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An entropy-based metric for assessing the purity
of single cell populations
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Single-cell RNA sequencing (scRNA-seq) is a versatile tool for discovering and annotating
cell types and states, but the determination and annotation of cell subtypes is often subjective
and arbitrary. Often, it is not even clear whether a given cluster is uniform. Here we present
an entropy-based statistic, ROGUE, to accurately quantify the purity of identified cell clusters.
We demonstrate that our ROGUE metric is broadly applicable, and enables accurate, sen-
sitive and robust assessment of cluster purity on a wide range of simulated and real datasets.
Applying this metric to fibroblast, B cell and brain data, we identify additional subtypes and
demonstrate the application of ROGUE-guided analyses to detect precise signals in specific
subpopulations. ROGUE can be applied to all tested scRNA-seq datasets, and has important
implications for evaluating the quality of putative clusters, discovering pure cell subtypes and
constructing comprehensive, detailed and standardized single cell atlas.
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issues are complex milieus comprising various cell types

and states with specialized roles!. Characterizing the

property and function of each pure cell type is a long-
standing challenge in biological and medical disciplines. The
recent advances in scRNA-seq have transformative potential to
discover and annotate cell types, providing insights into organ
composition?, tumor microenvironment?, cell lineage?, and fun-
damental cell properties®>. However, the identification of cell
clusters is often determined by manually checking specific sig-
nature genes, which are arbitrary and inherently imprecise. In

addition, different methods and even parameters used for nor-
malization, feature selection, batch correction, and clustering can
also confound the final identified clusters®, thus motivating the
need to accurately assess the purity or quality of identified clusters
(Fig. 1a).

A pure cluster here is defined as a population where all cells
have identical function and state without variable genes. The
importance of purity assessment is particularly relevant for ana-
lyses that aim to discover novel pure subtypes and further detect
the true biological signals. For example, signature genes specific to
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Fig. 1 The expression entropy model. a Identifying pure cell subtypes in unsupervised single-cell data analysis. b The S-E plot of the Tabula Muris (droplet)
dataset. Each point represents one gene. The relationship between S and E was fitted with LOESS regression for each gene. ¢ The S-E plot of a T-cell
dataset?’ obtained by Smart-seq2 protocol. d Accuracy in identifying differentially expressed genes on data simulated from both NB (left) and ZINB (right)
distribution, with subpopulation containing 50% of the cells. The center line indicates the median AUC value. The lower and upper hinges represent the
25th and 75th percentiles, respectively, and whiskers denote 1.5 times the interquartile range. Discriminating power of genes selected by S-E model, HVG,
Gini, M3Drop, SCTransform, Fano factor, and RacelD3 (“Methods") estimated by RF with 50 times cross-validation on both droplet-based dataset (e) and
full-length-based dataset (f) listed in Supplementary Table 1. The classification accuracy was measured as the percentage of query cells that were assigned
the correct label. The center line indicates the median classification accuracy. The lower and upper hinges represent the 25th and 75th percentiles,
respectively, and whiskers denote 1.5 times the interquartile range. g Reproducibility of features of brain replicates (Supplementary Table 3). h ARI for the
dataset comprising five cell lines® when different feature selection methods were used.
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a pure subpopulation maybe mistakenly considered as the com-
mon signals of a mixture due to less guided clustering and
annotation. The purity evaluation could therefore eliminate such
misleading conclusions, potentially aiding our understanding of
cellular function, state, and behavior. While pioneering approa-
ches such as silhouette’, DendroSplit8, and distance ratio® have
been devoted to determining the optimal number of identified
clusters by calculating the ratio of within-cluster to intercluster
dissimilarity, they are not comparable among datasets and have
poor interpretability of cluster purity. For example, an average
silhouette value of 0.7 indicates a fairly strong consistency for a
given cluster, but it is still unknown whether this cluster is a pure
population or a mixture of similar subpopulations especially
when frequent dropout events occur.

The challenges presented by purity evaluation can be broadly
addressed by investigating the number of infiltrating nonself cells
and variable genes, which are suited to the intended areas of
unsupervised variable gene detection. Given its importance,
diverse methods!? have been proposed for the quantification and
selection of highly variable genes. In particular, scran!! aims to
identify variable genes by comparing variance to a local regres-
sion trend. However, the over-dispersion, coupled with the high
frequency of dropout events, would often result in the selection of
many lowly expressed genes!2. Alternatively, although Gini
coefficient!® could be used to quantify the variation in gene
expression, it is specially designed for rare cell-type identification.
New probabilistic approaches for variable gene selection using
dropout rates have also been recently adapted!?, with the
advantage of supporting both pseudotime analysis and discrete
clustering, but their usage of dropout metric hinders the cap-
turing of the global distribution of gene expression. Although
highly informative genes can also be determined by inspecting
their weights during multiple iterations of dimensionality
reduction'4, such ad hoc approaches are computationally inten-
sive, requiring potentially orders of magnitude more time than
methods like HVG and M3Drop.

Here, we present an entropy-based model to measure the
randomness of gene expression in single cells, and demonstrate
that this model is scalable across different datasets, capable of
identifying variable genes with high sensitivity and precision.
Based on this model, we propose the Ratio of Global Unshifted
Entropy (ROGUE) statistic to quantify the purity or homogeneity
of a given single-cell population while accounting for other
technical factors. We demonstrate that the ROGUE metric
enables accurate and unbiased assessment of cluster purity, and
thus provides an effective measure to evaluate the quality of both
published and newly generated cell clusters. Applying ROGUE to
B cell, fibroblast, and brain data, we identified additional pure
subtypes and demonstrate the application of ROGUE-guided
analysis in detecting the precise biological signals. Our approach
is broadly applicable for any scRNA-seq datasets, and is imple-
mented in an open-source R package ROGUE (https://github.
com/PaulingLiu/ROGUE), which is freely available.

Results

Overview of ROGUE. As scRNA-seq data can be approximated
by negative binomial (NB) or zero-inflated NB (ZINB) distribu-
tion!>16, we considered the use of the statistic, S (expression
entropy—differential entropy of expression distribution, as
defined in “Methods”), to capture the degree of disorder or
randomness of gene expression. Notably, we observed a strong
relationship between S and the mean expression level (E) of
genes, thus forming the basis for our expression entropy model
(S-E model, Fig. 1b, c). Moreover, S is linearly related to E
for the Tabula Muris dataset’ as expected (Fig. 1b), which is

characteristic of current droplet experiments, hence demon-
strating the NB nature of UMI-based datasets (“Methods”). For a
heterogeneous cell population, certain genes would exhibit
expression deviation in fractions of cells, leading to constrained
randomness of its expression distribution and hence the reduc-
tion of S. Accordingly, informative genes can be obtained in an
unsupervised fashion by selecting genes with maximal S-
reduction (ds) against the null expectation (“Methods”).

To provide a direct purity assessment of putative cell clusters
or fluorescence-activated cell sorting (FACS)-sorted populations,
here we take advantage of the wide applicability of S-E model to
scRNA-seq data and introduce the quantitative measure, ROGUE
(“Methods”). Intuitively, a cell population with no significant ds
for all genes will receive a ROGUE value of 1, indicating it is a
completely pure subtype or state. In contrast, a population with
maximum summarization of significant ds will yield a purity
score of ~0.

S-E model accurately identifies informative genes. To illustrate
the performance of our model, we benchmarked S-E against
other competing feature selection methods (HVG!!, Ginil3,
M3Drop!2, SCTransform!7, Fano factor!®, and RacelD3!%) on
data simulated from both NB and ZINB distribution (“Meth-
ods”). For a fair comparison, we generated a total of 1600 eva-
luation datasets with subpopulations containing 50, 20, 10, or 1%
of the cells, and used AUC as a standard to test the performance
of each method. Notably, S-E model consistently achieved the
highest average AUC and significantly outperformed other gene
selection methods in all tested cases with varied subpopulation
proportions or gene abundance levels (Fig. 1d and Supplementary
Figs. 1 and 2). Although SCTransform is specially designed for
UMI-based scRNA-seq data, it exhibited notable performance on
ZINB-distributed datasets (Fig. 1d). As a tool to identify genes-
specific to rare cell types, Gini showed increased performance
when there were subpopulations accounting for <20% of the
cells. In contrast, HVG performed better in the presence of cell
subpopulations with a larger proportion (Supplementary Figs. 1
and 2).

To validate our unsupervised feature selection method in real
datasets, we performed cross-validation experiments using
random forest classifier (RF)20. We randomly sampled 70% cells
from the original dataset as reference, and classified the
remaining 30% cells, with clusters defined by the original authors
(“Methods”). Intuitively, gene sets that enable higher classifica-
tion accuracy are more biologically meaningful?!. Using 14
previously published datasets derived from both droplet-based
and full-length protocols (Supplementary Table 1), we demon-
strated that our method consistently identified genes with greater
ability of classification when different number (30-5000) of genes
were selected (Fig. le, f and Supplementary Figs. 3 and 4).
Specially, our S-E model showed notable superiority when fewer
genes (30-100) were used, demonstrating its sensitivity. Taken
together, these results suggest that genes identified by our model
are more informative and biologically discriminating.

Since datasets derived from the same biological system are
expected to have reproducible informative genes!?, we tested how
our expression entropy model behaves using technical replicates
from different tissues (Supplementary Table 2). Notably, genes
identified by our S-E model were more reproducible when top
500-2000 genes were used (Fig. 1g and Supplementary Fig. 5a—c).
In addition, we also considered four pancreatic datasets
(Supplementary Table 3) derived from different technologies
and labs. These real datasets are more complex than technical
replicates as they included systemic nuisance factors such as batch
effects. Despite substantial systematic differences, our model
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consistently achieved high reproducibility scores (Supplementary
Fig. 5d).

A major task of feature selection is to identify genes that are
most relevant for biological heterogeneity, which can be applied
to downstream clustering. We therefore evaluate the performance
of S-E model in the context of unsupervised clustering with
RaceID319, SC322, and Seurat?3. Here we considered five publicly
available scRNA-seq datasets with high-confidence cell
labels®%2425 (“Methods”). These datasets include cells from
different lines, FACS-purified populations, or well-characterized
types (Supplementary Fig. 6 and “Methods”), and thus can be
considered gold standards. To quantify the similarity between
the clusters obtained by different clustering methods and
the reference cell labels, we calculated the adjusted Rand index
(ARI)26, which is restricted to the interval [0, 1]. For the number
of features, we considered the top 100, 500, 1000, or 2000 genes.
Our results illustrated that S-E model provides the best
performance in terms of ARI in these scenarios (Fig. 1h and
Supplementary Fig. 7).

As some methods were optimized to detect rare cell types, we
tested if the genes selected by our S-E model are effective in
uncovering such rare subpopulations. To this end, we first
simulated a scRNA-seq dataset (“Methods”), which contains three
rare clusters (of 10, 30, and 20 cells, respectively) and two common
clusters (of 1000 cells each), and clustered these cells with
GiniClust2!8, RaceID3, as well as S-E model-based Seurat
(“Methods”). Of note, all these three methods properly recapitu-
lated the five cell clusters (Supplementary Fig. 8), indicating that
S-E model-based Seurat is indeed effective for the recovery of both
common and rare cell clusters. In addition to simulated data, we
wondered how S-E model behaves in detecting real rare cell types.
Since no gold standard is available for such cases, we considered
four cell lines (A549, H2228, H838, and HCC827) of Tian et al.,
and generated three common cell types (A549, H2228, and H838;
of 500 cells for each) and one rare cell type (HCC827; of 20 or 10
cells, respectively) by down-sampling. Similar to the analysis of
simulated data, all the three methods effectively identified both
common and rare cell clusters when there were 20 cells of the
rare cell type (Supplementary Fig. 9a—c). For the dataset with the
rare cell type accounting for lower frequency (10 cells, 0.6% of total
cells here), RaceID3 and GiniClust2 exhibited their superiority in
uncovering the rare cell type as opposed to S-E model-based Seurat
(Supplementary Fig. 9d-f). Thus, although S-E model is effective
in uncovering rare subpopulations to a certain extent, methods
specifically developed for this purpose, such as GiniClust2 and
RacelD3, maybe more appropriate.

Evaluation of robustness of ROGUE. To test how sensitive
ROGUE is to the choice of informative genes, here we considered
two scRNA-seq datasets: a T-cell dataset sequenced with Smart-
seq2® and a droplet-based dataset? (Tabula Muris). The results
illustrated that the heterogeneity score (1-ROGUE) reached
saturation when genes with significant ds were selected (Supple-
mentary Fig. 10), thus we used significant ds to calculate ROGUE
in the following analyses. We investigated the performance of
ROGUE on 1860 cell populations simulated from both NB and
ZINB distribution (2000 cells x 20,000 genes each), with 0.1-50%
genes varied in a second cell type (“Methods”). A cell population
with both fewer infiltrating nonself cells and varied genes would
yield a high purity score, while a population with converse
situation is expected to yield a low-purity score. It is evident that
the ROGUE index decreased monotonically with the hetero-
geneity of cell populations (Fig. 2a, b and Supplementary Figs. 11
and 12). ROGUE performed well even when cell populations
contained few varied genes (<1%) and infiltrating cells (<1%),

indicating ROGUE index provides a sensitive and unbiased
measure in response to the degree of cell population purity. The
usage of different values of the reference factor K (“Methods”)
yielded vary similar results (Supplementary Fig. 13), suggesting
that ROGUE is robust to the choice of parameter K within a
reasonable range.

To address the potential concern that the number of cells may
represent an intrinsic challenge for S and ROGUE calculation,
particularly if only a small number of cells are collected from
given samples, we performed down sampling analysis to test how
S was impacted by cell numbers. By calculating the Pearson
correlations of S between the randomly down-sampled datasets
and the entire datasets, we found the similarity values of >0.99
and demonstrated that our S and ROGUE calculation would not
be affected by variation in cell number (Fig. 2c).

Sequencing depth can vary significantly across cells, with
variation potentially spanning orders of magnitude?, and hence
contributes to a substantial technical confounder in scRNA-seq data.
We sought to investigate whether ROUGE index can accurately
assess the purity of single-cell population while accounting for this
technical effect. As test cases, we simulated increasing molecular
counts (sequencing depth) in a second mock replicate, with the fold
change of gene expression means ranging from 2 to 100 (Fig. 2d and
“Methods”). Despite the substantial technical effect, the mixture of
each two simulated replicates is expected to be a pure cell
population. Here we used silhouette to measure the degree of
replicate-to-replicate differences. The results revealed ROGUE
values of ~0.99-1 for each population consisting of two replicates,
with silhouette values ranging from 0.25 to 0.75 (Fig. 2e, f and
Supplementary Fig. 14a). Thus, ROGUE not only offers a robust
and sensitive way to estimate the purity of single-cell population, but
also accounts for the variation in sequencing depth.

ROGUE accurately assesses the purity of cell populations. To
illustrate the applicability of ROGUE index to real data, we first
considered an External RNA Controls Consortium (ERCC)
dataset?4, which is a highly controlled experiment dedicated to
understanding the technical variability. All 1015 droplets of this
dataset received the same ratio of ERCC synthetic spike-in RNAs,
hence no varied RNAs should be detected in principle. We
referred to this dataset as an ideal case of pure cell population and
found only one RNA with significant ds. Accordingly, this ERCC
dataset achieved a ROGUE value of ~1 as expected, thus con-
firming its purity. Further, we investigated the fresh peripheral
blood mononuclear cells (PBMCs) enriched from a single healthy
donor?*. The authors provided multiple cell types purified by
FACS, and thus representing a suitable resource for purity
assessment. These cell types in Fig. 2g, including CD4/CD8 naive
T cells and CD4 memory T cells, have been shown to be highly
homogeneous populations?’, and were detected high ROGUE
values (0.94-1) as expected. In contrast, both CD14 monocytes
and CD34+ cells are mixtures of diverse subtypes2* and received
relatively low ROGUE values (~0.8; Fig. 2h), thus confirming
their heterogeneity.

In addition to highly controlled datasets, it is also instructive to
investigate how ROGUE index performs on pure subtypes
identified by unsupervised clustering. Here we first considered
six well-defined T-cell subtypes from human colorectal cancer,
which were generated via the Smart-seq2 protocol. All these pure
subtypes achieved high ROGUE values of >0.9 (Fig. 2i), versus 0.78
for complete data (Supplementary Fig. 14b). We next examined
four dendritic cell (DC) subsets collected from human lung
cancers?8 and sequenced with inDrop platform. Specially, tumor-
infiltrating DC2 cells have been proven to be highly heterogeneous
populations?®39 and deviated substantially from the other
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homogeneous cell types including DC1, LAMP3+ DC, and pDC
(Fig. 2j). Taken together, these results illustrate that our ROGUE
represents an effective and direct quantification of cell population
purity without being affected by technical characteristics.

ROGUE-guided analysis enhances cell-type identification. We
next evaluated the potential for ROGUE to guide clustering
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analysis with silhouette, which investigates whether a certain
clustering has maximized intercluster dissimilarity and mini-
mized within-cluster dissimilarity. As a test case, we simulated a
scRNA-seq dataset consisting of three cell types A, B, and C (see
“Methods” for details), where cell types A and B were similar
subtypes with 1% varied genes. We clustered this dataset into 2, 3,
4, and 5 subpopulations respectively by adjusting the resolution
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Fig. 2 ROGUE use and performance. a The ROGUE index (reference factor K= 45) decreases monotonically with increasing varied genes in each
simulated mixture consisting of two cell types (1:1). The center line indicates the median ROGUE value of n = 50 repeated simulations. The lower and upper
hinges represent the 25th and 75th percentiles respectively, and whiskers denote 1.5 times the interquartile range. b The ROGUE values (reference factor
K = 45) for the simulated mixtures with cell-type sizes ranging from 1:100 to 1:1. In each mixture, the number of varied genes was 1% of the total gene
number (n=20,000). The center line indicates the median ROUGE value of n = 50 repeated simulations. The lower and upper hinges represent the 25th
and 75th percentiles respectively, and whiskers denote 1.5 times the interquartile range. ¢ Pearson correlations of S between the randomly down-sampled
datasets (n =50 runs for each) and the entire datasets (2000 cells) simulated from both NB and ZINB distribution. The center line indicates the median
correlation value. The lower and upper hinges represent the 25th and 75th percentiles respectively, and whiskers denote 1.5 times the interquartile range.
d Sequencing depth distribution (total UMI counts across cells) for two simulated replicates. The replicate 2 has a sequencing depth ten times that of
replicate 1. e The S-E plot of the mixture of replicates 1 and 2 is shown in d. f ROGUE values of n =100 mixtures versus the silhouette values for every two
replicates within individual mixtures. A high silhouette value indicates a substantial difference in sequencing depth between two replicates. g, h The S-E
plots and corresponding ROGUE values of 10 cell populations from the PBMC dataset24. i Purity assessment of six human T-cell populations. j Purity
evaluation of lung-cancer infiltrating DCs, with each point representing a patient. The center line indicates the median ROUGE value. The lower and upper
hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5 times the interquartile range.

parameter in Seurat’3 (Fig. 3a), then evaluated the results by
inspecting corresponding silhouette and average ROGUE values.
Proper clustering of this dataset should result in three sub-
populations, one for each cell type. However, silhouette received
the maximum value when cell-type A co-clustered with B
(Fig. 3b), i.e., when only two clusters were identified, suggesting
that such measure is poorly interpretable for cluster purity as
opposed to ROGUE, which reached saturation when there were
three clusters (Fig. 3c). Repeating the simulation with varied
differences in cell-type A, B, and C yielded equivalent perfor-
mance for these two methods (Supplementary Fig. 15a-f). Such
performance was also observed when different values of the
reference factor K were used (Supplementary Fig. 16). Since
ROGUE can provide direct purity quantification of a single
cluster and is independent of methods used for normalization,
dimensionality reduction, and clustering, it could also be applied
to guide the splitting (re-clustering) or merging of specific clusters
in unsupervised clustering analyses.

To test how ROGUE could help the clustering of real datasets,
we examined a previously reported dataset of cancer-associated
fibroblasts (CAFs)3! from lung tumors. CAFs have been reported
to represent a highly heterogeneous population and may play a
tumor-supportive role in the tumor microenvironment32. We
found that the seven identified fibroblast clusters received low
ROGUE values (Fig. 3d, e and Supplementary Fig. 17a). We
therefore performed re-clustering analysis with the goal of
exploring the extent of heterogeneity and identified a total of
11 clusters with a higher average ROGUE value (Fig. 3d, e). In
addition to the two classical subtypes of CAFs (myofibroblastic
CAFs and inflammatory CAFs), we also found the presence of
antigen-presenting CAFs (apCAFs) that was characterized by the
high expression of CD74 and MHC class-II genes (Supplementary
Fig. 17b). The apCAFs were firstly discovered as a fibroblast
subtype in mouse pancreatic ductal adenocarcinoma (PDAC), but
barely detectable in human PDAC without forming a separate
cluster?3. The considerable existence of apCAFs in lung cancer
thus may indicate potential differences between different
cancer types.

Furthermore, we noted that the myCAFs (AF_C02_COL4Al,
ROGUE = 0.81) identified by original authors could be further
segregated into three distinct subpopulations, including
BF_CO01_RGS5 (ROGUE =0.84), BF_C02_ACTA2 (ROGUE =
0.87), and BF_C03_GPX3 (ROGUE =0.94). Interestingly, the
signature genes of AF_C02_COL4A1 described by original authors
were actually specific to one of these three subpopulations, including
MEF2C in BF_C01_RGS5 and MYH]I1 in BF_C02_ACTA2 (Fig. 3f).
Pathway analysis also revealed that the NOTCH signaling was
activated in BF_CO01_RGS5 (Fig. 3g) rather than a common
signal of AF_C02_COL4A13L Despite the considerable increase of

overall ROGUE index, BE_C00_AOL10A1, BF_C04_COL1A2, and
BF_C05_PLA2G2A still received relatively low ROGUE values, thus
deserving further investigation. Overall, ROGUE-guided analysis not
only discovered novel cell subtypes, but also enabled the detection of
the true signals in specific pure subpopulations.

ROGUE-guided analysis identifies pure B cell subtypes. B cells
are key components in tumor microenvironment but have
unclear functions in antitumor humoral response4. Here we
investigated previously reported liver- and lung-tumor-
infiltrating B cells31:3> and found that they received relatively
low ROGUE values (Fig. 4a). Thus, we applied further clustering
analysis coupled with ROGUE to these B cells in an attempt to
discover pure subtypes. A total of seven clusters were identified,
each with its specific marker genes (Fig. 4b—d). Cells from the first
B-cell subset, B_CO_JUNB, specifically expressed signature genes
including JUNB and FOS, thus representing activated B cells®.
The second subset, B_C1_TXNIP, showed high expression of
glycolysis pathway genes (Supplementary Table 4), indicating its
metabolic differences. ACTB, a gene involved in antigen pre-
senting, was highly expressed in the third subset (B_C2_ACTB).
Pathway activity analysis also revealed a strong antigen proces-
sing and presentation signal in this subset (Supplementary
Table 4). The fourth cluster, B_C3_FCER2, characterized by
high expression of HVCNI and genes involved in B-cell receptor
signaling pathway (Supplementary Table 4), was largely
composed of pre-activated B cells?”. The fifth cluster, B_C4_MXI,
predominantly composed of interferon-induced B cells’s,
expressed high levels of MXI, IFI6, and IFI44L. The sixth
cluster, B_C5_CD3D, expressed key markers of both T- and
B-cell lineages (Fig. 4d), thus maybe the dual expressers (DEs)-
like lymphocytes3® or doublets. The remaining B cells, falling into
the seventh cluster, B_C6_LRMP, exhibited high expression of
LRMP and RGS13, indicative of the identity of germinal center B
cells*0,

Both DEs/doublets-like and germinal center B cells exhibited
low ROGUE values (Fig. 4e), but the limited cells did not permit
further clustering. For germinal center B cells, we readily detected
the high expression of proliferating marker genes, including
MKI67 and STMNI (Supplementary Fig. 18), in a fraction of
these cells, thus explaining the heterogeneity to some extent. In
contrast to these two clusters, we found ROGUE values of >0.92
for each of the remaining five clusters (Fig. 4e), demonstrating
that they were all highly homogeneous B-cell subtypes. By
calculating the ratio of observed to expected cell numbers with
the chi-square test (RO/E), we noted that both B_C02_ACTB and
B_C04_MX1 contained mainly cells from tumor, with RO/E
values >1 (Fig. 4f). Similar analyses stratified by patient further
confirmed this trend (Fig. 4g). Based on the independent TCGA
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Fig. 3 ROGUE enhances single-cell clustering and cell-type identification. a t-SNE plots of a simulated dataset containing three cell types. Corresponding
silhouette values (b) and average ROGUE values (¢) when there were 2, 3, 4, and 5 putative clusters, respectively. d UMAP plots of lung-cancer-associated
fibroblasts, color-coded by clusters in original paper (left; Supplementary Fig. 17a) and re-clustered labels (right). @ ROGUE values of different clusters
before (left) and after (right) re-clustering. Each point represents a patient. The center line indicates the median ROUGE value. The lower and upper hinges
represent the 25th and 75th percentiles respectively, and whiskers denote 1.5 times the interquartile range. f UMAP plot of expression levels of MYH1T and
MEF2C. g Differences in hallmark pathway activities scored using GSVA.
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Fig. 4 ROGUE-guided analysis in the identification of pure B-cell subtypes. a The S-E plots and ROGUE values of liver- and lung-tumor-infiltrating B cells,

respectively. UMAP plots of 4291 B cells, color-coded by their associated cl

usters (b) and tissues (¢). d Gene expression heatmap of seven B-cell clusters.

Rows denote marker genes and columns denote different clusters. e ROGUE values of seven identified B-cell subtypes. Each point represents a patient. The

center line indicates the median ROUGE value. The lower and upper hinges

represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5

times the interquartile range. f Tissue preference of each B-cell subtype in liver cancer estimated by RO/E27, the ratio of observed to expected cell numbers

calculated by the chi-square test. g The average fractions of B_C02_ACTB

and B_CO4_MX1 in each patient across tissues, where error bars representing

*s.e.m. *p<0.05, **p < 0.005, Student’s t test. The Kaplan-Meier curves of TCGA LUAD (h) and LIHC (i) patients grouped by the 13 markers

(Supplementary Table 5) of B_CO2_ACTB.

lung adenocarcinoma (LUAD) cohort dataset, patients with
higher expression of the marker genes of B_C02_ACTB (normal-
ized by MS4Al; Supplementary Table 5) showed significantly
worse overall survival (Fig. 4h). Such survival difference was also
observed in TCGA liver hepatocellular carcinoma (LIHC) cohort

8

dataset (Fig. 4i). Thus, the clinical implication deserves further
study to investigate what specific roles B_C02_ACTB cells play in
tumor microenvironment. In summary, identifying pure subtypes
with ROGUE-guided analysis could enable a deeper biological
understanding of cell state and behavior.
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Application to brain data and batch effect evaluation. In
addition to cancer data, we also demonstrated the application of
ROGUE in analyzing the brain transcriptome dataset?, which
harbors a high degree of heterogeneity for those encapsulated cell
classes. This dataset identified seven distinct cell types, of which
oligodendrocyte and neuron cell types had low ROGUE values of
<0.8, versus ~0.9-1 for the remaining five cell classes (Fig. 5a).
We therefore applied further clustering guided by ROGUE to
oligodendrocyte which is of enough cells (n =3401), and iden-
tified ten refined cell subtypes, each with its specific marker genes
(Fig. 5b, c). Except cluster 6, we found ROGUE values of ~0.9-1
for all the other nine clusters, suggesting their purity (Fig. 5d). To

investigate potential functions of these subtypes, we compared
pathway activities and found considerable phenotypic diversity.
For example, cluster 5 showed a strong signal of axon guidance
signaling (Fig. 5e), while neurotrophin signaling pathway was
highly activated in cluster 1 (Fig. 5f). This example further
illustrates how ROGUE plays a key role in uncovering pure
subpopulations.

To investigate if ROGUE is effective in evaluating the impact of
batch effect, we studied a dataset of human PBMCs containing
multiple distinct cell types38. Cells of this dataset were previously
split into two groups—the interferon-beta (IFN-p)-stimulated
group and the culture-matched control group, thus could be
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Fig. 5 The application of ROGUE in brain data and batch effect evaluation. a ROGUE values of seven distinct brain cell types as defined by the original
publication?, with each point representing a sample. The center line indicates the median ROUGE value. The lower and upper hinges represent the 25th and
75th percentiles respectively, and whiskers denote 1.5 times the interquartile range. b UMAP plot of the ten identified clusters of oligodendrocytes

(n=3401), color-coded by their associated clusters. ¢ Expression heatmap of cell-type-specific genes of the ten oligodendrocyte clusters. d ROGUE values
of oligodendrocyte clusters. Each point represents a sample. The center line indicates the median ROUGE value. The lower and upper hinges represent the
25th and 75th percentiles, respectively, and whiskers denote 1.5 times the interquartile range. e, f Enriched pathways for cluster 5 (e) and cluster 1 (f),
respectively. g ROGUE values were shown for batch 1 (the control group), batch 2 (the stimulation group), and aggregated cell population (batch 1 and
batch 2) for each cell type. For fair comparison, we equalized the number of cells in each group by down-sampling. The center line indicates the median
ROGUE value. The lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5 times the interquartile range.
*p<0.05, **p<0.005, Student's t test. h ROGUE values for individual-specific cell populations and aggregated populations (all individuals). All cells used
here were from the control group. Subsampling was performed to equalize the number of cells in each group. The center line indicates the median ROUGE
value. The lower and upper hinges represent the 25th and 75th percentiles, respectively, and whiskers denote 1.5 times the interquartile range. *p < 0.05,

**p<0.005, Student's t test.

considered as two batches. Then we applied ROGUE to assess the
purity of each cell type (as defined by the original authors) in
individual bathes as well as the aggregated cell population (batch
1 and batch 2), and found that ROGUE detected considerable
purity reduction in the aggregated group (Fig. 5g).

As cells of this dataset were collected from eight unrelated
individuals, we also tested how ROGUE behaves in estimating the
variability (i.e., batch effect) among patients. Here we only used
cells from the control group so that the evaluation would not be
influenced by IFN-( perturbation. As expected, the aggregated
cell populations of all individuals received significantly lower
ROGUE values as opposed to patient-specific populations for
each cell type (Fig. 5h). Thus, ROGUE offers a reasonable method
for estimating the impact of batch effect.

Discussion
Purity assessment of identified cell clusters is paramount to the
interpretation of scRNA-seq data. This assessment is especially
pertinent as increasingly rare and subtle cell subtypes are being
uncovered. To address this computational challenge, we present
the S-E model and demonstrate that this model is capable of
identifying variable genes with high sensitivity and precision, and
thus could be applied to both clustering and potentially pseu-
dotime analyses. By taking advantage of the wide applicability of
S-E model, we develop the statistic ROGUE to quantify the purity
of single-cell populations. Through a wide range of tests, we
demonstrate that our entropy-based measure, ROGUE, is broadly
applicable for datasets from different platforms, protocols and
operators, and able to successfully quantify the purity of singl-cell
populations regardless of uncontrollable cell-to-cell variation.
When using ROGUE to assess the purity of four DC subtypes
from human lung tumors, we found that DC2 was a hetero-
geneous population, which is consistent with previous findings°.
Such heterogeneous populations like DC2 may have different
properties and specialized roles in the cancer microenvironment,
and could be assessed in a similar fashion with ROGUE.
Accordingly, future studies could focus on these cell populations
and hence may deepen our understanding of cellular origins of
cancer. In addition, ROGUE addresses an important need in
unsupervised single-cell data analyses, i.e., to effectively assess the
quality of published or newly generated clusters. Often, unsu-
pervised clustering may lead to under- or over-clustering of cells
due to the lack of universal stands for clustering quality. By
quantifying cluster purity with ROGUE before and after clus-
tering or re-clustering, we were able to detect low-purity clusters
and perform further analysis to discover pure subtypes.
Improving the purity and credibility of the ever-increasing
number of cell types is a mounting challenge with explosive
efforts toward single-cell sequencing, and ROGUE could become
a potential standard for judging the quality of cell clusters.

Our ROGUE-guided analysis on fibroblasts identified a novel
subpopulation in lung cancer, apCAFs, which highly expressed
CD74 as well as MHC class-II genes and had a strong antigen-
presenting signal. These cells have been speculated to deactivate
CD4 T cells and decrease the CD8+ to Treg ratio in mouse
PDAC3?3, but have unclear role in the lung-cancer microenviron-
ment, hence requiring further investigation. Moreover, when
applying ROUGE to B-cell analysis, we found an interesting pure
cluster B_C02_ACTB that displayed high expression of genes
involved in antigen processing and presentation. Cells from this
cluster were preferentially enriched in tumors and were associated
with poor prognostic outcomes in both lung and liver cancer. We
therefore hypothesize that these cells may contribute to immune
suppression in the cancer microenvironment and hence curtail
antitumor immunity, although further studies are required to
define the roles of these cells. Such approaches for discovering
novel or additional pure subtypes can also be extended to other
published or newly generated scRNA-seq datasets.

When determining the purity of cell clusters, we recommend a
ROGUE value of 0.9 as a suitable threshold, at which the number
of infiltrating cells and varied genes is well constrained. But for
low-quality data or continuous data, the threshold could be
determined by considering the global ROGUE values. Although
ROGUE can be very efficient and effective, we anticipate that
additional extensions could enable enhanced performance, for
example, assessing the purity of integrated cell populations from
different protocols and platforms. Overall, our ROGUE metric
provides a robust and direct measure for cluster purity in the
presence of substantial technical confounders. We expect the
ROGUE metric to be broadly applicable to any scRNA-seq
datasets, and anticipate that our strategy will improve the rigor
and quality of unsupervised single-cell data analysis.

Methods

Expression entropy model. For droplet datasets, the observed UMI count can be
modeled as a NB random variable, which also arises as a Poisson-Gamma mix-
ture?!

Xj; ~ Poisson (s;A;;)
A ~ Gamma (e, B;)

ij

(1)

where A;; represents the true expression value that underlies the observed UMI
count Xj; of gene i in cell j, and s; denotes the size normalization factor in cell j. The
a;; and B;; are shape parameter and rate parameter respectively. Given the
assumption that the shape parameter « is a constant across cells and genes, and
that the rate parameter §8 is a constant of gene i across cells*!*2, a;; and f8;; can be
expressed as « and f3;, respectively. Then the distributions can be recognized as:
; ~ Gamma(a, ;) and Xj; ~ Poisson (s;4;). We denote

A
Xy =~ ()
i
as the normalized expression of gene i in cell j, and use [ (X!) (X/ is the normalized
expression assigned to gene i and E(X,’) is the expectation across cells) as the
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moment estimation of A;. For the Gamma distribution, the rate parameter could
therefore be calculated based on the maximum likelihood estimation

o

AT ©

To capture the degree of disorder or randomness of gene expression, here we
considered the use of differential entropy defined as*3

+o00
H(X)=— p(x) - Inp(x)dx, (4)
—00

where X is a continuous random variable and p(x) is the probability density
function. Differential entropy is an extension of Shannon entropy, which is used to
measure the average surprisal of a continuous probability distribution, and has
shown notable performance in our supervised gene selection method E-test*4.
Specially, for the gamma distributed random variable A, its differential entropy can
be computed as

S;=a—Inf, +Inl'(a) + (1 — a) - p(a) = lng +a=mE(X]) +a, (5
1

where ¢ is the digamma function, and a = & — Ina + InI'(a) + (1 — &) - () is a
constant. Although other pioneering methods such as Scnorm?®, scran®, and
BASICS%7 can be used to calculate size factors, we considered the library size
normalization of each cell defined as the total UMI counts divided by the mean
total UMI counts across cells*!. Accordingly, the expectation of library size factor
across cells is equal to 1. Given Eq. (2) and that the gene expression and library size
are two independent random variables*, for a given gene i, we have

E(X,) = E(X!xs) = B(X])x E(s) = E(X!)x 1 = E(X]), (6)

where X; is the observed expression assigned to gene i and s is the library size
assigned to cells. Thus, for each cell type, the differential entropy of A; could be
computed as

S; = InE(X;) +a. (7)
We formulate the null hypothesis that there is only one Poisson-Gamma
component for each gene in a given population (Hp) and thus the corresponding
differential entropy can be calculated with Eq. (7). Then we assume that each cell
represents its own cluster and use X;; as a moment estimation of the mean

expression of such cluster. In this way, we define the entropy reduction of gene i
across n cells as

ds; = differential entropy under H, — average actual differential entropy

" (InX. 8
gy - S 00 ®
n

which captures the degree of disorder or randomness of gene expression*4. Given
that genes under H, (non-variable genes) account for the major proportion, we fit
the relationship between In [£(X;) and average actual differential entropy, and
calculate corresponding residual as ds; to improve the performance (Fig. 1b, c). The
significance of ds is estimated based on a normal distribution approximation and is
adjusted using Benjamini-Hochberg method. We also extended such procedure to
full-length datasets and found that our approach consistently outperformed other
gene selection methods (Fig. 1f and Supplementary Fig. 4).

Data simulation. We simulated droplet datasets with NB distribution. Mean gene
abundance levels E were sampled from the log-normal distribution

In(E) ~ N(u,0%),

with parameters ¢ =0 and o= 2. The number of transcripts for each gene were
drawn from

N, ~ NB(E;,r).

For each simulated dataset, the dispersion parameter r (r = a)*3 was set to a
fixed value, ranging from 5 to 20 (Supplementary Fig. 1). In addition, we simulated
full-transcript datasets with ZINB distribution. The dropout rates for each gene was
modeled with the sigmoid function®®

Py~ Sigm(*()’o + ylEi))7

with parameters y, = —1.5 and y; = 1/median(E). Each simulated scRNA-seq
dataset contained 20,000 genes and 2000 cells (Supplementary Fig. 2).

Differentially expressed genes were added in a fraction of cells (1-50%,
Supplementary Fig. 1 and 2), with fold changes sampled from the log-normal
distribution (4 = 0 and 0 = 2). Genes with a >1.5-fold decrease or increase in mean
expression were considered as ground truth DE genes.

Feature selection methods. The HVG method!! identifies variable genes by
comparing the coefficient of variation squared to a local regression trend, and was
implemented with the BrenneckeGetVariableGenes function in the M3Drop!?
package. In the Gini index model proposed in GiniClust!3, a gene is considered as
informative if its Gini is higher than expected from the maximum observed
expression. We copied the source code of original GiniClust

(GiniClust_Preprocess.R, GiniClust_Filtering.R and GiniClust_Fitting.R) (https://
github.com/lanjiangboston/GiniClust/tree/master/Rfunction), and defined the
Gini_fun function in our scripts to select genes. M3Drop uses dropout rates for
variable gene selection and was implemented with the M3DropFeatureSelection
function in the M3Drop package. The SCTransform method!” selects genes with
Pearson residuals from the regularized negative binominal regression and was
implemented with the SCTransform function in Seurat package. In addition, we
implemented the Fano factor method as used in the script GiniClust2_Fano_-
clustering.R from GiniClust2!8. The feature selection step in RaceID3!?, which
selects genes with a second-order polynomial fit between the expression variance
and log-transformed mean, was implemented according to the fitBackVar function
in RacelD3.

Datasets used for clustering-based evaluation. To evaluate the performance of
different feature selection methods in the context of unsupervised clustering, here
we considered five publicly available scRNA-seq datasets. The first dataset® consists
of five cell lines (A549, H1975, H2228, H838, and HCC827) and was sequenced
with 10X Genomics protocol, with a total of 3918 cells. The second dataset was
generated by the same study®. This dataset comprises three cell lines (H1975,
H2228, and HCC827) and was sequenced with CEL-seq2 protocol. The third
dataset>* was created by processing multiple FACS-purified cell populations and
was sequenced with 10X Genomics protocol. Considering that some populations
such as CD8+ cytotoxic T cells were relatively heterogenous??, here we only used
CD19 B cells, CD4 naive T cells, CD56 NK cells, and CD14 monocytes, which were
readily distinguishable (Supplementary Fig. 6a). The fourth dataset contains cells
from human pancreatic islet and was generated by Smart-seq protocol?>. These
pancreatic cell types including alpha, beta, delta, and gamma cells are well-
characterized and have been shown to be distinct?>#4, thus were used for bench-
marking (Supplementary Fig. 6b). The remaining dataset comprises multiple
immune cell types®, with cells sequenced by Smart-seq2 protocol. Although the cell
labels in original publication were assigned using unsupervised clustering, cross-
validation experiments revealed that the major cell types (macrophages, DCs,
lymphocytes, and exhausted CD8 T cells) were readily distinguishable (Supple-
mentary Fig. 6¢). We therefore also consider this dataset for benchmarking.

Cross-validation experiments and gene reproducibility. To illustrate the per-
formance of S-E model in real datasets (Supplementary Table 1), we performed
cross-validation experiments using the procedure as implemented in scmap: (i) we
randomly selected 70% of the cells as the reference set, (ii) we then identified
informative genes (based on the reference set) with different feature selection
methods respectively, (iii) we further trained the RF classifier® using the reference
set with only informative genes selected by different methods (cell labels were
defined with unsupervised clustering by the original authors), (iv) the remaining
30% cells were considered as query set, and corresponding cell types were predicted
with the trained classifier, (v) the classification accuracy was then quantified with
the accuracy score®?, which is the similarity between the predicted cell types and
the original cell types of the query set, (vi) finally, we repeated this entire procedure
for n =150 times for each dataset.

We calculated the reproducibility by intersecting the corresponding sets of
variable genes as

N Geneset™ "

m—n
Geneset replicate—2

replicate—1

Reproducibility =

n

where m denotes the adapted gene selection method and 7 is the number of top-
ranked variable genes.

Rare cell-type simulation. We simulated the synthetic scRNA-seq data following
the same approach in GiniClust2 (https://github.com/dtsoucas/GiniClust2/blob/
master/Rfunction/Generate_Simulated_Data.R), specifying two large 1000 cell
clusters, and three rare clusters of 10, 20, and 30 cells, respectively. To test the
performance of our method, we applied our S-E model to the raw count data to
select informative genes and performed follow-up clustering with standard clus-
tering procedure in Seurat. The R scripts of RaceID3 and GiniClust2 were accessed
through https://github.com/dgrun/RaceID3_StemID2_package and https://github.
com/dtsoucas/GiniClust2, respectively.

ROGUE calculation. By taking advantage of the wide applicability of S-E model to
scRNA-seq data, we introduce the statistic ROGUE to measure the purity of a cell
population as

Zsig ds
Dgds + K’

where the parameter K is used for two purposes: (i) constrain the ROGUE value
between 0 and 1, (ii) serve as a reference factor to provide the purity evaluation.
Consider a reference dataset with maximum summarization of significant ds. We
set the value of K to one-half of the maximum. In this way, ROGUE will receive a
value of 0.5 when summarized significant ds is equivalent to one-half of the
maximum. A cell population with no significant ds for all genes will receive a
ROGUE value of 1, while a population with large summarization of significant ds is

ROGUE =1 —
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supposed to yield a small purity score. We reasoned that Tabula Muris can be
considered as such a plausible reference dataset because it comprises cells from 20
organs, which represents a highly heterogeneous population and was sequenced
with both 10X Genomics and Smart-seq2 protocols?. As the technical variation
associated with PCR, which is present in full-length-based but not droplet-based
technology, will affect the value of ds, we calculated the summarization of sig-
nificant ds of Tabula Muris for both 10X Genomics and Smart-seq2 datasets
(Supplementary Fig. 19). Accordingly, we set the default value of K to one-half of
the summarization, i.e., 45 for droplet-based data and 500 for full-length-based
data, receptively. The K value can also be determined in a similar way by specifying
a different reference dataset in particular scRNA-seq data analyses. Users should be
careful when using the default K value on datasets of different species, and we
recommend the user to determine the K value by specifying a highly heterogeneous
dataset of that species with the DetermineK function in ROGUE package.

Silhouette coefficient. To assess the differences of simulated replicates and the
separation of different cell clusters, we calculated the silhouette width’, which is the
ratio of within-cluster to intercluster dissimilarity. Let a(i) denote the average
dissimilarity of cell i to all other cells of its cluster A, and let b(i) denote the average
dissimilarity of cell i to all data points assigned to the neighboring cluster, whose
dissimilarity with cluster A is minimal. The silhouette width for a given cell 7 is
defined as

) — b —al)
s(i) = max(a(i), b(i))

A high s(i) value suggests that the cell i is well assigned to its own cluster but
poorly assigned to neighboring clusters.

Sequencing depth simulation. Sequencing depth can vary significantly across cells
and thus contributes to a substantial technical confounder in scRNA-seq data
analysis. To illustrate that ROGUE is robust to sequencing depth, we generated
simulated populations, each consisting of two replicates with only differences in
sequencing depth (Fig. 4d and Supplementary Fig. 7a). In each simulation, we
varied the sequencing depth of the two replicates as

Hreplicate—2,i — Hreplicate—1,i §,ie{l,...,n},
where 7 is the number of genes, y is the mean expression level, and
8 € {2, 5, 10, 20, 50, 70, 100}.

Generation of simulated cell types. To demonstrate the potential for ROGUE to
guide single-cell clustering, we used NB model as aforementioned to simulate
different scRNA-seq datasets, each consisting of three cell types A, B, and C (1000
cells x 10,000 genes each), where A and B were similar subtypes. For the three
scenarios shown in Fig. 3a and Supplementary Fig. 15a, d, we introduced 500, 1000,
and 800 varied genes between cell-type A and cell-type B/C, respectively, with fold
changes drawn from the log-normal distribution (4 = 0 and o= 2). In addition, we
simulated 100, 100, and 120 highly variable genes between cell-type B and C
respectively, with fold changes sampled from a log-normal distribution with y =0
and 0= 1. The results were visualized using t-distributed stochastic neighbor
embedding (t-SNE) implemented in R package Rtsne.

Analysis of the fibroblast and B-cell datasets. To demonstrate the application of
ROGUE-guided analysis in identifying pure subpopulations and detecting precise
biological signals, we performed re-clustering analysis of the fibroblast and B-cell
datasets®13>. We filtered out low-quality cells with either <600 expressed genes,
over 25,000 or below 600 UMIs. After filtration, a total of 4291 B cells and 1465
fibroblasts were remained. We further applied our S-E model to the raw count data
to select informative genes. Although other pioneering methods could be used to
calculate size factors3>4043, we normalized the gene expression matrices using
regularized NB regression in Seurat?3. The top 3000 genes with maximal ds were
used for PCA analysis. To remove batch effects between donors, we performed
batch correction using BBKNN®! with the first 50 PCs. Using the leiden clustering
approach implemented in scanpy>?, each cell cluster was identified by its principle
components. This yielded 11 fibroblast subtypes and 7 B-cell subtypes as shown in
Figs. 3d and 4b, which were visualized in 2D projection of UMAP>3 with default
parameters. Accordingly, the purity score of each cluster was calculated with the
rogue function in our R package. The calculation of ROGUE is based on raw count
data and is independent of methods used for normalization, dimensionality
reduction, and clustering.

Pathway and TCGA data analysis. To characterize and detect the pathway signals
in specific fibroblast subtypes, we performed pathway analyses using hallmark
pathways from the molecular signature database®* with GSVA>. The TCGA
LUAD and LTHC data were used to investigate the prognostic effect of 13 signature
genes (Supplementary Table 5) derived from B_C2_ACTB. To eliminate the effects
of different B-cell proportions, we normalized the mean abundance level of these
13 marker genes by the expression of MS4A1 gene, and performed subsequent
statistical analyses using GEPIA2°° with default parameters.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

All datasets used in this study were obtained from their public accessions, and detailed
information including the publication citations and accession codes can be found in
Supplementary Tables 1-3 and Supplementary References.

Code availability

Software implementing our approach is available as an open-source R package ROGUE,
which can be downloaded at https://github.com/PaulingLiu/ROGUE. All scripts used for
benchmarks and figure generation are available at https://github.com/PaulingLiu/
ROGUE/tree/master/scripts.
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