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Background: In this study, we evaluate whether the use of biliverdin (BV), a natural non-toxic antioxidant product of haeme
catabolism, can suppress head and neck squamous cell carcinoma (HNSCC) cell proliferation and improve the tumour survival
both in vitro and in vivo. Furthermore, we investigate whether this therapeutic outcome relies on BV’s potent antioxidant effect on
reactive oxygen species (ROS)-mediated signalling.

Methods: Two well-characterised HNSCC cell lines and a mouse model with human HNSCC were used for this study. In vitro, the
effect of BV on ROS was assayed. Subsequently, critical regulatory proteins involved in growth, antiapoptotic, and angiogenic
pathways were investigated by western blot analysis. In addition, the antiproliferative effect of BV was also evaluated using the
clonogenic assay. Moreover, tumour growth inhibition was assessed using a mouse model with HNSCC.

Results: Biliverdin treatment resulted in decreased ROS, leading to suppression of proliferation and angiogenesis pathways of
HNSCC, significantly decreasing the expression and phosphorylation of oncogenic factors such as epidermal growth factor
receptor (EGFR), phosphorylation of Akt, and expression of angiogenic marker and transcription factor, hypoxia-inducible factor1-
a (HIF1-a). Furthermore, this downregulation of ROS by BV led to a significant suppression of tumour growth in vivo.

Conclusions: Our study demonstrates the efficacy of a novel therapeutic approach using BV as an antitumour agent against
HNSCC through its effect on EGFR/Akt and HIF1-a/angiogenesis signal transduction pathways. Our findings indicate that BV’s
inhibitory effect on these tumorigenic pathways relies on its antioxidant effect, and may extend its therapeutic potential to other
solid cancers.

Head and neck cancer (HNC) is the sixth most common cancer
worldwide, accounting for over 350 000 deaths annually. In the
United States alone, more than 50 000 patients were diagnosed
with HNC in 2012 (Leemans et al, 2011). Approximately 90% of all
HNCs are squamous in origin, commonly referred to as head and
neck squamous cell carcinoma (HNSCC), and originate from the
epithelial lining of the upper aerodigestive tract. Despite several
advances in treatment options, 3-year disease-free survival still
ranges around 35–55%, and has hardly improved over the past 30

years (Li et al, 2008). In addition, current therapeutic modalities
such as chemotherapy and radiation are marked by high toxicity,
poor treatment-related side effects, and acquired resistance. There
is, therefore, a great need for the development of novel
‘chemoradiation-free’ therapies to target key molecular pathways
in HNSCC cells while preserving normal surrounding tissue.

Biliverdin (BV) is a natural, non-toxic, antioxidant green
tetrapyrrole bile pigment, and is a product of the haeme catabolic
pathway (Mosqueda et al, 2005). While initially BV was viewed as a
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mere waste product excreted in bile, recent studies have elucidated
its beneficial effects (Liu et al, 2003; Fondevila et al, 2004;
Yamashita et al, 2004; Sarady-Andrews et al, 2005), such as its
ability to regulate cellular growth in hyperproliferative disorders.
Specifically, BV and its rapidly converted homologue bilirubin
(BR) have been shown to slow growth of cells involved in several
pathological processes, such as intimal growth after blood vessel
injury and cancer propagation (Ollinger et al, 2005, 2007b). In
addition, a negative correlation between serum BR levels and
cancer incidence was established through multiple clinical studies
(Temme et al, 2001; Ching et al, 2002; Zucker et al, 2004).
Furthermore, in both in vitro and in vivo models, BR was shown to
significantly downregulate cancer cell growth, but the primary
mechanism governing the role of BR-induced cellular growth
inhibition was largely undetermined. Additionally, BR is highly
toxic to normal cells, relies on carrier-mediated transport in the
blood, and its mechanism of entry into cells is not well understood.

Head and neck squamous cell carcinoma commonly over-
expresses several growth factors and their receptors, including
epidermal growth factor receptor (EGFR), a cell-surface receptor
tyrosine kinase, which has been associated with poor prognosis and
decreased survival. One important downstream target of EGFR is
Akt, a serine/threonine kinase (Dudek et al, 1997), which has been
shown to be a critical transmitter of oncogenic signalling in
tumours (Dobashi et al, 2011). After EGFR activation, Akt is
recruited to the plasma membrane by PIP3, and then phosphory-
lated at Thr308 by protein-dependent kinase 1 (PDK1). For full
activation, Akt needs to be subsequently phosphorylated at Ser473
by PDK2. On the basis of the finding that BR blocked vascular
smooth muscle cell development and cancer cell proliferation
(Ollinger et al, 2005, 2007a), we looked to evaluate whether BV, a
non-toxic homologue of BR, could exhibit a potent antiprolifera-
tive effect on HNSCC cells. Moreover, we investigated whether this
inhibitory effect of BV could be translated to an in vivo mouse
model. Furthermore, we look to elucidate the mechanism under-
lying these findings, and evaluate whether the pathway relies on
EGFR deprivation, leading to a subsequent downregulation of
proliferative and antiapoptotic pathways.

Previously, BV has been shown to possess highly potent
antioxidant properties; significantly more so that BR or other
tetrapyrroles found in the body (Asad et al, 2001; Stocker, 2004;
MacLean et al, 2008; Molzer et al, 2012). Furthermore, reactive
oxygen species (ROS)-mediated cellular signalling has shown to be
critical for cellular growth, angiogenic, and other oncogenic
pathways. Specifically, increased oxidative stress in cancer cells
leads to upregulation of hypoxia-inducible factor1-a (HIF1-a)
(Ahluwalia and Tarnawski, 2012), a critical player in angiogenesis,
which leads to increased VEGF production from the cells, among

several other pro-angiogenic factors (Choi et al, 2003). Therefore,
in this study we investigate the effect of BV on ROS in HNSCC
cells, and whether this effect leads to a downregulation of HIF1-a
in vitro and angiogenesis in vivo.

MATERIALS AND METHODS

Cell culture. Previously well-characterised human HNSCC cell
lines Fadu and JHU022 originating from primary tumour explants
(Li et al, 2008) and human umbilical vein endothelial cells
(HUVECs) were used in this study. Cells were propagated in
RPMI-1640 with 10% FBS, 1% Penicillin, and 1% Streptomycin
(HUVECs were propagated in endothelial cell growth media kit,
cc-4133; Lonza, Allendale, NJ, USA) at 37 1C with 5% CO2.

Reagents. For in vitro experiments, BV (Frontier Scientific, Logan,
UT, USA) was first dissolved in 0.1% DMSO (Sigma-Aldrich,
St Louis, MO, USA) and then adjusted to an appropriate final
concentration using prewarmed culture medium as described by
Dortay et al (2011). In all in vitro experiments where BV was used,
the corresponding amount of DMSO was added to the medium to
ensure appropriate control conditions. For in vivo study, BV was
dissolved in PBS and neutralised with 1 N HCl to a pH of 7.4, and a
final concentration of 1 mM. Subsequently, the solution was
sterilised by filtration and stored at � 80 1C. All experiments were
carried out in a controlled manner to avoid direct light exposure.
5,50-Dithio-bis-(2-nitrobenzoic acid), (DTNB) was purchased from
Thermo Scientific (Rockford, IL, USA). 6-hydroxy-2,5,7,8-tetra-
methylchroman-2-carboxylic acid (Trolox) was purchased from
Cayman chemical (Ann Arbor, MI, USA). Barium chloride
dihydrate and benzene were purchased from Sigma-Aldrich.
Matrigel was purchased from BD Biosciences (San Jose, CA, USA).

In vitro clonogenic assay. Cell proliferation was evaluated using
the clonogenic assay. Cells were plated at 400 cells per well in a
6-well plate and were treated as indicated. Seventy-two hours after
treatment, growth medium was changed and cells were cultured at
37 1C for 7 days. Cells were washed once with PBS, stained with
crystal violet (Bio-Rad, Hercules, CA, USA) for 30 min at room
temperature. Colonies per well were enumerated, and the
mean±s.d. was determined. The survival fraction was calculated
and expressed as compared with control. All groups were tested in
three independent experiments.

Measurement of intracellular ROS. Seventy-two hours after
treatment with 100 mM BV, cells were added the CellROX Reagent
(Carlsbad, CA, USA) at a final concentration of 5mM. The cells
were then incubated for 30 min at 37 1C. The cell-culture
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Figure 1. BV suppresses HNSCC cell colony formation in vitro. To demonstrate the antiproliferative effect of BV, a clonogenic assay was
performed on Fadu (A) and JHU022 (B) cancer cells as described earlier. In three independent experiments with at least six samples each,
treatment with BV significantly suppressed the colony formation ability of all two HNSCC cells tested (**Po0.01). Survival fraction ±s.d. is shown.
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supernatant was removed and cells were washed with PBS for three
times, and the fluorescence intensity was obtained with an Infinite
M1000 multimode reader (TECAN, San Jose, CA, USA).

Western blot analysis. Antibodies used for western blot analysis
were anti-EGFR, anti-phosphorylated EGFR (p-EGFR) (Cell
Signaling, Boston, MA, USA), anti-Akt, anti-phosphorylated Akt
(p-Akt) (Novus Biologicals, Littleton, CO, USA), anti-PARP
(GeneTex, Irvine, CA, USA; Abcam, Cambridge, MA, USA),
anti-HIF1-a (Cell Signaling), anti-phosphorylated-Rb (Cell Signal-
ing), anti-Cyclin D1 (BD Biosciences), and anti b-actin (Novus
Biologicals). To analyse the effects of BV on these proteins, Fadu
and JHU022 cells were seeded at 300 000 cells per well in a 6-well
plate, treated as described in the legend, and protein samples were
collected at 72 h. Cells were then lysed with lysis buffer (150 mM

sodium chloride, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1%
SDS, and 50 mM Tris, pH 8.0, protease inhibitor cocktail, and
phosphatase inhibitor cocktail tablets) and protein concentration
was determined using BCA (Pierce, Rockford, IL, USA). Western
blot analysis was then conducted, with b-actin serving as a loading
control.

Immunohistochemistry. Immunohistochemistry (IHC) was per-
formed using the VECTASTAINVR Elite ABC kit (Vector
Laboratories, Inc., Burlingame, CA, USA) to visualise endothelial
cells (CD31, platelet/endothelial cell adhesion molecule-1) in
tumour samples. Formalin-fixed paraffin-embedded tumour tissue
sections were cut at 5 mm thick and air dried for 4 h. Sections were
then incubated with normal blocking serum for 20 min at room
temperature, followed by the primary antibody at 4 1C overnight in
the dark. Rat monoclonal antibody to mouse CD31 antigen (BD
Pharmingen, San Diego, CA, USA) was used at a dilution of 1 : 50.
Sections were incubated with diluted biotinylated secondary
antibody solutions, followed by VECTASTAINVR Elite ABC
reagent for 30 min. Subsequently, sections were incubated with
3,30-diaminobenzidine tetrahydrochloride (DAB)–H2O2 solution
for visualisation and were counterstained with haematoxylin. To
assess the grade of microvessel growth within the tumour, three
views (� 20) were digitally recorded for each tumour to cover the
greatest anti-CD31 staining area for estimation of microvessel
development (Mavria et al, 2005; Saito et al, 2009). The relative
percentage of CD31-positive area, represented by the microvessel
density (MVD) within each high power field, was measured for
three separate images with the assistance of ImmunoRatio, an
application reviewed in detail by Tuominen et al (2010).

Matrigel tube formation assay. Tube formation assay was
performed by following the published protocol by Arnaoutova
et al (2009). Briefly, 8-well chamber slides were coated with ice-
cold Matrigel (BD Biosciences) (150ml per well) and incubated at
37 1C for 30 min to allow gelation to occur. Human umbilical vein
endothelial cells treated with BV (100mM) or Trolox (1 mM),
known as an antioxidant, or DTNB or BV plus DTNB, were
incubated in endothelial cell growth media for 3 days. After the
treatment, HUVECs were added to the top of the gel at a density of
50 000 cells per well. The positive control included the same
amount of solvation vehicle (DMSO) as the experimental
condition. Cells were incubated at 37 1C with 5% CO2 for 24 h and
images were captured with a SPOT CCD camera mounted on Nikon
Eclipase 80i fluorescence microscope (Nikon, Melville, NY, USA).

Plasma alanine transaminase assay. The levels of nude mouse
plasma alanine transaminase (ALT) were measured and calculated
using the Cayman’s Alanine Transaminase Assay Kit (Ann Arbor,
MI, USA) by following the kit protocol. The plasma was collected
from three BALB/c nude mice in each group with or without giving
12 days BV intraperitoneal (i.p.) injection. Porcine heart ALT was
used as a positive control (kit provided).

BR level measurement in vitro. Fadu and JHU022 cells were
treated with or without 5mM DTNB, 100 mM BV, or 100 mM BV plus
5 mM DTNB for 3 days. Then, the culture supernatant was collected
and measured the BR level by using the protocol which has been
reported by Dhouib et al (Turcanu et al, 1998).

Apoptosis detection. Apoptosis was quantified in tumour samples
using the Apoptosis Detection Kit (Millipore, Billerica, MA, USA).
Tumour samples were fixed in formalin and embedded in paraffin
as per previously established protocols. Tissue samples were
sectioned at 5 mm thickness and the TUNEL assay was performed
as previously described (Abuzeid et al, 2009). Four tumour sections
were randomly selected from each treatment group and apoptotic
cells were quantified and analysed using the ImageJ software
(National Institutes of Health (NIH), Bethesda, MD, USA).

In vivo animal and xenograft tumours. All animal handling and
surgical procedures were conducted strictly according to the
guiding principles for the use of laboratory animals. This study was
approved by the Animal Care Committee guidelines of the
University of Pennsylvania. Six-week-old female athymic BALB/c
nude mice obtained from the National Cancer Institute were
randomly divided into four groups with three mice each. Mice
were anaesthetised via i.p. injection of 6–10 mg tribromoethanol,
with depth of anaesthesia determined by toe pinch. Mice were then
injected subcutaneously in the left flank with either ten million
Fadu or JHU022 cells. Eight days status-post tumour injection,
mice in the treatment group received 25 mg kg� 1 w/v BV twice
daily via i.p. injection, with equivalent PBS w/v serving as a control.
To measure BV’s effect on dynamic tumour growth, every 2 days
after treatment, external tumour measurements in two dimensions
using calipers were performed. External tumour volume was
calculated using the formula A2�B� p/6, where A represents the
smallest diameter and B equals the largest diameter, as previously
described by Roulin et al (2010).

Statistical analysis. All experiments were performed three times,
and all statistical analysis including s.d./s.e.m. calculations were
performed using SPSS 11.5 (Chicago, IL, USA). Differences/
correlations between groups were calculated with Student’s t-test or
Mann–Whitney U-test, and solitary outliers (42 s.d.’s) were
removed from analysis. A P-value of o0.05 was used as a measure
of statistical significance.
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Figure 2. BV has a potent suppressive effect on ROS levels in vitro.
To demonstrate the antiproliferative effect of BV, an ROS assay was
performed on Fadu and JHU022 cancer cells as described earlier.
In three independent experiments with at least three samples each,
treatment with BV, Trolox, and BV plus DTNB significantly suppressed
the ROS level in both HNSCC cells tested (**Po0.01), while DTNB
treatment alone did not change the ROS level. Mean±s.d. is shown.
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RESULTS

BV suppresses colony formation in vitro. To demonstrate BV’s
antiproliferative effect on HNSCC cells, a clonogenic assay was
performed. After 3 days of treatment, both Fadu and JHU022 cells
saw a striking decrease in colony forming ability of 51.59% and
47.11%, respectively (Po0.01), as compared with control
(Figure 1). These results suggest a significant antiproliferative
effect of BV on HNSCC cells.

BV suppresses ROS in vitro. To assess whether BV treatment
leads to ROS suppression in tumour cells and to parse out whether
this antioxidant effect is secondary to BV reductase (BVR)
suppression, we investigated the ROS levels in both Fadu and
JHU022 cells with or without BV, Trolox (a positive control), and
DTNB (a potent BVR inhibitor). In both cell lines, treatment with
BV, Trolox, or BV plus DTNB led to a significant decrease in ROS
levels (Figure 2) (Po0.01). There was, however, no significant
change in ROS after DNTB treatment (P40.05), clearly

demonstrating that BV’s antioxidant effect is independent of its
conversion to BR by BVR.

BV suppresses ROS-mediated expression and phosphorylation
of EGFR, HIF1-a, Akt, and cell-cycle proteins. To further
characterise the pathways governing this antiproliferative effect
of BV, we first looked to assess whether treatment with BV
antiproliferative effect is due to inhibition of growth pathways,
specifically EGFR signalling. Biliverdin, Trolox, and BV plus
DTNB resulted in a significant decrease in the expression of both
EGFR and p-EGFR in Fadu and JHU022 cells (Figure 3A).
Similarly, BV, Trolox, and BV plus DTNB led to a significant
downregulation of p-Akt in Fadu and JHU022 cells (Figure 3A).
We also wanted to evaluate whether BV had an inhibitory effect on
ROS-mediated angiogenic pathways, namely through expression of
HIF1-a. Biliverdin, Trolox, and BV plus DTNB led to a significant
downregulation of HIF1-a expression in both tested cell lines
(Figure 3B). Finally, we also looked to evaluate whether this ROS
inhibitory effect led to inhibition of ROS-dependent cell-cycle
progression. Our results demonstrate that p-Rb and Cyclin D1,
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Figure 3. BV suppresses both the expression and phosphorylation of EGFR, and the phosphorylation of Akt. Western blot analysis was
conducted on Fadu and JHU022 cell lines assessing expression and phosphorylation of EGFR and Akt. In both cell lines, BV, Trolox, and BV plus
DTNB decreased expression of EGFR, p-EGFR, and p-Akt (A). We also evaluated BV’s effect on ROS-mediated expression of HIF1-a. In both cell
lines, BV, Trolox, and BV plus DTNB led to a significant downregulation of HIF1-a expression (B), while DTNB alone had no effect. We also
evaluated whether BV led to inhibition of ROS-mediated cell-cycle progression by looking at the effect of BV treatment on p-Rb 807/811 and
cyclin D1. In both cell lines, BV treatment significantly decreased p-Rb and cyclin D1 expression, as compared with control (C). Finally, to
characterise whether the antiproliferative, antiangiogenic, and anti-cell cycle progression effect of BV leads to an increase in apoptosis, we
evaluated cleaved PARP expression. In both cell lines, BV, Trolox, and BV plus DTNB groups saw increased cleavage of PARP, while DTNB
treatment alone exhibited no effect (B). b-Actin was used as a loading control in all experiments. All groups were evaluated 72 h after treatment.
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both critical mediators of cell-cycle progression, had significantly
decreased expression in both cell lines when treated with BV
(Figure 3C).

Previously, it has been established that inhibition of growth
factor signalling, angiogenesis, and cell cycle is associated with
increased apoptosis (Ollinger et al, 2007a). To determine whether
the inhibition of these pathways using BV leads to increased
apoptotic mechanisms, we evaluated the expression of cleaved
PARP after BV, Trolox, and BV plus DTNB treatment. Seventy-
two hours after treatment with BV, Trolox, or BV plus DTNB, both

Fadu and JHU022 cells showed a significant increase in PARP
cleavage. Similar to our other findings, DTNB treatment alone did
not affect PARP cleavage (Figure 3B).

BV targets angiogenesis pathways and inhibits tumour growth
in vivo. To further assess the antitumour effect of BV, our mouse
model with HNSCC was used to evaluate tumour growth. Tumour
size was assessed every 2 days after BV treatment (Figure 4A and B).
In both groups, mice treated with BV were found to have a
significant decrease in tumour growth, with antitumour effects
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Figure 5. BV decreases HUVECs tube formation in vitro. Our findings further confirm that as compared with control, where HUVECs form robust
tube structures, BV, Trolox, and BV plus DTNB inhibit the formation of these structures, while DTNB alone has no effect.
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appearing as early as day 2 and remaining sustained through day
12 (Fadu: P¼ 0.038; JHU022: P¼ 0.039). In addition, by day 12,
mice treated with BV detected a reduction in tumour volume by
64.76% (Po0.05) for Fadu and 91.59% (Po0.05) for JHU022, as
compared with control. Furthermore, the effect of BV on in vivo
angiogenesis was also evaluated, showing a significant down-
regulation of angiogenesis, as measured by MVD of CD31.
Tumours treated with BV demonstrated significant antiangiogenic
effects in both cell lines (Figure 4C and D). These dramatic in vivo
findings further confirm that BV is an effective antitumour agent,
which has the potential to serve as a novel natural molecular
inhibitor for HNSCC.

BV suppresses HUVECs tube formation in vitro. To better
understand whether the antiangiogenic effect of BV is secondary to
its inhibition of ROS, we conducted the Matrigel tube formation
assay in vitro with HUVECs treated with BV, Trolox, DTNB, or
BV plus DTNB for 3 days. In comparison with the control group
where robust tube structures were found, BV, Trolox, and BV plus
DTNB treatments led to a significant inhibition in HUVEC tube
formation, but DNTB alone had no effect (Figure 5).

BV promotes tumour apoptosis in vivo. To confirm whether the
antiproliferation and antiangiogenic effect of BV leads to increased
apoptosis in vivo, a TUNEL assay was performed. Biliverdin
treatment dramatically increased tumour apoptosis in vivo
(Figure 6A), inducing a 2.6-fold increase in apoptotic response of
Fadu group (2.32%; Po0.01) and a 3.1-fold increase in JHU022
group (1.77%; Po0.01) relative to control groups (Figure 6B).

DISCUSSION

This study set out to evaluate whether BV treatment led to an
inhibitory effect on HNSCC cells, and explored the mechanism
underlying our findings. Our results demonstrate that BV
treatment, independent of BR, decreases ROS activity in the cell,
leading to decreased EGFR, HIF1-a, and cell-cycle protein
expression and activity subsequently leading to a significant
inhibition of downstream tumour growth and angiogenesis
pathways, respectively. Furthermore, our results fill gaps in current
mechanistic understanding of previously reported clinical correla-
tions between serum BR levels and tumour incidence, while clearly
demonstrating the use of BV as an effective treatment modality. In
vitro, BV inhibited proliferative capacity of various HNSCC cell
lines. The antiproliferative effects seen were a consequence of the
interruption of the EGFR/Akt signalling pathway and cell-cycle
progression, leading to induction of the intrinsic apoptotic
response. Before our study, others have reported that the BR
may alter proliferation of cancer cells, but were unable to
effectively demonstrate the mechanism underlying this finding.

Biliverdin, a non-toxic homologue of toxic BR, therefore, serves as
a better clinical correlate to this therapeutic approach. Therefore,
in this study we looked to identify the underlying mechanism for
the effect of BV treatment on HNSCC cells, focussing our study on
the effect of BV on proliferative, cell cycle, angiogenesis, and
apoptotic pathways.

Upregulation of EGFR expression and signalling have been
associated with numerous cancers, including lung cancer, breast
cancer, and HNSCC. Increased activation of EGFR through its
tyrosine kinase activity has been shown to initiate signal
transduction cascades, principally through the Akt pathway,
leading to increased DNA synthesis, cellular proliferation, and
tumour progression. Moreover, ROS has been shown to be an
important regulator of EGFR expression, activity, and downstream
signalling pathways. Therefore, in light of BV’s potent inhibition of
cancer cell growth and previously reported antioxidant effect, we
looked to evaluate the effect of BV on this ROS-mediated EGFR
signalling pathway. Biliverdin treatment resulted in a profound
downregulation of ROS, independent of its conversion to BR by
BVR, leading to suppression of both EGFR expression and
phosphorylation. Furthermore, this decrease in phosphorylation
led to decreased downstream signalling as evidenced by decreased
Akt phosphorylation. Furthermore, we also demonstrated that BV
treatment leads to a downregulation of p-Rb and cyclin D1,
essential components of the cell-cycle progression machinery also
regulated by ROS. We also demonstrated that BV leads to a
downregulation of ROS-mediated HIF1-a, leading to decreased
angiogenesis in vivo, and providing a significant leap in the current
understanding of angiogenic pathways hinging on haeme oxyge-
nase activity and carbon monoxide. Biliverdin’s feedback inhibition
of this angiogenic pathway provides a salient basis for not only this
study, but others focussing on the specific factors involved in this
pathway. To demonstrate that these effects are directly resulting
from primarily BV’s antioxidant effect and not a secondary effect
from BR, we used a potent antioxidant as a positive control and a
BVR inhibitor to block BV’s conversion to BR. Our results clearly
demonstrate that Trolox, the antioxidant, mirrors BV’s effect on
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EGFR, Akt, HIF1-a, p-Rb, and Cyclin D1 expression and has a
similar effect on apoptosis and angiogenesis pathways, while
DNTB, the BVR inhibitor (Supplementary Figure S1), had no
significant effect. While there is still an effect of BV in the presence
of DNTB, suggesting that the antiproliferative and antiangiogenesis
effects do not rely on BR generation, DNTB may have other non-
specific pharmacologic effects in the cell, which is a potential
limitation of our findings. Future study using other more specific
molecular approaches might be warranted to further clarify this
pathway.

While our in vitro results provide a strong basis for this study,
we wanted to confirm our findings using a robust in vivo HNSCC
tumour model. Herein, we found BV to be a very effective
antitumour agent, with a significant decrease in tumour growth
seen as early as day 2 post treatment. Furthermore, we demonstrate
that it achieves this goal without significant toxic effects on the
mice, demonstrated by lack of changes in weight loss, post-
treatment survival (Supplementary Figure S2), and liver dysfunc-
tion (Supplementary Figure S3). To our knowledge, this is the first
study to describe BV’s antiproliferative effect in an animal model,
therefore providing some evidence for its translational
applicability.

In summary, we demonstrate that BV is a potent, naturally
occurring, antitumour agent that mediates growth inhibition of
HNSCC cells through induction of antiproliferative, pro-apoptotic,
and antiangiogenic pathways (Figure 7). This study demonstrates
that BV potently suppresses tumour growth, a phenomenon that
may in part explain the observed negative clinical correlation
between cancer incidence and serum BR levels. Moreover, this
study provides the basis for evaluating the use of non-toxic BV to
other cancers that rely on ROS for intracellular signalling.
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