regulating NOX4.
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(A) Levels of miR-148a in Met5A transfected with miR-148a mimics and miR-148 inhibitors in the
presence or absence of HKMT treatment (B) NOX4 mRNA, POLDIP2 mRNA and collagen-1A mRNA
in Met5A transfected with Ctrl mimics and miR-148a mimic in the presence or absence of HKMT
treatment (C) NOX4 mRNA, POLDIP2 mRNA and collagen-1A mRNA in Met5A transfected with Ctrl
inhibitor and miR-148 inhibitor in the presence or absence of HKMT treatment (D) NF-kB expression
in Met5A transfected with miR-148a mimics in the presence or absence of HKMT treatment (E) ChiP
assay of NF-kB binding in miR-148a promoter. Met5A cells were treated with or without HKMT
for 3 h to collect the chromatin for immunoprecipitation with a specific anti-NOX4 antibody and
a specific anti-POLDIP2 antibody. Quantitative data are expressed as mean ± SEM. * significant
difference (p < 0.05) compared to control group (Ctrl mimic or Ctrl inhibitor), ** significant difference
(p < 0.01) compared to control group (Ctrl mimic or Ctrl inhibitor), # significant difference (p < 0.05)
compared to HKMT group (Ctrl mimic or Ctrl inhibitor + HKMT), ## significant difference (p < 0.01)
compared to HKMT group (Ctrl mimic or Ctrl inhibitor + HKMT).

HKMT treatment upregulated NF-κB, a transcription factor of NOX4, and miR-148a
mimics downregulated HKMT-induced NF-κB (Figure 4D). The ChIP assay demonstrated
that HKMT increased the binding of NOX4/POLDIP2 to the miR-148a promoter-1 sequence
(Figure 4E). These results suggest that NOX4 may mediate miR-148a downregulation in
tuberculosis fibrosis by directly regulating gene transcription. Taken together, these results
suggest that there is a mutually inhibitory relationship between NOX4 and miR-148a.

2.4. miR-148a Prevents Experimental Tuberculous Fibrosis

An increase in miR-148a was observed 2 days after miRNA tail vein injection, com-
pared to control mice (Supplementary Figure S2). To determine the potential role of
miR-148a in the development of tuberculous fibrosis, miR-148a mimics or control mimics
(20 nmol/kg) was administered once every two days for 2 weeks after BCG injection
(Figure 5A). After 2 weeks, the expression of miR-148a in lung tissue was higher in
the BCG + control (Ctrl) group than in the PBS + Ctrl control group and was highest
in the BCG + miR-148a mimic group among the four groups (Figure 5B). The adminis-
tration of miR-148a mimics significantly attenuated BCG-induced expression of NOX4,
POLDIP2, and Snail proteins (Figure 5C). To examine the effects of miR-148a mimic post-
treatment in BCG-induced pleurisy, cell recruitment and cytokine accumulation were
determined. On day 15 after infection, there was a significant increase in the total num-
ber of pleural cells (PBS + Ctrl: 21.3 × 104 ± 12.74 × 104/mL, BCG + Ctrl: 786.7 × 104

± 369.5 × 104/mL, p = 0.023) (Figure 5D). The total count in mice in the BCG + miR-
148a mimic group was lower than that in the BCG + Ctrl group (BCG + miR-148a mimic:
232.8 × 104 ± 313.0 × 104/mL, p = 0.084). The microscopic analysis of pleural cells showed
that the number of multinucleated giant macrophages in mice was higher in the BCG + Ctrl
group than in the PBS + Ctrl and BCG + miR-148a mimic groups (Figure 5E). Similarly,
the concentration of cytokines (IL-6, TNF-α and IFN-7) measured in the serum was higher
in the BCG + Ctrl group than PBS + Ctrl group and miR-148a mimic post treatment re-
duced the expression of cytokines induced by BCG (Figure 5F). These results suggest that
miR-148a regulates NOX4 expression levels and leads to substantial control of pleural
inflammation as well as fibrosis in BCG pleurisy.

Hematoxylin and Eosin (H&E) staining showed an improvement in BCG-induced
fibrosis in mice with increased miR-148a expression. Fifteen days after BCG infection, all
mice in the BCG + Ctrl group showed increased pleural hyperplasia and pulmonary cell
infiltration compared to the PBS + Ctrl group. Mice in the BCG + miR-148a mimic group
presented with reduced submesothelia, granulomas, and pleural hyperplasia compared to
mice in the BCG + Ctrl group (Figure 6A). Immunostaining of the mouse lung tissue for
NOX4 showed remarkably strong expression around infiltrative areas with thickened septae
in the BCG + Ctrl group, contrary to the expression in the PBS + Ctrl group, which showed
weak detectable expression in epithelial bronchial cells. Mice in the BCG + miR-148a mimic
group showed reduced NOX4 expression in lung tissue (Figure 6B). Collagen deposits
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were also observed in the pleural sections of mice in the BCG + Ctrl group, but mice
in the BCG + miR-148a mimic group had fewer collagen deposits compared to mice in
the BCG + Ctrl group (Figure 6C). The in vivo suppressive effect of miR-148a on NOX4
was verified using immunofluorescence staining (Figure 6D). We found increased levels
of NOX4, which were colocalized with mesothelin, a marker of mesothelial cells in the
BCG + Ctrl group than in the PBS + Ctrl group. The miR-148a mimic treatment blocked
BCG induced mesothelin and NOX4 expression.

Figure 5. miR-148a prevents pulmonary fibrosis in mice (A) Schematic of experimental design
(B) miR-148a expression (C) Immunoblots showing decreases of epithelial mesenchymal transition
(EMT) markers, NOX4 and POLDIP2 in lung tissues of BCG treated mice with miR-148a mimics
posttreatment (D) Total number of pleural cells in four groups (E) Photomicrographs from cytospin
stained with Giemsa (F) Cytokine levels (IL-6, TNF-α and IFN-γ) assessed in the serum. * significant
difference (p < 0.05) compared to control group (PBS + Ctrl. mimic), # significant difference (p < 0.05)
compared to BCG + Ctrl. mimic group, ## significant difference (p < 0.01) compared to BCG + Ctrl.
mimic group.
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Figure 6. miR-148a posttreatment regulates NOX4 expression and inhibits collagen-1A infiltrates in
mouse lungs. (A) H&E staining, ×100 (B) Immunostaining of NOX4, ×100 (C) Masson Trichrome
staining in mouse lung. ×100, ×200 (D) Immunofluorescence staining of NOX4 and mesothelin
(markers for mesothelial cells). ×400 Light yellow areas represent colocalization of NOX4 (green)
and mesothelin (red). DAPI,4′,6-Diamidino-2-phenylindole dihydrochloride.

3. Discussion

In this study, miR-148a was identified as a novel miRNA involved in
tuberculous fibrosis.

In accordance with previous studies [13,19], our data demonstrate that NOX4 signaling
contributes to tuberculous fibrosis and interacts with POLDIP2. Using bioinformatics
analysis, we identified NOX4 as a potential target gene of miR-148a. We report that HKMT
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downregulated the expression of miR-148a initially and upregulated the expression of
miR-148a after exposure for a long time. The same results were confirmed in clinical
specimens. miR-148a showed a tendency to be higher in the tuberculous pleural effusion,
compared with transudate. Functionally, miR-148a mimics reversed the HKMT induced
upregulation of NOX4, POLDIP2, and collagen-1A mRNA. Likewise, in an in vivo model
of BCG pleurisy, miR-148a mimics decreased the production of proinflammatory cytokines
and deposition of ECM by inhibiting NOX4. This protective role was confirmed in mouse
models with upregulated expression of miR-148a. We speculate that miR-148a could
effectively attenuate fibrosis after tuberculous infection. In addition, this result indicates
that miR-148a upregulation in tuberculous pleural effusion is a protective mechanism or
homeostasis response.

Recent studies have raised the possibility that circulating miRNAs in body fluids
may contribute to the early diagnosis and monitoring of treatment response in various
diseases [20,21]. In addition, miRNAs are more stable and have higher sensitivity and
specificity compared to protein biomarkers [22]. Some miRNAs have been proposed to be
associated with ECM repair in chronic fibrotic lung diseases or to the clinical outcomes
of TB [18,23]. Little is known about the involvement of miR-148a in fibrotic lung disease.
There have been reports that miR-148a suppresses lung cancer and liver fibrosis [24,25].
miR-148a suppressed the migration and invasion of non-small cell lung cancer cells by
targeting Wnt1 signaling [26]. The overexpression of miR-148a downregulates ERBB3,
which is required for the activation of hepatic stellate cells and liver fibrosis [25]. Miotto
et al. demonstrated that miR-148a was present in serum miRNA signatures could be used
to differentiate active TB and healthy subjects’ patients [27]. Whether pleural effusion or
plasma miR-148a can be a useful biomarker for the identification of tuberculous fibrosis
requires validation studies using multiple clinical samples.

We did not demonstrate direct binding of miR-148a to NOX4, but our data suggest
an indirect regulation of miR-148a and NOX4. Several transcription factors, such as NFκB,
SMAD2/3, E2F, HIF1α, and Nrf2 regulate NOX4 promoter activity [28]. NF-κB stimu-
lates NADPH oxidases in human phagocytes and vascular smooth muscle cells [29,30].
Lu et al. reported that hypoxia increased the binding of the NF-kB subunit P65 to the NOX4
promoter, and PPARγ attenuated this binding as a negative regulator [31]. In our study,
miR-148a mimics reduced the expression of NF-κB, a transcription factor of NOX4, leading
to the downregulation of NOX4 levels. The detailed mechanisms of the interaction between
miR-148a and NF-κB remain to be elucidated.

In addition, the ChIP assay demonstrated that NOX4/POLDIP2 is bound to a specific
site on the promoter of the miR-148a gene and that the binding was enhanced by HKMT
treatment. Taken together, our data support the existence of auto-regulatory feedback
between NOX4 and miR-148a as a microRNA/target protein network. TB fibrosis activates
miR-148a to repress NOX4, which conversely inhibits miR-148a, providing a self-limiting
protective mechanism (Figure 7).

Figure 7. Regulation of tuberculous fibrosis by miR-148a. Chronic HKMT exposure induces miR-148a
expression. Initially, TB downregulates miRNA 148a, but finally upregulates miR-148a. Overexpres-
sion of miR-148a in mesothelial cells blocked NOX4 and POLDIP2 expression, thus preventing ECM
deposition and lung fibrogenesis. NOX4 may also inhibit the expression of miR-148a, providing
a negative feedback mechanism.
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We previously reported an association between TB fibrosis and tumorigenic
potential [32]. Interestingly, miR-148a has been reported to inhibit lung cancer [24]. Consid-
ering the antifibrosis function of miR-148a shown in our data, this may reflect the crosstalk
mechanism between fibrosis and cancer. Further studies are needed to verify whether tu-
berculous fibrosis related miRNAs mediate cancer cell proliferation. In addition, validation
of this finding should be performed to examine clinical utility in a larger cohort.

The limitation of this study is that it is difficult to extrapolate the results to human
tuberculosis because a mouse model of BCG-induced pleurisy is not identical to human
tuberculosis. However, HKMT was used to study tuberculosis in vitro experiments.

In conclusion, miR-148a can attenuate tuberculous fibrosis by suppressing NOX4 by
downregulating the transcription factor NF-κB in the mesothelial cell experiment. Notably,
NOX4 downregulates miR-148a, resulting in a negative feedback loop. Likewise, in the
mouse model, we reconfirmed the contribution of miR-148a in the attenuation of pleural
fibrosis associated with BCG-induced pleurisy. The clinical potential of miR-148a should
be further evaluated in future studies.

4. Materials and Methods
4.1. Cell Lines and Animals

The human mesothelial cell line Met5A was purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). The wild type NOX4 (NOX4-WT) mice
and knockout NOX4 (NOX4-KO) C57BL/6 mice were obtained from Prof. Park (Yonsei
University, Seoul, Korea). All animal experiments were approved by the Institutional
Animal Care and Use Committee (IACUC) of Hallym University (NO; Hallym 2020-21).

4.2. Isolating Mouse Pleural Mesothelial Cells (mPMCs)

Primary mPMCs were obtained from the surface of the thoracic diaphragm, heart,
and lungs of NOX4-WT or NOX-KO mice (3–4 weeks of age). Each tissue was sepa-
rated and incubated in 0.25% trypsin-EDTA solution for 1 h after washing with Dul-
becco’s phosphate buffered saline (DPBS). After centrifugation for 3 min at 1500 rpm, the
cell pellets were suspended in Dulbecco’s modified Eagle medium (DMEM) (15% FBS,
1% penicillin/streptomycin) and cultured for one day in a 5% CO2 incubator. The next
day, the cells attached to the dish were washed with DPBS and grown in DMEM (15% FBS,
1% penicillin/streptomycin) for 2–3 days. The non-attached cells were attached back to the
plate and used 2–3 days later.

4.3. Treatment of Heat-Killed Mycobacterium Tuberculosis (HKMT)

HKMT (InvivoGen, San Diego, CA, USA) was used to study tuberculosis in Met5A
and mPMCs. The cells at 60–70% confluence were treated with 10 ng/mL HKMT either
with or without transfection for the indicated time periods. To suppress endogenous gene
expression, siNOX4 (sense 5′-CUGUUGUGGACCCAAUUCA-3′ and antisense 5′ UGAAU-
UGGGUCCACAACAG 3′), siPoldip2 (sense 5′-CUCUUGUUCACUUUACCUU 3′ and
antisense 5′ AAGGUAAAGUGAACAAGAG) were used in the experiments. Scrambled
siRNA (sense: 5′-GGTCAAGACACTATTAACA-3′ and antisense: 50-GGATTCCTAGTGT
ATTTCA-3′) was used as a control (SiCtrl). To determine the effect of miR-148a on in vitro
tuberculosis, 200 pmol miR-148a mimic (5′-AAAGUUCUGAGACAC UCCGACU-3′) or
miR-148a inhibitor (5′-UCAGUGCACUACAGAACUUUGU-3′), control mimic and control
inhibitor were transfected into cells using the transfection reagent in jet PRIME transfection
(PolyPlus Transfection, New York, NY, USA).

4.4. The Identification of Potential miRNAs

The TargetScan program was used to identify putative miRNAs predicted to regulate
gene expression by directly binding to the 3′ untranslated regions (3′ UTRs) of NOX4
(Supplementary Figure S1).
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4.5. Immunoblot and Immunoprecipitation (IP) Analysis

Immunoblot analysis and immunoprecipitation were performed according to stan-
dard procedures as previously described [33,34]. Briefly, cells were lysed in RIPA buffer
(50 mM Tris, pH 7.4, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% sodium dodecyl
sulphate (SDS), and 1% Nonidet-P40). For immunoblotting, the protein lysates were mixed
with 5X sample buffer, blended for 8 min, and 50 µg of protein was separated using
10% SDS polyacrylamide gel electrophoresis (SDS PAGE) and transferred to PVDF mem-
branes (Thermo Scientific, Waltham, MA, USA). Membranes were incubated with primary
antibodies against NOX4 (1:2000 dilution; Proteintech, Wuhan, China), POLDIP2, ZO-1
(1:1000 dilution; Abcam, Cambridge, UK), Snail (1:1000 dilution; Cell Signaling Technology,
Danvers, MA, USA), followed by incubation with an HRP-conjugated secondary antibody
(1:1000 dilution; Thermo Scientific). The membranes were stripped and reprobed with
a primary antibody against β-actin (1:1000 dilution; Cell Signaling Technology).

For immunoprecipitation, cell lysates (500 µg) were immunoprecipitated with respec-
tive primary antibodies (2 µg) overnight at 4 ◦C; 40 µL of Protein A/G PLUS-Agarose
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) was added and the lysates were further
incubated for 1 h at 4 ◦C. After washing the beads three times with lysis buffer, 2X sample
buffer was added. The samples were boiled for 8 min and analyzed using 10% SDS-PAGE,
followed by immunoblotting.

4.6. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

Total RNA samples were extracted from Met5A and mPMCs using the easy-Blue
reagent (iNtRON Biotechnology, Seoul, Korea). Strand cDNA was synthesized using the
Maxime RT PreMix Kit (iNtRON Biotechnology). Total miRNA was extracted from frozen
mouse lung tissue and Met5A or mPMCs using miRNeasy Mini Kit (Qiagen, Germantown,
MD, USA), followed by reverse transcription using the miScript Transcription Kit (Qiagen).
For quantitative RT-PCR (qRT-PCR), the SYBR Green PCR Kit (Qiagen) was used in Rotor-
Gene Q (Qiagen). The primer sequences used for qRT-PCR are shown in Tables 1 and 2.

Table 1. Human and mouse sequences and accession numbers for primers (forward, FOR; reverse,
REV) used in RT-PCR.

Gene Primer Sequences (5′–3′)

Hu.NOX4
FOR: CCGGCTGCATCAGTCTTAAC

REV: TCGGCACAGTACAGGCACAA

Hu.Poldip2 FOR:CAAAACAGAATGGAAAATATGAGACCGG
REV: TGATTGATGCTCGTGACTGCCCA

Hu.Col1A1
FOR: ACTGGTGAGACCTGCGTGTA
REV: AATCCATCGGTCATGCTCTC

Hu.β-actin FOR: GTGCTATCCCTGTACGCCTC
REV: GGCCATCTCTTGCTCGAAGT

Mu.NOX4
FOR: CATTCACCAAATGTTGGGC

REV: TGCACACCTGAGAAAATACA

Mu.Poldip2 FOR: TCCTCAGAGGCTGGACATCT
REV:ATGCTCAGAAGCCCACAGTT

Mu.GAPDH
FOR: CGTCCCGTAGACAAAATGGT
REV: TTGATGGCAACAATCTCCAC

Table 2. Human and mouse sequences and accession numbers for miRNA primers used in RT-PCR.

Gene Primer Sequences (5′–3′)

has-miR-215 ATGACCTATGAATTGACAGAC
has-miR-9 TCTTTGGTTATCTAGCTGTATGA

has-miR-196b TAGGTAGTTTCCTGTTGTTGGG
has-miR-203 GTGAAATGTTTAGGACCACTAG
has-miR-148a AAAGTTCTGAGACACTCCGACT
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Table 2. Cont.

Gene Primer Sequences (5′–3′)

has-U6 CTCGCTTCGGCAGCACA
has-miR-215 ATGACCTATGATTTGACAGAC
has-miR-9 TCTTTGGTTATCTAGCTGTATG

has-miR-196b TAGGTAGTTTCCTGTTGTTGGG
has-miR-203 GTGAAATGTTTAGGACCACTAG
has-miR-148a AAAGTTCTGAGACACTCCGACT

has-U6 CTCGCTTCGGCAGCACA
mmu-miR-215 ATGACCTATGATTTGACAGAC
mmu-miR-9 TCTTTGGTTATCTAGCTGTATGA

mmu-miR-196b TAGGTAGTTTCCTGTTGTTGGG
mmu-miR-203 GTGAAATGTTTAGGACCACTAG
mmu-miR148a TCAGTGCACTACAGAACTTTGT

mmu-U6 GCTTCGGCAGCACATATACTAAAAT

4.7. Chromatin Immunoprecipitation Assay (ChIP Assay)

A ChIP assay was performed according to the manufacturer’s instructions (Cell Sig-
naling Technology) on cultured Met5A cells. Briefly, the cells were crosslinked with 1%
formaldehyde at 37 ◦C for 10 min. Chromatin extracts were isolated and further frag-
mented by sonication on ice to shear DNA. The nuclear extracts were immunoprecipitated
with either anti-NOX4 antibody, anti-POLDIP2 antibody, or rabbit IgG at 4 ◦C overnight.
Purified immunoprecipitated DNA/protein complexes were subjected to PCR. To identify
the binding sites of proteins to the miR-148a promoter, three pairs of specific primers
were synthesized to amplify DNA fragments of approximately 150–200 bp in the pro-
moter region of miR-148. The primer sequences used for PCR were as follows: miR-148a
promoter-1 sequences [5′-CAGCACGAGGAACTTGACCCA-3′ (sense) and 5′-GCAAGGC
ACTGCACACACTAAC-3′(antisense)], miR-148a promoter-2 sequences [5′-TGGAGGTTT
GGGTTGGTGAG-3′ (sense) and 5′-TACCAAGGGCTTCCCAGAGA-3′(antisense)], miR-
148a promoter-3 sequences [5′-GCAGTGCCTTGCAGGAATTT-3′ (sense) and 5′-ATCTCCA
CAGCCCAAAAGCA-3′(antisense)]. IgG was used as a negative control.

4.8. Enzyme-Linked Immunosorbent Assay (ELISA)

The expression of IL-6, TNF-α, and IFN-γ (Abbkine Wuhan, China) in mouse serum
was measured using ELISA Kit.

4.9. Establishment of BCG-Induced Pleurisy and In Vivo Treatment of miRNA Mimics

Before miRNA 148a mimic treatment, 106 CFUs BCG Pasteur in 100 µL saline into
the intrapleural cavity was performed on day 0 to create a BCG-induced pleurisy animal
model [13]. To determine the effect of miR-148a on in vivo tuberculous fibrosis, a control
mimic or miR-148a mimic (20 nmol/kg) combined with 100 µL of in vivo-JetPEI (PolyPlus
Transfection, New York, NY, USA) transfection reagent was injected intravenously once
every two days from day 0 in a total of 14 days. On day 15, all mice were sacrificed, and
lung tissues and blood serum were collected. Thoracic cavities were washed with 1 mL
2 mmol/L EDTA-PBS before sacrifice. The pleural effusion was centrifuged, and the cell
pellet was reconstituted in 100 µL PBS. Counting of total cell numbers and cytospin with
diff-Quick staining was performed as previously described [13].

4.10. Histology, Immunohistochemistry, and Immunofluorescence Staining

Paraffin sections of lung tissue were stained with hematoxylin and eosin (H&E) for
lung inflammation. To evaluate pulmonary fibrosis, samples were stained with Masson’s
trichrome stain kit (IMEB Inc., Chicago, IL, USA). After deparaffinization, lung tissues were
immunostained with NOX4 antibody (Cusabio, Wuhan, China). For immunofluorescence
staining, the sections were incubated with antibodies against NOX4 (1:100 dilution, Santa
Cruz Biotechnology) and antibodies against mesothelin (1:100 dilution, Santa Cruz Biotech-
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nology) overnight at 4 ◦C. After washing with PBS, the slides were incubated with Alexa
Fluor 546-conjugated goat anti-mouse IgG1, Alexa Fluor 488-conjugated goat anti-rabbit
IgG secondary antibody for 1 h in the dark and DAPI (Sigma-Aldrich, St Louis, MO, USA).
All samples were examined under a fluorescence microscope (Olympus FV500; Olympus,
Tokyo, Japan).

4.11. Patients and Sample Collection

The patient samples in this study were obtained according to the study protocol
approved by the Institutional Review Board of Chuncheon Sacred Heart Hospital (IRB
no.2012-27. All study participants provided written informed consent for inclusion in the
study. The data did not include any information that could have led to patient identification.
Tuberculous pleural effusion (TPE) was defined by two criteria: positive culture results from
the pleural fluid sample or pleural biopsy with mycobacterial histological features (n = 3).
Transudate pleural effusion was defined using Light’s criteria (n = 3) [35]. Circulating
miRNA was extracted from pleural effusion (n = 6) using the miRNeasy Serum/Plasma Ad-
vanced Kit (Qiagen) according to the manufacturer’s instructions. Supplementary Table S1
shows the characteristics of the study participants.

4.12. Statistical Analysis

Data are expressed as mean± SEM. Statistical comparisons were made using two-way
analysis of variance, followed by GraphPad Prism5. The significance of differences between
groups was determined using Student’s unpaired t-test. Statistical significance was set at
p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23062999/s1.
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