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Abstract: The inclusion of pulses in traditional wheat-based food products is increasing as the
food industry and consumers are recognizing the nutritional benefits due to the high protein,
antioxidant activity, and good source of dietary fiber of pulses. Iron deficiency is a significant global
health challenge, affecting approximately 30% of the world’s population. Dietary iron deficiency is the
foremost cause of anemia, a condition that harms cognitive development and increases maternal and
infant mortality. This study intended to demonstrate the potential efficacy of low-phytate biofortified
pea varieties on dietary iron (Fe) bioavailability, as well as on intestinal microbiome, energetic status,
and brush border membrane (BBM) functionality in vivo (Gallus gallus). We hypothesized that the
low-phytate biofortified peas would significantly improve Fe bioavailability, BBM functionality,
and the prevalence of beneficial bacterial populations. A six-week efficacy feeding (n = 12) was
conducted to compare four low-phytate biofortified pea diets with control pea diet (CDC Bronco),
as well as a no-pea diet. During the feeding trial, hemoglobin (Hb), body-Hb Fe, feed intake, and body
weight were monitored. Upon the completion of the study, hepatic Fe and ferritin, pectoral glycogen,
duodenal gene expression, and cecum bacterial population analyses were conducted. The results
indicated that certain low-phytate pea varieties provided greater Fe bioavailability and moderately
improved Fe status, while they also had significant effects on gut microbiota and duodenal brush
border membrane functionality. Our findings provide further evidence that the low-phytate pea
varieties appear to improve Fe physiological status and gut microbiota in vivo, and they highlight
the likelihood that this strategy can further improve the efficacy and safety of the crop biofortification
and mineral bioavailability approach.

Keywords: pea; phytate; iron; bioavailability; bio active compound; in vivo; Gallus gallus; brush border
membrane; microbiome

1. Introduction

Micronutrient malnutrition affects more than half of the global population, primarily in developing
regions [1,2]. Iron (Fe), zinc (Zn), and vitamin A deficiencies are prominent health constraints
worldwide [3]. In low-income countries, plants are the significant source of food. In crude cereal and
legume foods, the low bioavailability of Fe and Zn leads to metabolic disorders that are associated with
these nutritional factors. Hence, increasing the nutritional value of such types of dietary ingredients
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will contribute to the nutritional status of the target population. Mineral, phosphorous, and phytate
content is much higher in bran than whole grain [4–6].

Field pea (Pisum sativum L.) is a main pulse crop grown for human consumption as a source of
protein, carbohydrates, minerals, and bioactive plant-origin bioactive compounds, contributing to better
metabolic health. In 2014, the global production of peas was 11.2 million tons [7]. The main component
of pea is starch, which includes two polymers of d-glucose: amylose and amylopectin [8,9]. Because of
the alterations in physiochemical characteristics between pulses and cereal starches, starch from pulses
can deliver some specific features to food systems as high gelation temperature, resistance to shear
thinning, increased elasticity, and high concentration of resistant starch [10].

In addition, field peas include bioactive compounds such as oligosaccharides, polyphenols,
and phytate [11]. Water-soluble carbohydrates in peas comprise mostly disaccharides and
oligosaccharides. The raffinose group of oligosaccharides (RFOs) is the most targeted in pea research.
These factors include galactose molecules (linked by α-d-1, 6-glycosidic bonds) attached to sucrose [12].
Humans lack the essential enzymes that are essential to break down these RFOs, and this results in these
oligosaccharides being digested by intestinal bacterial populations via fermentation, leading to elevated
short-chain fatty acid production [13]. Furthermore, a recent study indicated that intra-amniotic
administration of raffinose upregulated the expression of brush border membrane (BBM) functional
proteins, downregulated the expression of Fe-related proteins (indicating improvement of dietary iron
bioavailability), and elevated villus surface area. Furthermore, raffinose increased the richness and
composition of probiotic populations, and it reduced that of pathogenic bacterial species. Overall,
raffinose improved microbial population, dietary Fe bioavailability, and BBM functionality in vivo [14].

The main phenolic compounds found in peas comprise condensed tannins, flavonoids,
and phenolic acids [15]. These phenolic compounds are found specifically in the seed coat and
are biosynthesized via the phenylpropanoid pathway, with condensed tannin molecules being
responsible for the seed-coat coloring [16]. In dark-colored hulls, tannin and flavonoid compounds
are the majority of phenolic compounds; however, in seeds with clear hulls, phenolic acids are the
main compounds [17]. Polyphenols in the seed coat present antioxidant and anti-mutagenic activity,
shielding the seed from oxidative stress [18]. In field conditions, these compounds also deliver
chemical resistance against pathogens and insect pests during the growing process of the plant [19].
Polyphenols in peas appear mostly as insoluble or bound forms, covalently bonded to structural
components of the cell wall such as cellulose, hemicellulose, lignin, and pectin [20,21]. The polyphenolic
composition of peas is predominantly interesting with respect to metabolic health, given their alleged
protective properties against oxidative stress [15,22]. According to Campos-Vega [11] and Rochfort [23],
isoflavone polyphenols are linked with biological pathways in the lessening of osteoporosis and
cardiovascular disease, the deterrence of cancer, and treating symptoms related to menopause.
Phenolic compounds also display anti-nutritional effects, and related research showed a decrease in
the bioavailability of proteins triggered by phenolic compounds [24]. Phytate functions as a storage for
phosphate and minerals in seeds that can be recovered during germination process [25]. Phytate was
recognized as an anti-nutrient due to its ability to chelate with multivalent ions, specifically Zn, Ca,
and Fe, inhibiting the body’s capability to absorb dietary minerals by limiting their bioavailability [24].
There is increasing interest in utilizing pulses in wheat-based products with blends [26]. The demand
for gluten-free products led to investigation of the nutritional characteristics of baked products from
pulses like chickpea and lentil [27], as well as peas [28]. The rheological properties of pea flour,
including the gelation properties of starch, may be considered when exploring the potential application
of pea flour in baked goods. Recent uses for pulses could increase the demand for pulses with specific
nutritional and rheological properties, which will increase the need to investigate the components
affecting the nutritional and functional properties of pulses. It was previously demonstrated that
low-phytate pea lines had higher Fe bioavailability than regular or standard pea [29]; in addition,
pea varieties which were low-phytate combined with relatively higher carotenoid concentration in
some cases resulted in a further increase in Fe bioavailability in vitro [30].
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Biofortified staple foods are an effective instrument through which to address micronutrient
deficiencies worldwide, with emphasis on Fe and Zn, in numerous target populations [1,31–35].
The in vivo (Gallus gallus) model was established as an excellent model to assess dietary Fe and
Zn bioavailability [33–39]. Hence, the objective of the current study was to evaluate the ability
of low-phytate pea varieties in the context of a complete meal to improve Fe bioavailability and
absorption, physiological status, intestinal BBM functionality, and intestinal microbial populations
in vivo (Gallus gallus). We suggest the further use of in vivo screening model to guide future studies
aimed to investigate biofortified staple food crops, as this method will allow proceeding to human
efficacy studies with superior confidence and success.

2. Materials and Methods

2.1. Plants Materials—University of Saskatchewan Pea Varieties

The pea varieties evaluated in this research arose from the Crop Development Center, University of
Saskatchewan (Canada) pea breeding program (Figure 1). Low-phytate line 1-2347-144 was derived
from cultivar CDC Bronco [39,40] through chemical mutagenesis [41]. Varieties 4802-8-46Y-L,
4802-8-60G-L, and 4802-8-87Y-L resulted from the cross 1-2347-144/CDC 2235-4 made in 2011.
CDC 2235-4 was later registered as CDC Raezer [42]. Variety 4803-4-78G-L resulted from the cross
1-150-81/CDC 2336-1 made in 2011. Line 1-150-81 is a second low-phytate line derived from CDC
Bronco [41]. CDC 2336-1 was later registered as CDC Limerick [43]. The varieties from crosses 4802
and 4803 were previously described [30].
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Figure 1. High-resolution photographs depicting six varieties used to evaluate the iron bioavailability
of the Saskatchewan peas. To compare the differences in seed sizes, all photographs were taken to scale
under standardized lighting conditions.

2.2. Growing Conditions and Post-Harvest Handling

All six pea varieties that were used in this experiment were grown at the Sutherland farm,
located 10 km east of Saskatoon (Canada), with planting in May 2017 and harvest in August 2017.
The harvested samples were stored in a non-heated warehouse, with temperature ranging between 15
and 20 ◦C based on the season, until shipment to Ithaca for dietary processing.

2.3. Ingredient Preparation and Diet Composition

For this study, raw pea seeds were rinsed and cleaned thoroughly in distilled water to remove
dust, debris, and non-edible material. Peas were pre-soaked in distilled water (1:6 w/w) for 12 h at
room temperature prior to cooking. Peas were cooked in boiling distilled water in stainless-steel
steam kettles. Cooked peas were then stored at −20 ◦C for 24 h prior to freeze-drying (VirTis Research
Equipment, Gardiner, NY, USA). Basmati rice and wheat were purchased from a local food store located
in Ithaca, New York, USA. Our rationale with regard to the inclusion of basmati rice, wheat, and carrots
in the tested pea-based diets was to approximately simulate the ingredients of a pea-based meal in
India, which is one of the key consumers of pea, and where dietary Fe deficiency is a major health
concern. Cooked rice was stored at −20 ◦C for 24 h before freeze-drying. Cooked/air-dried carrots were
purchased from North Bay Trading Co. (Brule, WI, USA). Dried ingredients were milled into a course
powder using a Waring Commercial® CB15 stainless-steel blender (Torrington, CT, USA). Other dietary
ingredients included chicken Vitamin Mixture (#330002) and chicken Mineral Mix (#230000, no added
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iron) (Dyets Inc., Bethlehem, PA, USA), dl-methionine, and choline chloride (Sigma-Aldrich, St. Louis,
MO, USA). The compositions of the experimental diets are shown in Table 1

2.4. Iron Analysis

Iron analysis was conducted as previously described [14,33,36,38,39]. For the analysis, a 500-mg
sample of dietary ingredient, a 500-mg sample of pea-based diets, or a 100-mg sample of tissue (wet
weight) was analyzed.

2.5. Phytate Analysis

Phytate (phytic acid) determination was conducted as previously described [14,33–39]. For the
analysis, a 500-mg sample of dietary ingredients and a 500-mg of pea-based diets were analyzed,
according to a phosphorous kit (K-PHYT; Megazyme International, Ireland).

2.6. Protein and Fiber Analysis

Analysis was conducted as previously described [36,43–45].

2.7. Animals and Feeding Trial Design

Cornish-cross fertile broiler eggs were delivered from a commercial hatchery (Moyer’s Chicks,
Quakertown, PA, USA). The eggs were incubated under ideal conditions at the Cornell University
Animal Science poultry farm incubator. Upon hatch (hatchability = 98%), hatchlings were arbitrarily
divided into seven treatment groups (n = 15) (Table 1), with ad libitum access to food and water
(Fe concentration < 0.4 µg/L). Chicks were kept in a total confinement building (two animals per 1-m2

metal cage) under controlled temperature and humidity with 16 h of light. Cages were equipped with
an automatic watering system and a manual self-feeder. Feed intakes were documented daily, and,
as of day of hatch, body weights were documented weekly. Animal protocols were approved by the
Cornell University Institutional Animal Care and Use Committee (protocol number 2007-0129).

2.7.1. Blood Collection, Hemoglobin, and Physiological Fe Status Parameters

Blood samples were collected and hemoglobin (Hb) assays were conducted according to the Hb
kit manufacturer’s instructions (BioAssay Systems, Hayward, CA, USA). Total body hemoglobin Fe
(Hb-Fe), a parameter of iron absorption, was calculated from Hb concentrations and blood volume
according to specific body weight (85 mL per kg of body weight) [33–36,39,46].

Hemoglobin maintenance efficiency (HME) was calculated as the cumulative difference in total
body Hb Fe from the start of the study, divided by total dietary Fe intake. [33–36,39,46].

Upon the conclusion of the study (42 days), animals were euthanized by CO2 exposure and blood,
small intestine, cecum, and liver samples were collected. Tissue samples were instantly frozen in liquid
nitrogen and stored at −80 ◦C in a freezer until analyzed.

2.7.2. Liver Iron and Ferritin

The quantifications of liver Fe and ferritin were conducted as previously described [46–48].

2.7.3. Isolation of Total RNA from Duodenum

Total RNA extraction was conducted as previously described [14,33–39,46,49], according to the
manufacturer’s protocol (RNeasy Mini Kit, Qiagen Inc., Valencia, CA, USA).

2.7.4. Real-Time Polymerase Chain Reaction (RT-PCR)

The complementary DNA (cDNA) reaction was conducted as previously described (BioRad C1000
touch thermocycler using the Improm-II Reverse Transcriptase Kit, Promega Corp., Madison, WI,
USA) [37–39].
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Table 1. Composition of the experimental pea-based diets 1.

Iron Dietary Formulation (g/kg)

Ingredient 1 (µg/g) 2 1-2347-144 4803-4-78G-L 4802-8-46Y-L 4802-8-60G-L 4802-8-87Y-L CDC Bronco No Pea

1-2347-144 37.687 ± 0.106 a 500 − − − − − −

4803-4-78G-L 42.512 ± 0.388 b − 500 − − − − −

4802-8-46Y-L 41.277 ± 0.258 c
− − 500 − − − −

4802-8-60G-L 38.020 ± 0.275 d − − − 500 − − −

4802-8-87Y-L 39.539 ± 0.285 d − − − − 500 − −

CDC Bronco 39.850 ± 0.283 d − − − − − 500 −

No pea − − − − − − − −

Wheat (whole) 43.863 ± 0.320 150 150 150 150 150 150 400
Basmati rice 4.367 ± 0.028 150 150 150 150 150 150 400

Carrots 25.717 ± 4.762 50 50 50 50 50 50 50
Milk powder 1.742 ± 0.103 50 50 50 50 50 50 50

Vitamin/mineral
premix 3 0.00 ± 0.0 70 70 70 70 70 70 70

Oil 0.00 ± 0.0 30 30 30 30 30 30 30
DL-Methionine 0.00 ± 0.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5
Choline chloride 0.00 ± 0.0 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Total
composition (g) 1000 1000 1000 1000 1000 1000 1000

Pea Only Analysis 4

Phytate concentration (mg/g) 3.96 ± 0.04 d 3.74 ± 0.05 e 4.38 ± 0.01 c 4.76 ± 0.04 b 3.84 ± 0.05 de 5.82 ± 0.01 a
−

Phytate–iron molar ratio 8.90 c 7.44 e 8.98 c 10.59 b 8.21 d 12.36 a
−

Dietary Analysis 4

Iron concentration (µg/g) 35.717 ± 0.378 b 39.473 ± 1.089 a 36.017 ± 0.370 b 36.274 ± 0.302 b 38.087 ± 0.448 ab 37.208 ± 0.157 ab 27.603 ± 1.754 c

Phytate concentration (mg/g) 1.57 ± 0.01 e 2.30 ± 0.32 c 2.62 ± 0.04 c 2.34 ± 0.32 c 3.03 ± 0.10 b 3.32 ± 0.08 a 1.88 ± 0.14 d

Phytate–iron molar ratio 3.71 d 4.93 cd 5.52 bc 5.46 bc 6.73 ab 7.55 a 5.75 bc

1 Food constituents were cooked, drained, and lyophilized before milling and for chemical analysis. 2 Values are means ± SEM (n = 5). 3 Vitamin and mineral premix: #330,002 Chick
vitamin mixture; #230,000 Salt mix (no iron) for chick diet (Dyets Inc., Bethlehem, PA, USA). 4 Values are means ± SEM of five replicates for each of the pea-based diets. a–e Treatment groups
not indicated by the same letter are significantly different (p ≤ 0.05).
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2.7.5. Primer Design for Duodenal Gene Expression

Primers sequences were designed and selected using the Real-Time Primer Design Tool software
(IDT DNA, Coralvilla, IA, USA). The Gallus gallus primers (forward/reverse) that were used in this
study are indicated in Table 2.

Table 2. Sequences of primers used in this study.

Gene 1 Forward Primer (5′–3′) Reverse Primer (5′–3′) Length (bp) GI
ID

DMT-1 TTGATTCAGAGCCTCCCATTAG GCGAGGAGTAGGCTTGTATTT 101 206597489
Ferroportin CTCAGCAATCACTGGCATCA ACTGGGCAACTCCAGAAATAAG 98 61098365

DcytB CATGTGCATTCTCTTCCAAAGTC CTCCTTGGTGACCGCATTAT 103 20380692
ZnT1 GGTAACAGAGCTGCCTTAACT GGTAACAGAGCTGCCTTAACT 105 54109718
AP CGTCAGCCAGTTTGACTATGTA CTCTCAAAGAAGCTGAGGATGG 138 45382360

SGLT-1 GCATCCTTACTCTGTGGTACTG TATCCGCACATCACACATCC 106 8346783
SI CCAGCAATGCCAGCATATTG CGGTTTCTCCTTACCACTTCTT 95 2246388

18S rRNA GCAAGACGAACTAAAGCGAAAG TCGGAACTACGACGGTATCT 100 7262899
1 DMT-1, divalent metal transporter-1; DcytB, duodenal cytochrome b; ZnT1, zinc transporter 1; AP, amino peptidase;
SGLT-1, sodium-glucose transporter-1; SI, sucrose isomaltase; 18S rRNA, 18S ribosomal RNA subunit.

2.7.6. Real-Time qPCR Design

Isolated cDNA was used for the reaction (Cat. #1725274, Hercules, CA, USA) as previously
indicated [36–39].

2.7.7. Collection of Microbial Samples and DNA Isolation of Intestinal Contents

The cecum was removed and stored at −80◦C until analyzed. Microbial DNA isolation was
conducted as previously described [36–38].

2.7.8. Primer Design and PCR Amplification of Bacterial 16S rRNA

Primers for Bifidobacterium, Lactobacillus, Escherichia coli, and Clostridium were used in accordance
with previously published data [46].

2.7.9. Glycogen Analysis

At the conclusion of the study (day 42), the pectoral muscle (200 mg) was removed, and glycogen
contents were determined as previously described [50–52].

2.8. Statistical Analysis

Statistical analyses were conducted using IBM SPSS Statistics 25 (IBM Analytics, Armonk, NY,
USA). Measured parameters were found to have a normal distribution and equal variance, and they
were acceptable for ANOVA. Mean separations for measured parameters were determined using
ANOVA with the model including dietary treatment (seven levels) as the fixed effect, followed by a
Duncan post hoc test. Differences with p-values ≤0.05 were considered statistically significant.

3. Results

3.1. Seed Iron and Phytate Concentrations in Experimental Peas Varieties

Iron concentrations of dietary ingredients are shown in Table 1. Differences in seed Fe contents in
the pea varieties were significant (p≤ 0.05), ranging from 37µg/g in 1-2347-144 to 42µg/g in 4803-4-78G-L
(Table 1). Phytate concentrations and molar ratios of dietary ingredients of the pea-based diets are
indicated in Table 1. Significant (p ≤ 0.05) differences in phytate concentrations were measured between
peas varieties, from 3.7 mg/g in 4803-4-78G-L to 5.82 mg/g in CDC Bronco (Table 1). Phytate-to-Fe
molar ratios varied significantly (p ≤ 0.05), from a ratio of 7.4 in 4803-4-78G-L to a ratio of 12.4 in CDC
Bronco (Table 1).
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3.2. Protein and Fiber Contents

Table 3 indicates the total crude protein content in experimental tested pea varieties, with significant
differences (p ≤ 0.05) between pea varieties, ranging from 22.5 g/100 g in CDC Bronco to 26.75 g/100 g in
4803-4-78G-L. Concentrations of insoluble, soluble, and total fiber for experimental peas are shown in
Table 3, with significant differences (p ≤ 0.05) in each of the fiber fractions between experimental peas.
The lowest concentrations of the insoluble, soluble, and total fiber were detected in the 4803-4-78G-L
pea variety. Significantly (p ≤ 0.05) higher concentrations of all three fiber fractions were measured
in 1-2347-144. As a reference, the total protein content in the control diet (no pea) was measured at
10.72 g/100 g ± 0.16 g/100 g of total protein.

Table 3. Protein and fiber concentrations (g/100 g) of tested peas varieties 1.

Variety Insoluble Fiber Soluble Fiber Total Fiber Total Protein

1-2347-144 22.37 ± 1.26 a 1.31 ± 0.18 a 23.68 ± 1.43 a 22.69 ± 0.06 d

4803-4-78G-L 16.49 ± 1.32 c 0.94 ± 0.39 a 17.43 ± 1.71 c 26.75 ± 0.35 a

4802-8-46Y-L 19.52 ± 1.10 abc 1.08 ± 0.06 a 20.60 ± 1.05 abc 23.22 ± 0.31 c

4802-8-60G-L 20.20 ± 1.87 ab 1.12 ± 0.30 a 21.32 ± 2.17 abc 22.94 ± 0.09 cd

4802-8-87Y-L 17.94 ± 0.12 bc 1.13 ± 0.26 a 19.07 ± 0.14 bc 24.78 ± 0.13 b

CDC Bronco 20.66 ± 1.93 ab 1.30 ± 0.16 a 21.97 ± 1.77 ab 22.50 ± 0.90 d

1 Values are means ± standard error of the mean (SEM) (n = 3 replicates). a–d Treatment groups not indicated by the
same letter are significantly different (p ≤ 0.05).

3.3. Iron–Phytate Analysis of Pea Based Diets

The final composition of the six pea-based diets and no-pea diet are shown in Table 3.
Iron concentrations amongst the pea-based diets were significantly different (p≤ 0.05). Diets formulated
from 4802-8-87Y-L and 4803-4-78G-L had the highest iron concentrations (38 µg/g and 39 µg/g,
respectively) relative to the control diet (no-pea diet) (27 µg/g). Final phytate concentrations also
varied between experimental diets ranging from 1.57 mg/g in 1-2347-144 to 2.66 mg/g in the no-pea
diet. Significant (p ≤ 0.05) differences in phytate–Fe molar ratios were observed between the pea-based
diets, ranging from 3.79 mg/g in 1-2347-144 to 8.66 mg/g in CDC Bronco (Table 1).

3.4. In Vivo Assay (Gallus gallus Feeding Trial)

3.4.1. Growth Rates, Hemoglobin (Hb), Total Body Hemoglobin Fe (Hb-Fe), and Hemoglobin
Maintenance Efficiency (HME)

Feed intakes and Fe intakes were higher (p < 0.05) in all pea-based dietary treatment groups
relative to the no-pea dietary treatment group (Tables 4 and 5).

Table 4. Experimental cumulative feed intake 1.

Feed Intake (g)

Pea Diet Day 7 Day 14 Day 21 Day 28 Day 35 Day 42

1-2347-144 329.6 ± 26.7 a 699.2 ± 55.4 a 1210.9 ± 120.7 a 1773.1 ± 105.8 a 2511.2 ± 86.4 a 3272.1 ± 115.6 a

4803-4-78G-L 331.1 ± 21.2 a 706.7 ± 50.6 a 1229.6 ± 95.6 a 1579.6 ± 328.0 a 2370.9 ± 348.9 a 3266.8 ± 340.3 a

4802-8-46Y-L 390.8 ± 11.6 a 797.7 ± 58.5 a 1420.9 ± 134.6 a 2051.6 ± 180.1 a 2822.3 ± 230.4 a 3691.3 ± 225.5 a

4802-8-60G-L 351.6 ± 7.8 a 729.8 ± 17.8 a 1283.5 ± 30.3 a 1898.6 ± 5.8 a 2698.8 ± 13.1 a 3644.7 ± 35.7 a

4802-8-87Y-L 370.4 ± 17.1 a 742.0 ± 74.2 a 1312.2± 158.6 a 1934.7 ± 167.2 a 2781.9 ± 182.2 a 3769.6 ± 186.9 a

CDC Bronco 353.3 ± 12.2 a 735.1 ± 28.9 a 1299.4 ± 73.6 a 1901.0 ± 56.6 a 2664.4 ± 49.8 a 3530.4 ± 60.9 a

No pea 224.6 ± 29.1 b 293.9 ± 28.8 b 428.3 ± 48.2 b 609.5 ± 66.3 b 799.5 ± 105.2 b 930.6 ± 133.1 b

1 Values are means ± SEM (n = 15 animals per treatment group). a,b Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05).
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Table 5. Experimental cumulative iron intake 1.

Iron Intake (mg)

Pea Diet Day 7 Day 14 Day 21 Day 28 Day 35 Day 42

1-2347-144 11.77 ± 0.95 b 24.97 ± 1.98 a 43.25 ± 4.31 a 63.33 ± 3.78 a 89.69 ± 3.09 a 116.87 ± 4.13 b

4803-4-78G-L 13.07 ± 0.84 ab 27.89 ± 2.00 a 48.53 ± 3.78 a 62.35 ± 12.95 a 93.59 ± 13.77 a 128.95 ± 13.43 ab

4802-8-46Y-L 14.07 ± 0.42 a 28.73 ± 2.11 a 51.18 ± 4.85 a 73.89 ± 6.49 a 101.65 ± 8.30 a 132.95 ± 8.13 ab

4802-8-60G-L 12.75 ± 0.28 ab 26.47 ± 0.65 a 46.56 ± 1.10 a 68.87 ± 0.21 a 97.89 ± 0.48 a 132.21 ± 1.29 ab

4802-8-87Y-L 14.11 ± 0.65 a 28.26 ± 2.83 a 49.98 ± 6.04 a 73.69 ± 6.37 a 105.96 ± 6.94 a 143.57 ± 7.12 a

CDC Bronco 13.14 ± 0.46 ab 27.35 ± 1.07 a 48.35 ± 2.74 a 70.73 ± 2.11 a 99.14 ± 1.85 a 131.36 ± 2.27 ab

No pea 6.20 ± 0.80 c 8.11 ± 0.80 b 11.82 ± 1.33 b 16.82 ± 1.83 b 22.07 ± 2.18 b 25.69 ± 3.67 c

1 Values are means ± SEM (n = 15 animals per treatment group). a–c Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05).

Also, as from day 35 of the study, body weights were consistently higher (p < 0.05) in several of
the low phytate pea based dietary groups (4803-4-78G-L, and 4802-8-87Y-L), relative to the CDC Bronco
and no-pea dietary groups (Table 6). Hemoglobin (Hb) values did not differ between treatment groups;
however, significant differences in total body Hb-Fe, a physiological biomarker of Fe bioavailability
and status, were detected as of week five of the study (Table 7), demonstrating an improvement in
Fe status in the 4802-8-87Y-L group, relative to CDC Bronco and no-pea diet groups. In addition,
the standard pea variety treatment group (CDC Bronco) had a lower HME (p < 0.05) at each time
point when compared to the group receiving the lower-phytate pea-based diets (groups 1-2347-144,
4803-4-78G-L), indicating a higher dietary Fe bioavailability and increased absorbable Fe (Table 8).

Table 6. Experimental body weights 1.

Body Weights (kg)

Pea Diet Day 7 Day 14 Day 21 Day 28 Day 35 Day 42

1-2347-144 0.133 ± 0.004 a 0.327 ± 0.010 a 0.547 ± 0.009 a 0.904 ± 0.031 b 1.326 ± 0.082 bc 1.820 ± 0.130 b

4803-4-78G-L 0.137 ± 0.006 a 0.334 ± 0.013 a 0.576 ± 0.022 a 0.997 ± 0.037 ab 1.447 ± 0.058 ab 2.040 ± 0.100 ab

4802-8-46Y-L 0.137 ± 0.011 a 0.337 ± 0.025 a 0.578 ± 0.043 a 0.994 ± 0.067 ab 1.384 ± 0.085 bc 1.880 ± 0.110 ab

4802-8-60G-L 0.136 ± 0.005 a 0.334 ± 0.026 a 0.563 ± 0.044 a 0.974 ± 0.050 ab 1.393 ± 0.076 bc 1.930 ± 0.110 ab

4802-8-87Y-L 0.131 ± 0.006 a 0.322 ± 0.016 a 0.561 ± 0.037 a 1.024 ± 0.049 a 1.536 ± 0.059 a 2.140 ± 0.070 a

CDC Bronco 0.131 ± 0.002 a 0.317 ± 0.006 a 0.541 ± 0.008 a 0.922 ± 0.019 b 1.300 ± 0.006 c 1.840 ± 0.020 b

No pea 0.072 ± 0.003 b 0.090 ± 0.005 b 0.118 ± 0.006 b 0.161 ± 0.009 c 0.201 ± 0.011 d 0.240 ± 0.010 c

1 Values are means ± SEM (n = 15 animals per treatment group). a–d Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05). Body weights averaged 38 g at the start of the experiment.

Table 7. Experimental total body hemoglobin iron (Hb-Fe) 1.

Hb-Fe (mg)

Pea Diet Day 7 Day 21 Day 35 Day 42

1-2347-144 4.981 ± 0.152 a 20.845 ± 0.339 a 55.186 ± 3.392 bc 97.790 ± 7.150 b

4803-4-78G-L 5.496 ± 0.245 a 23.452 ± 0.914 a 56.839 ± 2.276 ab 107.280 ± 5.140 ab

4802-8-46Y-L 5.539 ± 0.444 a 22.967 ± 1.727 a 51.886 ± 3.200 bc 96.610 ± 5.600 ab

4802-8-60G-L 5.301 ± 0.207 a 21.814 ± 1.668 a 48.939 ± 2.659 bc 96.980 ± 5.480 ab

4802-8-87Y-L 4.730 ± 0.223 a 19.886 ± 1.314 a 57.088 ± 2.198 a 116.910 ± 3.590 a

CDC Bronco 4.177 ± 0.062 a 17.249 ± 0.268 a 45.414 ± 0.209 c 100.450 ± 1.250 b

No pea 2.354 ± 0.090 b 4.048 ± 0.206 b 6.447 ± 0.348 d 9.480 ± 0.550 c

1 Values are means ± SEM (n = 15 animals per treatment group). a–d Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05). Total body hemoglobin iron averaged 0.65 milligrams at the start of
the experiment.
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Table 8. Experimental hemoglobin maintenance efficacy (HME) 1.

HME (%)

Pea Diet Day 21 Day 35 Day 42

1-2347-144 37.44 ± 3.81 a 56.21 ± 4.66 a 80.58 ± 8.13 a

4803-4-78G-L 39.82 ± 3.85 a 57.37 ± 8.61 a 78.90 ± 7.61 a

4802-8-46Y-L 34.35 ± 2.52 ab 45.72 ± 0.79 ab 70.18 ± 0.23 ab

4802-8-60G-L 37.29 ± 4.09 a 44.56 ± 2.31 ab 71.66 ± 4.45 ab

4802-8-87Y-L 32.22 ± 2.51 ab 49.66 ± 2.29 ab 61.10 ± 1.26 b

CDC Bronco 27.24 ± 1.85 b 41.63 ± 0.96 b 62.92 ± 1.40 b

No pea 14.57 ± 1.33 c 19.04 ± 2.18 c 28.53 ± 3.03 c

1 Values are means ± SEM (n = 15 animals per treatment group). a–c Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05).

3.4.2. Hepatic Iron and Ferritin Concentrations

The contents of liver iron and ferritin (day 42) are shown in Table 9. Significant (p≤ 0.05) differences
in liver iron were detected among the seven treatment groups with concentrations ranging from 73 µg/g
in the group receiving the 4803-4-78G-L diet to 96 µg/g in the 1-2347-144 diet. Significant (p ≤ 0.05)
differences in liver ferritin concentrations were also measured between the seven dietary treatment
groups (Table 9).

Table 9. Hepatic iron and ferritin protein concentrations 1.

Pea Diet Liver Iron (µg/g) Liver Ferritin (AU)

1-2347-144 96.49 ± 6.52 a 1.078 ± 0.014 a

4803-4-78G-L 73.30 ± 7.58 b 1.084 ± 0.015 a

4802-8-46Y-L 77.61 ± 17.72 b 1.063 ± 0.009 a

4802-8-60G-L 87.46 ± 4.98 ab 1.050 ± 0.005 a

4802-8-87Y-L 71.88 ± 4.79 b 0.469 ± 0.160 b

CDC Bronco 91.34 ± 9.79 ab 0.257 ± 0.017 c

No pea 75.71 ± 6.29 b 0.280 ± 0.007 c

1 Values are means ± SEM (n = 12 animals per treatment group). a–c Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05). Total iron concentrations were measured as micrograms per gram of liver
tissue (wet weight). Liver ferritin concentrations were measured as arbitrary units of liver tissue (wet weight).

3.4.3. Serum Iron Concentrations

Significant differences (p ≤ 0.05) in serum iron concentrations were detected on day 21 and 35 of
the study. On day 21, the lowest concentration of serum iron was 1.526 µg/µL in the no-pea dietary
group, while the highest concentration was in the 4802-8-87Y-L pea-based dietary group (2.812 µg/µL).
On day 35, the lowest concentration of serum iron was 1.488 µg/µL (no-pea dietary group), while the
highest concentration was detected in the 4803-4-78G-L dietary group (2.633 µg/µL) (Table 10).

Table 10. Serum iron concentrations 1.

Serum Iron (µg/µL)

Pea Diet Day 7 Day 21 Day 35 Day 42

1-2347-144 2.089 ± 0.161 a 1.682 ± 0.120 b 2.226 ± 0.243 ab 2.116 ± 0.183 a

4803-4-78G-L 1.604 ± 0.108 a 2.322 ± 0.198 ab 2.633 ± 0.451 a 2.104 ± 0.280 a

4802-8-46Y-L 3.029 ± 0.636 a 2.596 ± 0.700 ab 1.795 ± 0.225 b 2.349 ± 0.289 a

4802-8-60G-L 2.383 ± 0.282 a 2.058 ± 0.170 b 1.583 ± 0.106 b 2.240 ± 0.218 a

4802-8-87Y-L 2.767 ± 0.774 a 2.812 ± 0.425 a 1.578 ± 0.144 b 2.132 ± 0.178 a

CDC Bronco 1.936 ± 0.237 a 1.829 ± 0.223 b 1.670 ± 0.190 b 2.292 ± 0.224 a

No pea 2.248 ± 0.490 a 1.526 ± 0.215 ab 1.488 ± 0.088 b 2.105 ± 0.187 a

1 Values are means ± SEM (n = 12 animals per treatment group). a,b Treatment groups not indicated by the same
letter are significantly different (p ≤ 0.05).
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3.4.4. Glycogen Concentrations in Pectoral Muscle

As an indicator of energetic status [52,53], pectoral muscle glycogen concentrations were measured
on days 21 and 42 of the study (Table 11). No significant differences were detected on day 21; however,
significant differences (p ≤ 0.05) were measured on day 42 in the abundance of glycogen stored in
pectoral muscles. The highest values of glycogen were in the 4802-8-60G-L pea-based dietary group,
and the lowest concentration of glycogen was in the no-pea dietary group.

Table 11. Pectoral muscle glycogen concentrations (AU) 1.

Pea Diet Day 21 Day 42

1-2347-144 0.020 ± 0.012 a 0.044 ± 0.010 ab

4803-4-78G-L 0.023 ± 0.012 a 0.037 ± 0.006 b

4802-8-46Y-L 0.040 ± 0.011 a 0.041 ± 0.026 ab

4802-8-60G-L 0.031 ± 0.008 a 0.055 ± 0.011 a

4802-8-87Y-L 0.024 ± 0.007 a 0.053 ± 0.005 a

CDC Bronco 0.029 ± 0.034 a 0.034 ± 0.003 a

No pea 0.023 ± 0.004 a 0.033 ± 0.008 b

1 Values are means ± SEM (n = 5 animals per treatment group. a,b Treatment groups not indicated by the same letter
are significantly different (p ≤ 0.05).Glycogen concentrations were measured as milligrams per milliliter of pectoral
tissue (wet weight).

3.4.5. Duodenal Gene Expression

The duodenal gene expression of iron- and zinc-related proteins, as well as BBM functional
proteins, is shown in Figure 2. Significant (p ≤ 0.05) differences in the expression of DcytB and
ferroportin were identified, with no significant differences in divalent metal transporter-1 (DMT1)
expression between treatment groups.
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3.4.6. Cecum Content Bacterial Populations Analysis

As shown in Figure 3, the relative abundance of Bifidobacterium was significantly higher (p < 0.05)
in the 4802-8-87Y-L and CDC Bronco groups relative to all other treatment groups. Furthermore,
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the abundance of Lactobacillus was significantly higher (p < 0.05) in the 1-2347-144 and 4803-4-78G-L
groups relative to all other treatment groups.
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4. Discussion

The objective of the current study was to investigate the effects of low-phytate peas, in the context
of a complete meal, on Fe bioavailability, absorption, physiological status, intestinal BBM functionality,
and gastrointestinal microbial populations in vivo (Gallus gallus).

In studies of biofortification, the process via which the nutritional quality of food crops is improved
through agronomic practices, conventional plant breeding, or modern biotechnology [2], it is necessary
and advantageous to utilize in vivo screening tools that are capable of assessing biofortified varieties
of staple crops, as well as in relation to the diet in which they are consumed [1,33,36,38,39,46,54–56].
The present study, for the first time, presents a demonstration of how the Gallus gallus model of Fe
(and Zn) bioavailability could be useful in the design of the current study aimed at assessing the
potential nutritional benefit of lower-phytate versus standard peas. The chosen dietary composition was
specifically formulated in accordance to a potential target population (Indian/Bangladeshi pea-based dal
meal), similar to previous in vivo studies aimed at assessing dietary Fe bioavailability in beans [35,55]
and wheat [38] (Table 1). Overall, our data agree with previously published knowledge [1,39,49,55],
demonstrating that this in vivo screening approach is effective in the evaluation process of nutritional
qualities of the low-phytate pea varieties. Furthermore, the data suggested that lower-phytate pea-based
diets were able to moderately improve Fe physiological status in vivo.

Peas are a common staple food crop consumed worldwide, primarily in India, China, Russia,
Ethiopia, and Bangladesh. Global dry pea production increased from 9.9 million tons in 2012 to
16.2 million tons in 2017 [7]. Currently, the leading producers are Canada, Russia, China, Ukraine,
and India. In Canada, a leading producer and exporter of dry peas, pea was grown on 1.6 million ha in
western Canada (Saskatchewan, Alberta, and Manitoba) in 2017, indicating a significant alteration in
cropping practices from the 300 ha reported in 1967. Pea was the major alternative crop as farmers
shifted toward a more diversified crop production. Pea varieties (yellow and green cotyledon) are
grown, with an average of 80% production in yellow cotyledon varieties. The five-year (2013–2017)
average pea yield in western Canada is 2.6 tons/ha (38 bu/ac) [57]. As for their nutritional value,
it was previously demonstrated that pea seeds are high in protein, carbohydrates, fiber, B vitamins,
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and minerals (potassium, magnesium, calcium, iron), and they are considered an inexpensive source
of energy-dense, nutrient-rich food [58–60]. In addition, pea seeds are low in fat and cholesterol-free.
Because of these nutritional benefits, worldwide pea utilization is expected to continue to grow.

Plant seeds, such as pea, contain a high concentration of phosphorus. However, about 60–80%
of the total phosphorus in seeds is stored in the form of phytate, a mixed-cation salt of phytic
acid [59]. This introduces a nutritional challenge, as negatively charged sites of phytic acid bind
and form salts with K+, Mg2+, Ca2+, Mn2+, Zn2+, or Fe3+ [61]. Phytate causes multiple difficulties,
as non-ruminant animals including pig, poultry, fish, and humans, are unable to digest phytate due
to lack of a phytase enzyme [61]; as a result, important micronutrients (as Zn2+ and Fe3+) bound
to phytate are also excreted and not absorbed, potentially leading to micronutrient deficiencies [62].
Recently, the development of cultivars with low-phytate content became an effective approach to
potentially reducing nutritional concerns ascending from the consumption of phytate-rich grains.
Low-phytate varieties were chemically persuaded in maize (Zea mays L.) [63], soybean (Glycine max (L.)
Merr.) [64], barley (Hordeum vulgare L.) [63,65], rice (Oryza sativa L.) [66], wheat (Triticum aestivum L.) [67],
bean (Phaseolus vulgaris L.) [68], and pea [41]. The concentration of phytate phosphorus is significantly
reduced in the mutants with an associated increase in available phosphorus. Wilcox et al. [65] reported
an 80% reduction in phytate phosphorus content in a low-phytate soybean mutant, as compared with
its nonmutant sibling, and this reduction was matched by an equal increase in inorganic phosphorus.

It was previously demonstrated that low-phytate crops increase the bioavailability of phosphorus
and several important nutritional cations, including Fe. These crops could assist in increasing the
health of a large proportion of the global population, which is dietary Fe-deficient, primarily in target
regions where dietary peas are consumed regularly. For example, in a previous study focused on
the nutritional evaluation of low-phytate pea diets in vivo, it was demonstrated that animals fed the
low-phosphorus diets had lower weight gain and feed intake (p < 0.01) than those fed the higher
phosphorus level. Bone strength was higher (p < 0.01) for animals fed diets based on low-phytate pea
than for those fed diets based on normal pea or soybean meal. The authors concluded that increasing
the availability of the phosphorus in peas could mean that less inorganic phosphorus would be required
in order to meet the nutritional requirements of broilers [59].

In the context of the current study, the results indicated that, despite Hb levels not being significantly
higher in the lower-phytate pea groups, significant differences in total body Hb-Fe, the physiological Fe
status biomarker [33–36,39,46,55], were observed (Table 8), representing an enhancement in Fe status
in the 4802-8-87Y-L dietary group, relative to CDC Bronco and the no-pea dietary group. In addition,
the standard pea variety (CDC Bronco) treatment group had a lower HME (p < 0.05) ratio compared to
the group receiving the lower-phytate pea-based diets (groups 1-2347-144, 4803-4-78G-L) (Table 8),
indicating improved dietary Fe bioavailability and increased absorbable Fe [36,46,54]. The CDC Bronco
diet presented a higher PA–Fe ratio compared to the all low-phytate pea-based diets (Table 1), which was
associated with increased dietary Fe bioavailability in these pea-based diets [69–71]. These results
agree with preceding experiments intended to assess Fe bioavailability in Fe-biofortified legumes,
such as black beans [72], red mottled beans [33], Carioca beans [36], and pearl millet [73], as well as
in the context of a complete diet. Thus, several intrinsic factors, including phytates, may influence
the bioavailability of Fe from these pea varieties and other crops [56,74–76], potentially limiting their
nutritional benefit.

Previous research suggested that increased Fe content alone in biofortified crops may not
be adequate to produce a significant physiological improvement in Fe status and in Fe-deficient
populations [36,55,76]. In the current study, it appears that, although Fe contents of all tested pea
varieties were similar, the consumption of lower-phytate peas was able to moderately improve Fe
status and storage, as further suggested by the hepatic ferritin contents of lower-phytate groups relative
to CDC Bronco and no-pea diets. Furthermore, the duodenal brush border membrane (BBM) gene
expression of ferroportin (FPN) was significantly upregulated, while DcytB was downregulated in
the groups receiving the lower-phytate pea-based diets, relative to the CDC Bronco dietary group
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(p < 0.05, Figure 2). However, no significant alterations in the expression of BBM functional proteins
were detected amongst treatment groups. Previous studies showed a downregulation of the gene
expression of Fe-related BBM proteins (DMT-1, FPN, and Dcytb) in Fe-biofortified diets compared to
the Fe-standard diets [36,46,55]. Ferroportin is the Fe exporter that transfers Fe across the enterocyte’s
basolateral membrane [77]. Hence, since the lower-phytate pea-based dietary groups had a higher
expression of FPN, more Fe could be transported from the enterocyte into the blood and target tissue;
therefore, this mechanism indicates the potential increased amount of absorbable Fe and, hence,
the total body Hb-Fe increased in some of the low phytate groups compared to the CDC Bronco and
no-pea dietary groups.

Similar to humans and most animals, the Gallus gallus model harbors a complex and active
intestinal microbiota [78], significantly and directly influenced by host genetics, environment,
and diet [79]. There is a significant resemblance at the phylum level between the gut microbiota
of Gallus gallus and humans, with Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria
representing the dominant bacterial phyla in both [80]. In this study, a genus- and species-level
bacterial population delineation among the low-phytate, standard (CDC Bronco), and no-pea dietary
groups was observed. Results indicated that the abundance of Bifidobacterium was significantly
higher (p < 0.05) in the 4802-8-87Y-L and CDC Bronco groups relative to all other treatment groups.
Furthermore, the abundance of Lactobacillus was significantly higher (p < 0.05) in the 1-2347-144 and
4803-4-78G-L treatment groups relative to all other treatment groups (Figure 3). These results suggest
that the above lower-phytate pea-based diets may potentially improve the host overall gut health
by promoting the abundance of beneficial bacterial populations. Moreover, some of the low-phytate
pea varieties (as 1-2347-144) presented a higher (p < 0.05) total fiber content (soluble and insoluble)
compared to the standard CDC Bronco pea (Table 3). It was previously demonstrated that soluble fiber
can increase villi height by elevating intestinal cell proliferation [81]. In the current study, some of
the low-phytate pea dietary groups (such as 4803-4-78G-L, 4802-8-46Y-L, and 4802-8-87Y-L) presented
higher (p < 0.05) protein content compared to the standard CDC Bronco pea (Table 3), where a
higher dietary protein content was shown to increase villi height and intestinal cell proliferation [82].
Furthermore, indigested dietary proteins and fibers are fermented in the lower intestine, and this action
produces short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. Production of
SCFAs affects metabolism and gastrointestinal health [83]. Acetate and propionate are energy substrates
for peripheral tissues, and butyrate is referentially used as an energy source by colonocytes [84,85].

In summary, the current study focused on the performance of low-phytate pea varieties in
chicken diets. Phytate phosphorus concentration was reduced by approximately 40% in these varieties.
The low-phytate pea variety-based diets were able to moderately improve the Fe status in vivo,
suggesting that low-phytate field pea has the potential to improve Fe bioavailability in human diets,
particularly in the Indian subcontinent, as one of the major importing regions for Canadian peas,
and a region where dietary Fe deficiency is a major health concern. Furthermore, as the abolition of
micronutrient malnutrition remains a widespread global health problem in developing countries, the
current study suggests that increasing micronutrient intake in food through food-based approaches is
a sustainable method for the potential prevention of micronutrient deficiencies. Biofortification offers a
long-term, sustainable, food-based solution for a world population, and breeding programs may aim to
improve grain Zn and Fe concentrations; however, as previously suggested, improving Fe or Zn content
may not necessarily result in the desired outcome (i.e., breeding toward increased mineral content may
also lead to increased potential dietary inhibitors) and, hence, may not be as effective. In low-income
countries, breeding for mineral solidity may remain the only agricultural involvement available to
improve the nutritional content of staple crops, and, as suggested in the current study, the genetic
improvement of staple food crops, specifically the development of low-phytate pea verities, resulted in
improved nutritional quality and dietary Fe bioavailability, including in a complete diet context.

Additionally, as previously demonstrated, the current study presents a cost-effective approach
designed to assess the effectiveness of biofortified pea varieties in vivo, as these varieties were
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developed with an aim to reduce the inhibitory effect of dietary phytate on Fe bioavailability. Therefore,
our findings suggest that the use of lower-phytate biofortified peas may be an effective and sustainable
approach to decreasing the global abundance of Fe deficiency, with added improvements in intestinal
bacterial population structure and intestinal BBM functionality.

5. Conclusions

Nutritional approaches aimed to ease global Fe deficiency, such as Fe supplementation or
fortification, are moderately successful at achieving optimal Fe status. This study showed how
biofortified low-phytate pea affects dietary Fe bioavailability, physiological status, and the composition
and metagenome of the gut microbiota and intestinal function. Animals (Gallus gallus) that consumed
the low-phytate pea-based diets had increased abundance of beneficial bacteria, with associated
surges in SCFA-producing bacteria with known phenolic catabolic capability, which resulted in an
improvement in intestinal functionality. In addition, some of the low-phytate peas presented a higher
protein content versus the standard CDC Bronco pea, which can possibly improve Fe bioavailability
and intestinal functionality. Furthermore, parallel to preceding data, the current research suggests that
a key aspect to include is the in vivo measurement of dietary Fe bioavailability in biofortified crop
variety-based diets, as part of the plant breeding procedure.

Overall, our discoveries provide further evidence that, unlike other nutritional approaches to
improving Fe status, the low-phytate pea varieties appear to improve Fe physiological status and gut
microbiota in vivo, and they present an option for this strategy to further advance the efficacy and
safety of crop biofortification and mineral bioavailability. We recommend the application of in vivo
screening tools to guide studies aimed at developing and appraising Fe bioavailability in biofortified
food crops, as well as their possible nutritional benefit. Based on the data presented in the current
study, a human efficacy study will be conducted to compare the 4802-8-87YL (low phytate) and CDC
Bronco (standard/normal phytate) varieties, along with a no-pea control.
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