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Innate immune pathways are the first line of cellular defense against pathogen infections

ranging from bacteria to Metazoa. These pathways are activated following the recognition

of pathogen associated molecular patterns (PAMPs) by membrane and cytosolic pattern

recognition receptors. In addition, some of these cellular sensors can also recognize

endogenous danger-associated molecular patterns (DAMPs) arising from damaged or

dying cells and triggering innate immune responses. Among the cytosolic nucleic acid

sensors, the cyclic guanosine monophosphate–adenosine monophosphate (cGAMP)

synthase (cGAS) plays an essential role in the activation of the type I interferon (IFNs)

response and the production of pro-inflammatory cytokines. Indeed, upon nucleic acid

binding, cGAS synthesizes cGAMP, a second messenger mediating the activation of

the STING signaling pathway. The functional conservation of the cGAS-STING pathway

during evolution highlights its importance in host cellular surveillance against pathogen

infections. Apart from their functions in immunity, cGAS and STING also play major

roles in nuclear functions and tumor development. Therefore, cGAS-STING is now

considered as an attractive target to identify novel biomarkers and design therapeutics

for auto-inflammatory and autoimmune disorders as well as infectious diseases and

cancer. Here, we review the current knowledge about the structure of cGAS and the

evolution from bacteria to Metazoa and present its main functions in defense against

pathogens and cancer, in connection with STING. The advantages and limitations of

in vivo models relevant for studying the cGAS-STING pathway will be discussed for

the notion of species specificity and in the context of their integration into therapeutic

screening assays targeting cGAG and/or STING.
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INTRODUCTION

Type I interferons (IFNs) can be secreted by a wide range of
immune and non-immune cells in response to various biological
stimuli [danger associated molecular patterns (DAMPs) and
pathogen associated molecular patterns (PAMPs)] that activate
nuclear, cytosolic, or membrane-anchored nucleic acid sensors

(1, 2). Discovery and characterization of these specialized
receptors, which trigger innate immune responses, started in

early 2000 with the description of lipopolysaccharides (LPS)
and CpG sensing by TLR4 and TLR9, respectively (3, 4).

Since then, extensive investigations have been conducted to
identify cytosolic DNA receptors classified as DNA sensor based
on DNA binding activity and activation of innate immune
responses (5). Recent evidence highlighted their diversity in
terms of structure/function, patterns of expression, and signaling
pathway (5). This raises important questions on the existence
of ligand specificity, the impact of the tissue environment,
and the orchestration of overlapping DNA signaling pathways
(6). Indeed, numerous DNA sensors have been identified,
which belong to PYHIN proteins (HIN200 domain-containing
proteins) such as interferon gamma-inducible protein 16 (IFI16)
and absent in melanoma 2 (AIM2); to DExH-box helicases
(DHX9 and DHX36) or DEAD-box helicase family (DDX41)
and to proteins involved in responses to DNA damage (MRE11,
or Rad50 and DNA-PK). In addition, DNA-dependent activator
of IFN regulatory factors (DAI), RNA polymerase III (RNA pol
III), and LRR binding FLII interacting protein 1 (LRRFIP1)
were also involved in DNA sensing and type I IFN response
[for reviews (5, 7)]. However, the depletion of some of these
sensors (DDX41 or DAI) in mouse or cellular models does
not always correlate with an impact on DNA-stimulated type
I IFN response, which highlights the need for further studies
(5). Finally, the cyclic guanosine monophosphate–adenosine
monophosphate (cGAMP) synthase (cGAS) has emerged as
central to the mounting of nucleic acid-dependent IFN responses
in vivo (8). It is involved in the detection of a wide range of
cytosolic DNA ligands from self and non-self origins. Association
of human cGAS (also known as C6orf150 encoded by MB21D1)
with dsDNA catalyzes the production of cyclic cGAMP. Of
note, ssDNA (9) and RNA:DNA hybrids (10) have been shown
to activate cGAS leading to cGAMP production. This second
messenger triggers the activation of innate immune responses by
binding to the adaptor protein STING (also known as MITA,
ERIS, or MPYS, encoded by TMEM173). STING recruits the
TANK-binding kinase 1 (TBK1) and the inhibitor of nuclear
factor kappa-B kinase subunit epsilon (IKKε) and activates the
IRF3 and the nuclear factor kappa (NF-κB)-light-chain-enhancer
of activated B cells transcription factors (11, 12). The exact
location of STING/TBK1 interaction is still in debate. Induction
of the cGAS-STING pathway culminates in the synthesis of type I
IFN and pro-inflammatory cytokines (13, 14). Notably, activation
of cGAS-STING pathway leads to the establishment of an IFN-
based and IFN-independent innate immune response (15–17).

Fine-tuning of the cGAS-STING pathway is necessary to
initialize and resolve inflammatory processes, maintain tissue
homeostasis, fight against pathogen infections (i.e., bacteria,

viruses, and parasites), and modulate the immunity of the tumor
microenvironment (toward tumor suppression or tumor and
metastasis development in a different context) (18). Therefore,
the role of cGAS-STING in auto-inflammatory and autoimmune
diseases has been established leading to a chronic activation
of the IFN pathway, which can be detrimental (16). This
includes inflammatory syndromes such as STING-associated
vasculopathy with onset in infancy (SAVI), Aicardi–Goutières
syndrome (AGS), and familial chilblain lupus (19–23), but
also cGAS related genetic disorders such as TREX1 associated
lupus-like autoimmune disorder (24) or Bloom syndrome (19).
Systemic inflammation triggers complex pathological phenotypes
with multi-organ damages. Although ubiquitously expressed, a
growing body of evidence demonstrates the existence of cell-
and tissue-related variability in the expression pattern of cGAS-
STING (25) as described for IFN and interferon-stimulated genes
(ISG) from mammals to zebrafish (26–29). cGAS and STING
expressions are IFN-inducible and are involved in the regulation
of the type I IFN feedback loops (30). According to the tissue
distribution described in the Human Protein Atlas (http://www.
proteinatlas.org), MB21D1 and cGAS protein are ubiquitously
expressed with particularly high expression in epithelial cell types
in the genital tract or the lungs as well as in hematopoietic cells
and dendritic cells, with TMEM173/STING presenting a quite
comparable distribution pattern (31, 32). In contrast, primary
human hepatocytes express low levels of cGAS and STING
(33, 34). One putative explanation would be that low cGAS and
STING expression would avoid overactivation of this pathway
during hepatocyte renewal, which leads to DNA accumulation
in the cytoplasm (34, 35). Recent evidence suggests a complex
interplay between cGAS and STING in the liver involving
multiple cell types, as it has been suggested that cGAMP could
be transferred from hepatocytes to liver macrophages (expressing
high levels of STING) through gap junctions (36, 37).

In addition, the cGAS-STING pathway has been involved
in cancer immunity and the development of immunotherapies.
The extensive works carried out to understand the correlation
between expression of cGAS/STING and cancer will not be
discussed in this review but recently presented in (18, 38).

A better understanding of the cGAS-STING multifaceted
platform is required to improve our knowledge of the
orchestration of innate immune responses mediated by diverse
nucleic acid sensors, activated by self and non-self motifs
in a tissue-specific manner. Animal models are critical to
predict physiologically relevant functions of the cGAS-STING
pathway in vivo taking into account the cell and tissue
environments in different physiological states (16). Despite
an important evolutionary conservation of the cGAS-STING
functions in innate immunity, recent data have highlighted
certain species specificities, which must be considered when
using biomedical models for the identification of biomarkers
or therapeutic screening for human health (8, 39, 40).
In this review, we depict the evolution and the broad
biological functions of the cGAS-STING DNA sensing platform
in pathogen recognition, immune activation, and cancer
development, as well as its potential for the development of novel
therapeutic strategies.
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ORIGIN AND EVOLUTION OF THE
MOLECULAR MECHANISMS OF THE
NUCLEIC ACIDS—cGAS-STING
INTERACTIONS

cGAS is composed of a flexible and poorly conserved N-
terminal domain and a highly conserved C-terminal catalytic
domain composed of nucleotidyltransferase (NTase) core and
Mab21 domains [reviewed in (41) and (42)]. The sequence-
independent DNA sensing activity contained a positively charged
surface and a zinc-ribbon domain. Upon activation, the cGAS
dimer exposes a catalytic site formed by a caged tertiary
structure composed of typical alpha helices (ligand-binding
surface) and the nucleotidyltransferase core domain. Binding
of mislocated or infectious cytosolic DNA to cGAS catalyzes
the production of 2′-5′/3′-5′ cyclic GMP–AMP, the 2′3′-cGAMP
second messenger (Figure 1) (43). pppGp(2′-5′)G or 2′,3′-c-di-
GMP were also detected as minor products in the absence of ATP
(43). Structural homologs of human cGAS have been identified
in animals and bacteria. In eukaryotes, it includes metazoans
and human proteins such as the antiviral oligo adenylate
synthase 1 (OAS1), which produces 2′,5′-oligoadenylate (2–5A)

upon sensing of the cytosolic double-stranded RNA. The 2–
5A ligand further activates the endoribonuclease RNase L,
leading to RNA degradation. In bacteria, the dinucleotide

cyclase DnCV of Vibrio cholerae is considered to be a founding
member of a large family of cGAS homologs, which synthesizes

3′-3′-cGAMPs as well as trinucleotides and oligonucleotides
in absence of activation (44). Overall, the structure of the

unique catalytic site, which ensures nucleotidyltransferase and

dinucleotide cyclase activities in a sequential fashion (43), is an

important conserved feature despite low sequence homologies. Is

oligomerization necessary for activation? The answer is not really
clear, although it clearly contributes to regulate the enzymatic
function (42).

Functional characterizations of the nucleotide synthesized by
the cGAS-related proteins have been conducted in eukaryotes
and bacteria. While cGAMP second messenger triggers innate

immunity in mammalian cells by binding to STING, bacterial

nucleotides can be recognized not only by phospholipases and
riboswitches but also by nucleases, proteases, or pore-forming
effectors. Moreover, microbial DNA, cyclic dinucleotides, and

host DNA (either mitochondrial- or mislocated self-DNA) were
identified as STING ligands capable of inducing the activation

FIGURE 1 | In the cytosol, the association of cGAS with self and non-self cytosolic nucleic acid substrates catalyzes the production of 2′-3′-cGAMP. This second

messenger binds to the adaptor protein STING and activates the IRF3 and NF-κB transcription factors for the synthesis of type I IFN and pro-inflammatory cytokines.

cGAMP can be transported to neighboring cells through gap junctions or integrated into viral particles, leading to autocrine or paracrine activation of STING. Bacterial

dinucleotides (c-diGMP, cdiAMP, and 3′-3′-cGAMP) are also ligands of STING. cGAS also impacts nuclear functions (impairment of DNA repair, genome

destabilization, and synthesis of micronuclei). Nuclear cGAS discriminates between self and non-self DNA by binding to chromatin (preventing its activation) or

interaction with nuclear proteins such as NONO in response to viral infection to trigger innate immune responses.
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of the innate immune response in Metazoa (Figure 1) (45). A
recent study elegantly dissecting the STING-dependent pathway
characterized functional STING homologs in bacteria and
demonstrated the conservation of a prokaryotic cGAS-STING-
like pathway playing a role in the antiviral defense against
bacteriophages (46). STING is an ER protein composed of four
transmembrane domains and a cytosolic domain formed by
an alpha helix, a cyclic dinucleotide binding domain (CBD),
and a C- terminal tail (CTT) carrying the binding sites for
TBK1 and IRF3. Phylogenetic comparisons of invertebrate
and vertebrate STING versions highlighted that ray-finned fish
acquired a signaling module at the extremity of the CTT domain
mediating TRAF6 interaction and promoting the transcription
of NfκB responsive elements (47), while the sea anemone
(Nematostella vectensis) lacks the CTT region (11). Functional
characterization of STING from diverse animal lineages showed
that purified CBD domains from vertebrates could bind 2′-
3′-cGAMP. Recognition of 3′,3′-dinucleotides was restricted
to mammalian STING orthologs. STING alleles from insects
showed no interaction with any of the cyclic dinucleotide (CDN)
substrates tested in the assay (11). STING homologs identified
in invertebrates (Annelida, Mollusca, and Cnidaria phylum) have
conserved the ability to bind 3′-3′-cyclic dinucleotides and 2′-3′-
cGAMP despite low sequence identity outside the key residues
conserved in divergent STING homologs and implicated in the
CDN recognition. Thus, the recognition of the endogenous 2′-
3′-cGAMP ligand is a conserved hallmark supported by the
unique conformation of the CBD domain of STING receptor
in complex with 2′-3′-cGAMP. Comparative studies of human
and sea anemone 2′-3′-cGAMP—STING structures showed that
they maintained this conservation despite low sequence identity
(11). Dinucleotide sensing triggers the activation of type I IFN
responses mediated by human STING expression in contrast
to the absence of stimulation monitored after the sea anemone
STING expression. This has been correlated with the absence
of the CTT domain in the sea anemone STING protein since
fusion with the human CTT domain is sufficient to restore
activation of IFN in response to 2′-3′-cGAMP exposure (11).
The STING signaling pathways (IRF3/NFκB) therefore depends
on CDN ligand selectivity and conformation of the CBD
domain related to the orientation of the b strand lid domain
(on the top of the ligand-binding pocket) and of the CTT
(regulating the transition from activated to inactivated state)
(48). Molecular dynamics simulations comparing human and
mouse STING conformations (opened-inactive or closed-active)
have been instrumental in describing the species-specificity of
STING in an Apo conformation or upon binding to the DMXAA
agonist (49). This species-specificity must be taken into account
when considering the applicability of the results obtained for
STING agonists using mouse models before they enter into
clinical trials (50). At the molecular level, the modulation of
STING functions occurs through palmitoylation (51), protein
multimerization, and translocation from ER to Golgi (52, 53)
for the recruitment of downstream signaling partners (13).
Auto-inflammatory syndrome related to mutations in coatomer

protein subunit α, COPA (that mediates Golgi to ER transport)
was recently attributed to the retention of STING dimers in
the Golgi in the absence of cGAMP stimulation. This triggers
an enhanced and unregulated type I IFN activation similar
to STING mutants of the SAVI-associated syndrome localized
in the Golgi in the absence of stimulation (53–56). The link
between STING multimerization and its activation process was
recently re-evaluated by Ergun et al. using structural biology and
biochemistry. They showed that the nature of STING polymers
(inter-dimer crosslinks) depends on the ligand. Polymers are
blocked by the CTT domain and are formed in the RE prior
to trafficking to the Golgi (57). In line with this observation,
R284S STING mutants (SAVI-associated syndrome) were shown
to generate constitutive polymers related to chronic STING
activation (57).

However, the molecular mechanisms involved in the control
of the cGAS-STING pathway are still poorly understood.
The hydrolysis of 2′-3′-cGAMP messenger by the ecto-
nucleotide pyrophosphatase/phosphodiesterase (ENPP1)
constitutes one of these mechanisms (58). Since its discovery,
this extracellular enzyme has aroused great interest because
of its strong therapeutic potential (59) as inhibitors of
ENPP1 could help potentiate cGAS-STING signaling (60).
cGAS-STING pathway is also modulated by the epidermal
growth factor receptor (EGFR) (61). EGFR is required for
the phosphorylation of STING in the ER, leading to its
endosomal translocation to activate IRF3 (61). In addition,
the lysyl-tRNA synthetase has recently been identified as a
potent modulator of the STING-dependent IFN pathway in
a two-step mechanism (45). First, it competes with cGAS for
the binding of cytosolic nucleic acid ligand, thus impeding
the production of cGAMP. Second, its activation leads to
the production of diadenosine tetraphosphate (Ap4A), an
endogenous antagonist of STING. Interestingly, the lysyl-tRNA
synthetase- Ap4A axis modulates the IFN pathway in vitro
and in vivo in zebrafish larvae, suggesting an ancestral mode
of regulation of cGAS-STING functions conserved across
vertebrates (45).

The cGAS family has several features in common with
the STING family conserved during the metazoan evolution
(42, 46, 48), as they are present early in several simple
organisms (42, 46, 48) but were subsequently lost in nematodes
and flatworms (11). The study of the molecular evolution
of cGAS and STING has shown the important conservation
of the catalytic site (cGAS) and cyclic dinucleotide binding
domain (STING) despite low sequence homologies (11, 42,
46, 48). It has also revealed the emergence of the zinc-
ribbon domain and the N-terminal fragment of cGAS that
ensure its ligand specificity and stability (42) as well as the
CTT domain of STING carrying the binding sites of signaling
molecules (47). The functional conservation of the cGAS-
STING pathway highlights its central role in the cellular
response to DNA sensing. In the next paragraph, we will
present a concise description of the broad cellular functions of
human cGAS.
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cGAS: A MAIN ACTOR OF CELLULAR
RESPONSE TO DNA AND RNA VIRUSES

As described above, cGAS is considered as the main sensor

of DNA viruses in the cytoplasm of infected eukaryotic
cells. Of note, the bacterial homolog of cGAS belongs to a
four-gene operon mediating antiviral defense against a broad
variety of phage infection. This relied on cGAMP production
and phospholipase activation leading to cell death (62).

Recently, analogs of eukaryotic STING presenting a comparable
mechanism of cGAMP-mediated activation were characterized,
suggesting the conservation of this antiviral system from bacteria
to metazoans (46). In this paragraph, we mainly present the
interaction between human cGAS and a broad range of DNA
viruses. Of note, such viruses usually replicate in the nucleus of
infected cells, and their genome is often protected within the
capsid in the cytoplasm during infection, limiting their detection
by cytosolic sensors.

Initially, cGAS was described as a cGAMP synthase required
for IRF3 dimerization following infection of murine fibroblast
cells with herpes simplex virus type-1 (HSV-1), a DNA
herpesvirus previously known to induce the expression of IFNs
through the STING-IRF3 axis (63). The importance of cGAS in
mounting the antiviral response against HSV-1 and survival to
infection has been further determined in vivo (8). Interestingly,
it has been shown that HSV-1 capsid was ubiquitinated upon
infection of dendritic cells, leading to its degradation by the
proteasome and the release of viral DNA in the cytoplasm,
triggering its detection by DNA sensors (64). The DNA genome
of poxviruses is also recognized by cGAS to induce the innate
immune response. Indeed, the knockdown of cGAS inhibits the
induction of IFNβ following vaccinia virus (VACV) infection in
THP1 cells (63). Notably, cGAS-mediated detection of VACV
leads to the production of cGAMP that could be efficiently
transferred to bystander cells, triggering the activation of a
STING-dependent antiviral immunity in non-infected cells
(65). Different models of cell-to-cell transfer of cGAMP have
been proposed occurring through extracellular vesicles such as
exosomes (66), gap-junctions (67, 68), and incorporation into
enveloped viruses (69) in addition to the recently described
cGAMP transporters (70–72). Importantly, cGAS was rapidly
described as a main sensor of HIV and other retroviruses (73).
In the absence of cGAS, HIV, murine leukemia virus, and simian
immunodeficiency viral infections do not elicit antiviral response
(73). cGAS notably recognizes specific Y-form DNA motifs
from HIV-1 in the cytoplasm of infected macrophages (9), and
possibly the RNA:DNA hybrids accumulating in the cytoplasm
of retrovirus-infected cells (10). Interestingly, by studying the
interaction between HIV and cGAS, two independent teams
demonstrated the ability of HIV to encapsidate cGAMP within
neosynthesized virions, thus leading to paracrine activation of
a STING-dependent IFN response in newly infected cells (66,
69). The structure of the capsid is an essential determinant
of cGAS-mediated sensing of the cDNA of HIV in dendritic
cells, which does not require genome integration (74). Recently,
NONO was described as a major actor of HIV capsid detection
in the nucleus. NONO directly interacts with HIV capsid in

the nucleus of dendritic cells and is required for the presence
of cGAS in the nucleus and cGAS-mediated detection of HIV
DNA (75). Hence, the detection of HIV capsid by NONO enables
the sensing of HIV DNA by the nuclear cGAS, suggesting a
novel role of cGAS in the activation of innate immunity in the
nucleus and a cellular strategy to distinguish self-DNA from
viral DNA in the nucleus of infected cells (75). By redefining
cGAS localization patterns, recent studies corroborated this
observation, describing cGAS activity in the nucleus [reviewed
in (76)], for instance in the context of DNA damage, raising
questions regarding the interaction between cGAS and self-
genomic DNA (77). Several groups recently demonstrated the
importance of extensive binding of cGAS to chromatin in the
prevention of cGAS oligomerization and activation, proposing
the first clear mechanisms allowing cGAS to discriminate self
from non-self-DNA in the nucleus (78–80). These observations
were further supported by the role of nuclear histones in
suppressing the cGAS mediated immunogenicity of self-DNA
(81–83). In line with the importance of cGAS sequestration by
histones in limiting its antiviral activity, it was recently described
that histone deacetylase 4 restricts DNA viruses such as HSV or
VACV through the induction of IFN response (84). Another step
to the regulation of cGAS involves the cellular protein barrier-to-
autointegration factor 1 (BAF), competing to bind to self-DNA
in the context of a breakdown of the nuclear envelope integrity
(85). These recent data have important conceptual implications
in the interaction between cGAS, cellular components, and viral
DNA in the nucleus, even though no direct interaction has been
observed apart for HIV capsid so far. In this context, several
lines of evidence suggest that the DNA genome of hepatitis B
virus (HBV) stimulates cGAS activity and triggers the activation
of the cGAS-STING pathway when transfected into hepatocyte-
derived cells (33, 86). However, no induction of innate immune
pathways is detected upon viral infection (33, 86). The “stealth”
pattern of this peculiar virus was initially attributed, in addition
to the absence HBV RNAs sensing, to the protection of the
genome within the capsid during its transport to the nucleus
(87). The recent data confirming the presence of cGAS in
the nucleus raise the question of its ability to interact or not
with the specific forms of HBV DNA in the nucleus, including
the minichromosomal structure covalently closed circular DNA
(cccDNA) that serves as a template for the transcription of
viral RNAs (88). In this context, the low expression of cGAS
and STING in the hepatocytes may also explain the absence of
quantifiable induction of IFN response upon infection (34).

Mirroring the central role of cGAS in the innate antiviral
response, a high diversity of mechanisms of viral evasion from
the cGAS-STING pathway has been described, some of them
directly interacting with cGAS [reviewed in (89)], such as KHSV
ORF52 that inhibits its enzymatic activity by blocking cGASDNA
binding (90). Virus-induced degradation of cGAMP has also
been investigated by performing a biochemical screening of 23
different mammalian poxviruses. It allowed the identification of
viral nucleases classified as poxvirus immune nucleases (poxins)
(91) for which homologs have been described in insect viruses
and bacteriophages. These proteins represent now a broad family
of 369 members identified in viral and animal genomes, potent
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modulators of the cGAS-STING pathway (92). Of note, viruses
that theoretically do not trigger the activation of cGAS are also
able to inhibit its activity or expression. For instance, HBV
infection leads to a decrease in cGAS and STING expression
in infected hepatocytes-derived cells and infected liver, both in
vitro and in vivo (86). Importantly, numerous members of the
RNA virus family Flaviviridae exhibit an impressive variety of
mechanisms regulating the cGAS-STING pathway [reviewed in
(93)], such as dengue virus (DENV) protease cofactor NS2B that
triggers cGAS degradation in an autophagy-dependent manner
(94) and Zika virus NS1 that prevents caspase-1 degradation,
leading to cGAS cleavage and modulation of type I IFN signaling
(95). At the current stage of our knowledge, no typical genomic
or intermediary structures from Flaviviruses are susceptible to be
detected by cGAS, raising the question of RNA virus evolution
leading to the counteraction of this innate immune pathway in
the absence of direct sensing (93). Of note, independently from
cGAS, influenza A viral particles have been shown to directly
interact the STING through its fusion peptide, thus stimulating
IFN response (96). Regarding cGAS, Schoggins et al. observed
that cGAS activation led to the development of a broad antiviral
response, targeting both RNA and DNA viruses (39). The same
study elegantly demonstrated that cGAS-depleted mice were
much more susceptible to West Nile virus (WNV) infection,
an RNA virus whose detection by the innate immune system
does not rely on cGAS (39). These observations suggest a central
and broad function for cGAS in the establishment of the innate
antiviral response, even in absence of the direct sensing of viral
genomic structures. It raises the question of an unknown ligand
or crosstalk of signaling pathways that triggers the activation of
cGAS to establish a basal antiviral state in the cells, with the
ability to control virus infection. In this context, many RNA
viruses interact with the cellular DNA repair machinery, leading
to DNA damage that may serve as a cGAS ligand upon infection
[reviewed in (97)]. Notably, viral oncogenes, such as E7 from
the human papillomavirus (HPV), E1A from the adenovirus,
and the simian virus 40 (SV40) large T antigen have been
shown to modulate the cGAS/STING pathway (98, 99). In the
specific case of Flaviviruses, it has been proposed that leaking
mitochondrial DNA coming from damaged mitochondria upon
DENV infection may trigger cGAS activation in the cytoplasm of
infected cells (93). A more comprehensive knowledge of cGAS
ligands is still required to understand the complex interaction
between cGAS and the diversity of virus infections.

cGAS INTERACTION WITH METAZOAN
PARASITES

As intracellular pathogens, several multicellular parasites also
trigger the cGAS-STING pathway following the sensing of
DNA structures, such as Toxoplasma gondii, one of the most
common parasites in developed countries and responsible for
toxoplasmosis (100),Trypanosoma cruzi, a member of euglenoids
causing Chagas disease in humans, or Leishmania [reviewed
in (17)]. In the same vein, genomic DNA from Plasmodium
falciparum, the causative agent of malaria, is detected by cGAS
following infection, leading to type I IFN production and

systemic inflammation, with hemozoin, the product from blood
digestion by P. falciparum playing a key role in the delivery of
genomic DNA in the cytosol (101). The importance of cGAS in
the control of P. falciparum infection was confirmed in vivo, as
cGAS-depleted mice showed a higher susceptibility to parasitic
infection (102). Interestingly, computational analysis from in
silico screening as well as IFN inhibition assay in a mouse model
of AGS syndrome suggested that several antimalarial drugs, such
as hydroxychloroquine or X6, could interact with cGAS and
inhibit DNA-cGAS interactions, blocking IFN response (103,
104). However, the involvement of this mode of action in the
control of P. falciparum infection remains to be determined (17).

cGAS AND BACTERIAL DNA: FROM HOST
DEFENSE TO INTERACTION WITH
MICROBIOTA

cGAS has been also shown to be an important sensor of
intracellular bacteria. Three groups simultaneously described the
involvement of cGAS in the detection of microbial DNA from
Mycobacterium tuberculosis, the causative agent of tuberculosis.
cGAS and M. tuberculosis are notably colocalized in the human
tissue from patients with tuberculosis, and cGAS depleted mice
are more susceptible to bacterial infection (105). Infection
of macrophages revealed a STING-dependent activation of
antimicrobial response following direct binding of cytosolic
DNA to cGAS, leading to an autophagy-driven elimination of
M. tuberculosis (106). Notably, M. tuberculosis strains isolated
from patients with severe tuberculosis do not induce a robust
induction of cytokines upon infection of macrophages, including
weak induction levels of interleukin-1β (IL-1β) associated with
evasion from cGAS sensing (107). Similarly, both cGAS and
STING are required for INFβ production following infection of
multiple cell types by Chlamydia trachomatis, a Gram-negative
bacterium mainly causing disease of the genital tract (108).
Interestingly, C. trachomatis inclusion protein CpoS inhibits
the cGAS-STING pathway by targeting STING and limiting
apoptosis of the infected cells (109). Listeria monocytogenes, a
Gram-positive bacterium replicating in myeloid cells, induced
IFNβ expression through both IFI16 and cGAS detection upon
infection (110). Interestingly, DNA from L. monocytogenes
can be transferred from infected cells to neighboring naïve
cells through extracellular vesicles, leading to the paracrine
activation of the cGAS-STING pathway. This was also observed
upon infection of both Francisella tularensis and Legionella
pneumophila, suggesting a general pathway of innate immune
activation following bacterial infection (111). Independent from
the microbial-induced IFN response, STING activation and
binding to ITPR1 upon infection play a key role in coagulation
and mortality associated with sepsis in animal models infected by
Escherichia coli or Streptococcus pneumoniae through Gasdermin
D activation and F3 release (112). In the same vein, the
upregulation of STING pathway is also associated with sepsis-
associated mortality in patients (112).

In contrast to the above examples for pathogenic bacteria,
cGAS-STING also interacts with commensal bacteria and
constitutes important regulators of host-commensal microbiota
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interactions, which contribute to maintaining gut homeostasis
through modulation of the host inflammatory response and
function of the gut barrier. Indeed, in this tissue environment,
the sensing of genomic DNA from invading pathogens (mediated
by cGAS) and of cyclic dinucleotides generated by commensal
bacteria (mediated by STING) should be tightly regulated
to avoid an exacerbated inflammatory response and preserve
intestinal integrity. Studying the role of STING in sepsis
pathophysiology in a pilot experiment, Hu et al. sampled human
intestine biopsies from patients with sepsis in comparison to
healthy control biopsies. Histological analyses have correlated
the level of STING expression with tissue injury, apoptosis,
and intestinal inflammation (113). This was further investigated
in a mouse model of sepsis with STING knock-out (KO)
animals, which confirms that the control of the STING-
mediated intestinal inflammation allows an improvement of
intestinal barrier function and tissue histopathology (113).
These results are reminiscent of the elements of clinical
diagnosis of human patients with abdominal sepsis and the
observations made from other rodent models. In steady-
state, Sting−/− KO mice models showed defective intestinal
homeostasis functions (altered pattern of villi, decreased number
of goblet cells, and mucus vesicles per villi as well as lower
levels of secreted IgA) and an immature intestinal immunity
similar to the phenotype previously described for germ-free
mouse models (114). The composition of the microbiota is
also impacted by STING since KO mice presented an increase
in pro-inflammatory bacteria (114). Upon intestinal injury
(dextran sodium sulfate-induced colitis, T-cell-induced colitis,
and enteric Salmonella typhimurium infection), STING KOmice
develop more severe signs of morbidity and an impaired pro-
inflammatory immune response compared to wild-type (WT)
mice (114). Therefore, regulation of STING pathway is essential
to maintain gut homoeostasis and to activate host innate
immune responses.

The influence of cGAS is much less understood but does
not seem to directly impact the composition of microbiota
or the maintenance of the intestinal homeostasis in a mouse
model of dextran sodium sulfate-induced colitis (114). However,
cGAS has recently been described as a scaffolding protein,
which facilitated the internalization of extracellular cyclic
dinucleotides (from self and non-self origin) prior to its binding,
which precedes the formation of STING signalosomes and its
activation (115).

Hence, the crosstalk between cGAS-STING signaling and
pathways activated by an increasing diversity of innate immune
sensors, complicates the understanding of host-commensal
microbiota interactions and the regulation of intestinal
homeostasis (116).

ANALYZING cGAS-STING FUNCTIONS IN

VIVO: SIMILARITIES AND DIVERGENCES
IN MODEL ORGANISMS

Comparative analyses of cGAS-STING pathways in various
model organisms have shown the conservation of the activating

functions of the type I IFN response despite the diversification
of the molecular mechanisms during evolution (6). Ectopic
expression of genes encoding vertebrate Sting in human cells
was used to screen their ability to induce NFκB and IRF3
responding elements. While mammalian STING induced a
stronger IRF3 response than NFκB, expression of STING from
fish species results in a higher NFκB stimulation compared
to IRF3. This phenotype was dependent on the expression of
a fish-specific minimal motif in the CTT domain of STING
that recruits TRAF6 and promotes NFκB activation (47).
Further studies will be needed to demonstrate the role of
the STING-TRAF6-NFκB signaling axis in the innate immune
responses observed in vivo. Interestingly, the activation of the
STING-TRAF6-NFκB axis was also reported in different human
cell types in response to DNA damage (117). Two studies
performed in zebrafish larvae demonstrated the role of zebrafish
STING in inducing the expression of type I IFN genes during
infection with HSV-1 (118) or detection of hypomethylated
DNA (119). In contrast to mammalian species, zebrafish cGAS
is dispensable for HSV-1 DNA sensing, which occurs through
the alternative DNA sensors DHX9 and DDX41 (118). The
recent discovery of another functional cGAS isoform in the
zebrafish genome prompted a re-examination of the role of
cGAS in the sensing of HSV-1 (120). The possible involvement
of pangolins during the emergence of the coronavirus disease-
2019 (COVID-19) pandemic puts forward the question of
the mechanisms of detection of cytosolic nucleic acid in this
species, which has been shown to be infected by viruses
closely related to severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Comparative genomics of phylogenetical
analyses revealed that cGAS and STING have been inactivated
in pangolin species by mutations and premature stop codons.
This points again to the importance of combining various
animal models for the study of innate immune mechanisms and
the characterization of alternative mechanisms of nucleic acid
sensing (121). In the same vein, as another potential reservoir
of SARS-CoV-2-related viruses, an altered IFN response due
to a key mutation in the bat version of STING was recently
reported (122).

The cGAS-STING pathway was considered as non-
dispensable for the detection of DNA viruses in vivo (8, 123).
However, recent work demonstrated the existence of a STING-
independent DNA immune response occurring through the
detection of cytosolic dsDNA by the DNA-PK DNA repair
pathway. This DNA-PK-dependent IFN production appears to
be limited to human cells as it could not be demonstrated in
murine cells (124). Alternative in vivo models thus contribute
to reassessing the impact of other sensing pathways and of the
specificities of the species considered (6). Other illustrations of
species specificities arise from infectious models for HSV-1 and
Zika virus infections. To counter cellular antiviral responses
and ensure their replication in the host organism, viruses
have developed evasion mechanisms targeting IFN responses
and cGAS-STING pathways (89). RNA and DNA viruses
inhibit cGAS or STING by inducing their degradation or
blocking their interactions with signaling proteins such as
TBK1 (89). Interestingly, these processes present cell-(89) and
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species-specificities (125). Indeed, STING can promote HSV-1
infection in HEp-2 or HeLa cells (in an ICP0 dependent manner),
while it is involved in the antiviral response described in human
embryonic lung cells (126). In another study, host susceptibility
to Zika virus has been investigated in fibroblasts obtained from
human, primate, and murine cells. This comparative analysis
showed that the murine fibroblasts are partially resistant to
viral infection in contrast to the human and primate cells
based on a STING-dependent restriction mechanism. The
authors further demonstrate that human STING is targeted
for degradation by the NS2B3 viral proteases of four distinct
flaviviruses (ZIKV, DENV,WNV virus, and Japanese encephalitis
virus) in contrast to murine STING, which does not share
the protease cleavage site (125). However, infection of Sting
KO mice does not recapitulate the in vitro observations as
the mice have become hypersensitive to Zika infection. This
highlights the complexity of co-existing antiviral mechanisms,
which co-orchestrate the innate immune response in a cell-and
species-specific manner.

DISCUSSION AND PERSPECTIVES:
cGAS-STING AS A TARGETABLE PATHWAY
IN THERAPY

In addition to its role in anti-pathogenic surveillance and
response, accumulating evidence suggests a key role for cGAS
in immune activation in cancer cells. Numerous studies
reported an antitumor role for the cGAS-STING pathway.
This topic has been extensively treated elsewhere (18, 38) and
will not be developed in this review. The central role of the
cGAS-STING pathway in various human pathologies such as
cancer, infections, autoimmune diseases, and inflammatory
diseases has prompted the search for therapeutics targeting the
cGAS-STING-TBK1 axis (127). The modulation of immune
responses remains one of the approaches considered in the
treatment of these diseases through the improvement and/or
refinement of existing strategies. Indeed, anti-inflammatory
[systemic lupus erythematosis (SLE), STING-associated
vasculopathy with onset in infancy (SAVI), and Copa syndrome
(COPA)], anti-viral (hepatitis and HIV) and anti-tumor
treatments target type I IFN signaling. However, significant
side effects have been reported resulting from the difficulty
in controlling the extent and duration of the IFN response in
vivo (127). Therefore, extensive studies are being conducted
to identify alternative treatments, some of them focusing
on agonists and antagonists of the cGAS-STING complex,
using in silico and high-throughput screening approaches
(13, 127, 128). Other approaches target modifying enzymes
involved in the synthesis of STING ligands and/or the post-
translational modifications of cGAS and STING (129). In
addition, targeted approaches are being developed based
on the modulators of the cGAS-STING pathway such as
the immunosuppressor MYSM1, which may be considered
as a therapeutic target for inflammatory and autoimmune
diseases (130).

Initial lead candidates are further characterized in vivo
for stability, pharmacological properties, pharmacodynamics,
and toxicity. Nanocarriers (such as nanoparticles, liposomes,
or viral particles) have improved the efficacy and delivery
of molecules targeting cGAS-STING, used in the treatment
of solid tumors, lymphomas or to potentiate influenza
vaccine response (131–133). In addition, using a mass
spectrometry-based ligand screening technique, Siu et al.
successfully generated STING antagonist molecules based on
their compatibility with oral administration and efficacy to
stabilize human STING dimer in an inactive conformation
(134). The development of physiologically relevant biomedical
models of cGAS-STING related pathologies is thus essential
to validate the efficacy of therapeutic candidates but above all
to predict the potential side effects linked to the modulation
of the immune system. Modeling the cGAS-STING signaling
pathway in distinct environments (infected or inflamed tissues,
tumor, immune-privileged organs,...) and pathophysiological
contexts (chronic inflammation, immunosuppression, . . . )
constitutes an important challenge to improve the prediction
of disease outcomes and reduce the high failure rates of
clinical trials.

In this context, STING and cGAS KO mice have been
instrumental for the advancement of knowledge and of
drug discovery. However, different groups recently highlighted
the limitations of such models. Oami and Coopersmith
(135) discussed the fact that in these animal models, the
gene is invalidated throughout the organism leading to
strong phenotypes, which do not recapitulate the endogenous
expression of cGAS-STING in various cell subtypes and tissues.

The design of cGAS-STING biosensors has been developed
in parallel for example to detect and quantify the 2′-3′-cGAMP
second messenger in mammalian cell extracts (136). The high
sensitivity of such techniques allowed the measurement of
36 million molecules of 2′-3′-cGAMP produced on average
per mammalian cell upon stimulation (136). Other strategies
emerged to conduct high-throughput screening (HTS) or
measure endogenous cGAMP using a STING-based biosensor
(137) or a cGAMP-Luc reporter assay (138). Moreover, several
commercial ELISA kits can be used to detect cGAMP in cells
and tissues (139). These new tools are suitable for the discovery
of cGAS-STING modulators although they are often studied in
mouse models, while several studies report the species-specificity
of STING ligand detection and activation (49, 140). Thus, further
characterization of therapeutic compounds should be carried
out with particular attention to the species specificities (6) of
the cGAS-STING pathway and crosstalk mechanisms including
the recently described STING-independent HSV-1 nucleic acid
sensing (124, 141). High-throughput screenings of therapeutic
molecules in zebrafish larvae can be considered as a promising
approach since this biomedical model is suitable to study
human inflammatory pathologies (AGS syndrome, cancer, and
infectious diseases) (6, 142–144). Finally, organoids obtained
from pluripotent stem cells from patients will soon constitute
novels and complementary tools for considering personalized
medicine (145). The drug repositioning strategy has also brought
promising results (taking advantage of available clinical trials for
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toxicity and off-target side effects) while reducing the cost and
development time of therapeutic candidates, as demonstrated by
the interaction between antimalarial drugs and cGAS activities
(103, 104). For instance, epigallocatechin gallate (EGCG) and
aspirin were recently suggested as repurposed drugs inhibiting
cGAS (146, 147).

Taken together, recent data on cGAS and STING structure and
functions revealed the importance of this DNA sensing pathway
in regulating the cellular response to pathogens as well as cell
cycle and oncogenesis. Although additional studies would be
required to get a comprehensive overview of the role of the cGAS
platform in health and disease, the understanding of its molecular
mode of action will pave the way to the development of urgently
needed broad antiviral and anticancer strategies.
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