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Abstract: Research in the area of security for Wireless Sensor Networks over the past two decades
has yielded many interesting findings. We focus on the topic of (re-)securing link keys between
sensor nodes through so-called secrecy amplification (SA) protocols. Crowdsourcing is at the very
heart of these SA protocols. Not only do SA protocols work wonders even for low-level constrained
nodes with no tamper resistance, they exhibit astonishing performance in networks under significant
attacker control. Our work shows that even when 50% of all network links are compromised, SA
protocols can re-secure over 90% of the link keys through an intriguingly simple crowdsourcing
mechanism. These protocols allow us to re-take control without any broadly coordinated cooperation,
without knowledge of the compromised links, with only very limited knowledge of each particular
network node and independently of decisions made by other nodes. Our article first outlines the
principles of and presents existing approaches to SA, introducing most of the important related
concepts, then presents novel conclusive results for a realistic attacker model parametrised by
attacker behaviour and capabilities. We undertook this work using two very different simulators,
and we present here the results of analyses and detailed comparisons that have not previously been
available. Finally, we report the first real, non-simulated network test results for the most attractive
SA protocol, our implementations of which are available as open-source code for two platforms:
Arduino and TinyOS. This work demonstrates the practical usability (and the attractive performance)
of SA, serving as a ripe technology enabler for (among others) networks with many potentially
compromised low-level devices.

Keywords: ad hoc networks; crowdsourcing; cryptographic protocol; secrecy amplification (SA);
wireless sensor network (WSN)

1. Introduction

The networking of increasingly intelligent and interconnected devices has led to the emergence of
novel applications and capabilities for sensing, collecting, processing and analysing data from countless
sources and environments. Wireless Sensor Networks (WSNs) embody the ultimate challenge among
the various types of so-called Internet of Things (IoT) applications, as the devices (nodes) in WSNs are
usually assumed to be present in large numbers, and the nodes are assumed to be as inexpensive as
possible, implying limited computational and storage resources, a lack of tamper resistance to physical
attacks, and limited energy sources (usually batteries). Consequently, such devices (similarly to cheap
smartcards and other constrained hardware) usually have to rely on symmetric cryptography as their
preferred approach (as opposed to asymmetric cryptography).

Our work targets WSNs (or indeed ad hoc networks in general) that use symmetric cryptography
and link keys (keys shared between two nodes connected through a communication link; every pair
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of nodes shares a unique key). This is the most common setting for security in WSNs, mainly due
to resource restrictions. The link keys established among neighbouring WSN nodes are an essential
building block for secure communication and for more comprehensive network security applications.
There are multiple ways to establish link keys, ranging from one network-wide master key, probabilistic
pre-distribution [1] or plaintext key exchange [2] up to pairwise key pre-distribution. In our scenario,
we assume that every pair of neighbours shares a unique (with respect to all other pairs) link key and
that this key is used to encrypt all messages exchanged between the two neighbours.

Regardless of the means of establishment, link keys will always be susceptible to attackers learning
them in one way or another, ranging from cryptanalytic methods up to the extraction of keys from
physically captured nodes. The core purpose of our research is to improve the overall security of a
network of interconnected nodes in the case that a non-trivial proportion of the link keys have become
compromised (compromised key denotes a link key that has been acquired by an attacker, regardless of
the point of compromise). We address this issue through so-called secrecy amplification (SA) protocols.
SA protocols do not rely on any knowledge of whether a particular link has been compromised, as it is
difficult, and often even impossible, to detect such a compromise given the limited resources of the
nodes in a network or the nature of the attack (e.g., passive eavesdropping).

Lightweight security solutions are necessary, imposing low computational and communication
overheads. To preserve protocol simplicity, we use the basic principles of crowdsourcing. Every
node executes the SA protocol based only on its limited knowledge of the local network environment
and layout and independently of the decisions made by other nodes. Every node is responsible for
orchestrating its protocol execution with its neighbours in its close proximity and, simultaneously, for
participating in the protocol execution controlled by its neighbours. Although this could appear to be a
hopeless attempt without the knowledge of the compromised links and without a broadly coordinated
cooperation, the results show that the nodes, as a crowd, can achieve an excellent performance.
A strong majority of secure links (>90%) can be achieved using secrecy amplification protocols, even
when 50% of all network links are initially compromised [3].

The core contributions of this article are as follows:

1. We verify earlier work on SA protocols (based only on simulations) through experiments in a
real network.

2. We examine SA behaviour under realistic attacker models, and we determine the suitable
length of amplification for the identified worst-case scenario and evaluate the corresponding
resources consumption.

3. We provide tested open-source implementations of the best-performing SA protocol, HD Final,
for the Arduino and TinyOS platforms.

The article is organised as follows: The second section introduces the concept of SA and
also reviews related work, providing a comparative overview of various SA protocols and their
properties. The third section describes a realistic attacker model that is parametrised by attacker
capabilities and behaviour, concluding with an analysis of the impact of the attacker parameters on SA
protocol performance. The fourth section presents the results of testbed experiments together with our
implementations of the HD Final protocol for the Arduino and TinyOS platforms. Conclusions are
provided in the final section.

2. Secrecy Amplification Principles and Related Work

2.1. Exploiting the Strength of the Crowd

Several research papers present the effort and results of investigating the crowdsourcing
principles and their applications. The authors of [4] focused on improving the balance between
signal (data) quality and crowdsourcing cost, proposing a novel incentive mechanism based on
Bayesian compressive crowdsensing. A crowdsourced WiFi-based indoor positioning system was
inspected in [5], including an identification of three attacks and corresponding countermeasures.
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We use the crowdsourcing principles in the SA approach. Based on its limited knowledge,
a particular node A is aware only of its own neighbours and their distances, as inferred from their
signal strengths. Please note that inferring the relative distance from the received signal strength
indication (RSSI) is usually a burden with errors resulting from the generally unreliable propagation
of wireless signal and also as the relation between distance and RSSI is not linear. Relative distances
used in group-oriented and hybrid designed protocols are robust against moderate inaccuracies as
a precise node position is not required for protocols to succeed. The node can attempt to re-secure a
possibly compromised link key (the link key may be compromised or not; the node cannot determine
a link key’s status based on its knowledge) established with its neighbouring node B by trying to use a
non-compromised path from node A to node B.

First, the node A generates a random key update with the same length as the established link
key. Later on, the key update will be combined together with the current link key to create a new
(secure) link key using a state-of-the-art cryptographic hash algorithm. Second, the node A selects
one or more intermediate nodes C1, C2, ..., CN (which are common neighbours of both nodes A and
B) and forms the path A –> C1 –> C2 –> ... –> CN –> B for key update delivery. Please refer
to Figure 1 for two examples. Every node along the path would, in most cases, be a neighbour of
both its predecessor and its successor. If not, the path is broken, and the key update will not be
delivered. Previous research [6] has shown that even one intermediate node is sufficient to maintain
the effectiveness of the protocol, using only a small fraction of the limited available resources and
mostly avoiding the issue of unreachable nodes along the path. SA protocols should be robust and
should yield good results even when messages are lost on delivery or when paths are broken as
described above. The transmitted key update messages are encrypted using the underlying link keys
in a hop-by-hop manner if such link keys already exist. Finally, nodes A and B mutually confirm that
both share the same key after the exchange of key update messages.
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Figure 1. Two paths selected for a key update transmission from node A to node B. The solid lines
mark a delivery path with a single selected intermediate node, C4, and the dash-dotted lines mark a
delivery path with three intermediate nodes, C1, C2, and C3. The link keys used to encrypt the message
are KAC4 and KC4B in the first case and KAC1 , KC1C2 , KC2C3 , and KC3B in the second case (image from [7]
c© 2019 IEEE).

If the key update remains unknown to an attacker, because of the attacker’s inability to either
decrypt the message or correctly learn it through eavesdropping (e.g., as a result of mishearing caused
by a packet collision), then the link key between nodes A and B is updated and re-secured against
the attacker.

A secrecy amplification protocol specifies a procedure for selecting a particular neighbour for a
key update delivery and determining a sequence of intermediate nodes to form a delivery path and
governs the number of protocol repetitions and the length of execution. The resulting SA protocol is a
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trade-off between its resource requirements (e.g., the energy required for message transmission) and its
ability to improve the number of secure links in the network. The overall design goal is to develop SA
protocols that can secure a high number of links yet require only a small number of messages to save
precious energy during radio transmissions. Thus, such a protocol needs to be as simple as possible.

From the attacker’s point of view, she initially has access to several compromised link keys (by
means of cryptanalytic methods, the extraction of keys from physically captured nodes, eavesdropping
on initial key establishment, etc.). To maintain such a compromise, she needs to eavesdrop on as
many secrecy amplification messages as possible. This requires constant monitoring of the entire
network, as the amplification process can be executed multiple times during the network’s lifetime.
If the attacker loses track of one link key that is re-secured, then it can and will be used to transmit
more key updates to its neighbours later in the execution of the protocol. The more non-compromised
links exist in the network, the faster the convergence towards a secure network will be.

SA protocols have also recently been exploited in a combination with key extraction from
radio channel fading, with promising results for certain types of networks and their operational
environments [7,8].

Different classes of SA protocols use different capabilities to improve security throughout a
network. Although all SA protocols attempt to establish new (possibly more secure) link keys, three
main distinct classes of SA protocols exist.

2.2. Node-Oriented Protocols

Node-oriented protocols were first introduced by Anderson et al. in [2] to provide an additional
layer of protection after plaintext key exchange in a key distribution approach called key infection. Such
a protocol is very simple; it sends key updates via every possible neighbour. The main advantages of
node-oriented protocols are the simple synchronisation of multiple protocol executions running in
parallel and their generally low memory overheads.

A node-oriented protocol is executed for all possible k-tuples of neighbours in the network, and the
number of such k-tuples can be high, especially in a dense network. This is the most limiting property
of node-oriented protocols, as it results in an enormous number of messages being sent by every node.
The number of messages increases polynomially with respect to the number of neighbouring nodes
and exponentially with respect to the number of parties participating in the protocol (the number of
intermediate nodes along every path from node A to node B).

The first node-oriented protocol, denoted as the Push protocol, was presented by Anderson et al.
in [2]. Liu et al. used the Push protocol as a basis for an establishment of the intra-group link
keys between multiple nodes belonging to different groups, where a more structured deployment
was assumed [9]. A variant of the initial key exchange mixed with the Push protocol (denoted as
Commodity) without an explicit SA was presented by Kim et al. in [10], together with a formal security
proof. The fraction of secured links was lower than for the Push protocol alone. A multi-hop version of
the Push protocol was analyzed by Liu et al. in [11]. Variants of the Push and Multi-hop Push protocols
called Pull and Multi-hop Pull protocols were presented by Cvrcek et al. in [12]. The best-performing
node-oriented protocol (NO Best) was presented by Svenda et al. in [3] and more information about
that protocol is provided in the Appendix A.1.

2.3. Group-Oriented Protocols

Group-oriented protocols were first proposed by Svenda et al. in [3] to decrease the number of
messages sent during an amplification protocol to overcome the main limitation of node-oriented
protocols. Neighbouring nodes share key update values within a larger group of cooperating nodes
identified by their geographic locations with respect to nodes A and B (to re-secure the key KAB).
In a previous study, group-oriented protocols were automatically generated using linear genetic
programming [13], and the SensorSim network simulator developed by the authors of [3] was then
used to evaluate the quality of the candidate protocols.
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Group-oriented protocols require a higher level of cooperation and information sharing among
neighbouring nodes. The crucial disadvantages of group-oriented protocols are the challenge of
synchronising parallel executions and the complexity of the security analysis due to the high number
of nodes involved. Consequently, neither a detailed evaluation nor even an implementation (outside
of simulators) of group-oriented protocols has ever been reported.

The best-performing group-oriented protocol (GO Best) was presented by Smolka et al. in [14]
and more information about the protocol is provided in the Appendix A.2.

2.4. Hybrid Designed Protocols

Hybrid designed protocols [6] combine the advantages of both node- and group-oriented protocols.
They are constructed using genetic programming in combination with manual post-processing.
They take advantage of knowledge obtained through both node- and group-oriented protocols (hence
the term hybrid design) and statistical data about the most suitable placement of the participating
intermediate nodes. Hybrid designed protocols use both sub-protocols (similarly to node-oriented
protocols) and relative distances (similarly to group-oriented protocols) and perform several repetitions
of the entire process to achieve the required success rate.

The resulting protocols are very simple and require less cooperation compared with
group-oriented protocols. They outperform both node- and group-oriented protocols with respect to
their success rates while sending fewer messages. They are easy to analyse and implement and enable
simple synchronisation and parallel execution.

Examples of hybrid designed protocols include HD Final and HD Best [6]. More information
about both protocols is provided in Appendix A.3 and the implementation of the HD Final protocol is
discussed later in Section 4.2.

2.5. Protocol Comparison

A comparison of various amplification protocols with respect to the number of messages sent
is presented in Figure 2. The success rates of the amplification protocols executed in networks with
different numbers of initially compromised links are shown in Figure 3, and the effectiveness of the
protocols is compared in terms of the security gained per message sent during amplification protocol
execution in Figure 4.

A detailed comparison of the properties of different amplification protocols and their results for
multiple compromise patterns and for networks with different densities are provided in a paper by
Ostadal et al. [6].
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Figure 2. Total numbers of messages required per node in the best node-oriented, best group-oriented,
and final hybrid designed secrecy amplification protocols (under the assumption of a network with
7.5 neighbours per node on average). The group-oriented and hybrid designed protocols send
considerably fewer messages compared with the node-oriented protocol.
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Figure 3. Increases in the number of secured links after the secrecy amplification protocols are executed.
A strong majority of secure links (>90%) can be achieved using a secrecy amplification protocol, even
when 50% of all network links are initially compromised. The performance of the node-oriented
and hybrid designed protocols are comparable, and both significantly outperform the group-oriented
protocol. This graph represents an average of 50 simulations of network run, where the network
consists of 1000 randomly distributed sensor nodes (7.5 neighbours per node on average). A simple
attacker model (as described in Section 3.2) with the random compromise pattern is assumed.
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Figure 4. Increases in the ratio of secured links per message exchanged during protocol execution.
The node-oriented protocol sends significantly more messages, and consequently, this protocol is the
least efficient. The best trade-off is observed for the hybrid designed protocol. This graph represents an
average of 50 simulations of network run, where the network consists of 1000 randomly distributed
sensor nodes (7.5 neighbours per node on average). A simple attacker model (as described in Section 3.2)
with the random compromise pattern is assumed.

We used the simplified simulator SensorSim [3] of Svenda et al. during the initial phase of our
SA protocol research. This simulator enabled the use of genetic programming during the protocol
proposal stage and permitted an extensive evaluation of the average protocol performance for different
network layouts and in different scenarios. The main advantage of SensorSim is the speed of simulation.
However, this simulator lacks many essential components for realistic network simulations, such as
radio signal propagation and MAC layer collisions.

3. Attacker Behaviour and Capabilities

During the initial research of SA protocols and the identification of the major node-oriented,
group-oriented and hybrid designed protocols of interest, a weakened attacker model and subsequent
simple attacker model were used. Both came with very simplified and unrealistic properties allowing
only basic SA protocol examination and evaluation. Later, a further development of a realistic
attacker model was necessary for the evaluation and verification of the SA protocols’ properties
and performance. We formulate a set of realistic attacker characteristics in terms of attacker behaviour
and capabilities, and we evaluate the performance of several major SA protocols based on this
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advanced, realistic attacker model. Please note that we exclude group-oriented protocols from the
subsequent comparisons because of the issues described in Section 2.3 (e.g., complex synchronisation
and implementation).

Together with the new attacker model, a more advanced and realistic network simulator was
needed. We extend the KMSforWSN framework, a tool for automated evaluation of the properties of
key management schemes (KMSs) in WSNs, which is built on top of MiXiM [15], a WSN framework
for the OMNeT++ simulator [16]. This framework was introduced by Jurnecka et al. in [17], and our
extension is available as an open-source tool (http://crcs.cz/papers/cans2016).

3.1. Weakened Attacker Model

For the following discussion, we need to explain the weakened attacker model. The weakened
attacker model assumes that the attacker is able to monitor only a fraction of links for a short interval.
This assumption is valid only for a certain period of time after deployment and then we have to
consider a stronger attacker with the ability to eavesdrop all communication. The attacker with a
limited number of eavesdropping devices can eavesdrop only a fraction of links and the rational reason
behind this assumption is based on specifics of WSNs:

• Locality of eavesdropping: The low communication range of nodes allows for a frequent channel
reuse within the network and detection of extremely strong signals, so it is not possible for an
attacker to place only one eavesdropping device with a highly sensitive and strong antenna.

• Low attacker presence during deployment: A low threat in most scenarios during the first few
seconds before the attacker realizes what target area is in use. If the attacker nodes are already
present in a given amount in the target location, we can deploy a network with density and node
range such that the ratio between legal nodes and the attacker’s eavesdropping devices is such
that a secure network can be formed.

3.2. Simple Attacker Model

A simple attacker model considers compromised networks that exhibit only two different
compromise patterns: random compromise and key infection.

A random compromise pattern is the result of a node-compromise attacker model together with
a probabilistic pre-distribution key establishment scheme [1]. In this model, the attacker captures
a fraction of the deployed nodes and extracts keying material from captured nodes. Because of the
probabilistic pre-distribution mechanism, the attacker may be able to compromise additional links
based on the extracted keying material.

The key infection pattern assumes a weakened attacker model [2] together with a key
establishment mechanism in which link keys are exchanged in plaintext.

After the initial compromise, we assume a global passive attacker who is able to monitor all
communications in the entire network.

3.3. Realistic Attacker Model

A realistic attacker is parametrised by her capabilities and behaviour [18]. She does not have
global coverage of the network, but she is able to eavesdrop on messages based on her equipment
and current position. The attacker parameters can be divided into two separate groups: behaviour
parameters and resource parameters.

The behaviour parameters characterise the attacker’s strategy and behaviour during her activity.
We investigated various initial compromise patterns (established by the attacker extracting keying
material from selected nodes), ranging from the compromise of random nodes up to a case in which
the attacker traverses the network and selects nodes along her trajectory (e.g., nodes around the border
or at the centre of the network or nodes along a path from the border to the centre). The movement
pattern of the attacker describes the attacker’s eavesdropping activity during the execution of the SA

http://crcs.cz/papers/cans2016
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protocol. The investigated patterns range from a random walk and linear and circular patterns up to
the coordinated patrolling of a targeted area. Multiple initial attacker locations and different attacker
movement speeds were investigated.

The resource parameters define the available resources and capabilities of the attacker.
We investigated the SA protocol performance for cases in which several attackers work together
to eavesdrop on as many communications as possible. The eavesdropping range depends on the
available equipment and its sensitivity, and it strongly influences the attacker’s success. The last
investigated parameter corresponds to the attacker’s ability to infect a WSN node with malware when
initially compromising the node. Such a node is then under the attacker’s control, but the control
remains passive, aside from providing a monitoring functionality, the malware does not affect any
behaviour of the node. We investigated the impact of an increasing number of infected nodes in the
performance of the SA protocols.

3.4. Impact of Attacker Models on the SA Protocols

It was necessary for us to overcome the limitations imposed by the simplified simulator prior
to further evaluation. We used an extended version of the KMSforWSN framework together with
definitions of the channel and physical layer settings based on previous research of Stetsko et al. on
the real parameters of TelosB sensors for an outdoor environment [19]. We simulated the network
execution not only as a graph discovery problem (as in SensorSim), but also through a full emulation of
the code running on virtual nodes, with execution of the application logic and the passing of messages
to the communication stack. The simulation encompassed realistic attacker behaviour and capabilities,
including movement patterns and equipment sensitivity.

Ostadal et al. performed an extensive number of realistic simulations of various scenarios and
attacker models. They determined a ranking of the major amplification protocols of interest based
on their performance in a prevalent number of investigated cases. The hybrid designed protocols
outperformed the rest in all scenarios we examined, and these protocols were found to be robust
across different attacker behaviour patterns and capabilities. Please note that the NO Best protocol
produces almost the same results as the HD Final protocol, but at the price of an enormous increase in
the number of messages sent.

Simulator-based results of Ostadal et al. indicate that the most favourable strategy for an attacker is
to remain in one place throughout the entire secrecy amplification process, as she is able to eavesdrop
on all communications within a particular area. Any movement leads to a reduction in the set of
compromised keys in any area from which she leaves because of missed transmissions of SA protocol
messages with fresh keys. Figure 5 presents the results of the investigated SA protocols for various
attacker movement patterns. Those findings served as the basis for our implementation of the hybrid
designed protocol HD Final on several platforms to facilitate its broader usage and to enable our
testbed experiments.

A detailed evaluation of Ostadal et al. of attacker behaviour and capabilities is presented in [18].
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Figure 5. Success rates of amplification protocols for various attacker movement patterns. The numbers
shown in brackets for the Patrol and Circle patterns denote the side length of the square patrolled area
and the diameter of the circle, respectively. The initial compromise rate is 50% of all link keys [18].

4. Testbed Experiments and Results

Even the most detailed simulator can only approximate a real environment, most notably because
of the incomplete specification of complex radio propagation behaviours and the various limitations of
real-world devices, including the behaviour of software stacks.

To validate the simulated results, we performed several experiments using real WSN nodes in
a testbed network with three main goals. Our purpose was to verify the results, performance, and
expected benefits of the SA protocols in a real environment. Furthermore, we wanted to investigate the
impact of the attacker strategies, behaviour patterns and capabilities described at the end of Section 3.

We also wanted to investigate protocol performance and to determine a suitable duration (together
with a suitable number of protocol repetitions) of the HD Final protocol to achieve reasonable network
security (more than 85% secured links) in the worst-case scenario. The worst-case scenario corresponds
to the initial compromise of all link keys and the most favourable attacker strategy, in which she starts
at a position from which she can monitor the entire network and remains stationary.

Last but not least, we provide implementations of the HD Final protocol for two selected platforms,
Arduino [20] and TinyOS [21], which are available online as open-source implementations. We selected
the HD Final protocol because of its superiority compared with the node- and group-oriented protocols,
based on the comparisons presented in Section 2. Compared with the HD Best protocol, HD Final
sends significantly fewer messages, yet achieves a sufficiently high success rate.

4.1. Testbed Network and Experimental Setting

Our testbed network consisted of 24 legitimate nodes placed below the ceiling in six adjacent
rooms. We performed the experiments using JeeLink Classic v3 devices (http://jeelabs.net/projects/
hardware/wiki/JeeLink). Every node was equipped with an ATmega328p AVR microprocessor (Atmel)
and an RFM12B wireless radio module (HopeRF), operating at a frequency of 868 MHz. The topology
of the network was known in advance; each node had 7.83 neighbours on average, resulting in a total
of 94 links in the network.

The reference length is a necessary parameter for the execution of a hybrid designed protocol
(used for the selection of intermediate nodes); it represents the approximate distance between the
most distant pair of neighbours in the network. We experimentally determined this length to be
13 meters. This value will be different for every network, as it is highly dependent on the environment,
the placement of the WSN nodes and the hardware used. The duration of the amplification protocol
was set to five minutes to achieve a reasonable trade-off between the execution time being too short
(increasing message collisions) or too long (limiting normal network use).

We investigated a scenario with two cooperating attackers, each covering approximately half of
the network. Both attackers were equipped with hardware equivalent to that used by legitimate nodes.

http://jeelabs.net/projects/hardware/wiki/JeeLink
http://jeelabs.net/projects/hardware/wiki/JeeLink
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The network layout and attacker starting positions are shown in Figure 6. All presented results are
averages over 10 repeated measurements in our testbed network.
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Figure 6. Our network layout, consisting of 24 legitimate nodes, indicated by black points and their
corresponding indexes. The nodes are placed below the ceiling in six adjacent rooms. The initial
positions of the attackers are marked with red points. These positions enable the attackers to monitor
all legitimate communications between every pair of neighbours.

4.2. Arduino and TinyOS Implementations

We provide implementations of the HD Final protocol for two widely used platforms: Arduino
and TinyOS. Both implementations have been released as open-source code in a Git repository, available
through this article webpage (https://crocs.fi.muni.cz/papers/iot2018).

The protocol consists of two phases, and the user is expected to define three basic configuration
parameters: an amplification length, a maximum number of neighbours, and the reference length
(described above). The amplification length parameter has a significant impact on the amount of
message collisions and a largely reduced amplification length could result in HD Final protocol failure.
The maximum number of neighbours determines the size of data memory required to store a neighbour
table. The node maintains the following information for every neighbour: neighbour ID [8 bits], first
intermediate node ID [8 bits], second intermediate node ID [8 bits], shared key [128 bits], key update
generated [128 bits], and key update received [128 bits]. A large amount of neighbours could deplete
the memory of a low end devices, such as TelosB.

In the first phase, the HD Final protocol requires information about the neighbours of the node
on which it is running and their respective distances. The coarse distances may be obtained through
received signal strength indication (RSSI) measurements, or the network topology may be known
in advance. Our implementation is currently designed for a known network topology, but it could
be easily updated to consider RSSI measurements (where such measurements are possible for the
given hardware). The node itself (master) identifies two intermediate nodes for every neighbour (slave)
based on the measured distances. The process requires knowledge of all mutual neighbours of master
and slave nodes and the measured distances of every intermediate node from both master and slave.
In a case that no mutual neighbour exists, the direct link between master and slave is used. The total
number of key update messages is calculated based on number of neighbours, and the dispatching of
messages is planned uniformly over the defined protocol duration.

In the second phase, the master node generates key update messages and sends them according
to the timing calculated in the first phase. Every key update value is at the same time stored in the
neighbouring table in the key update generated field for respective node. The key update will be used
later to update the shared key when confirmed by the slave node. A key update message consists of
the key update value, the ID of the master node, the ID of the intermediate node (which only forwards
the message) and the ID of the slave node. Every subsequent message is sent to a different neighbour,
using a round robin approach on the neighbour table. This approach provides a sufficient time for
message processing by the slave node and for the key update confirmation. Once the message is
received by the slave node, the node generates and sends a nonce confirmation message consisting of
the master ID and slave ID. The master updates the mutual shared key when the nonce confirmation
message is received. The slave updates the mutual shared key when the acknowledgement for nonce

https://crocs.fi.muni.cz/papers/iot2018
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confirmation message is received. The HD Final protocol finishes when all key update messages were
sent and processed.

Both implementations provide simple and reliable message delivery with up to four message
retransmissions in the case that a message is lost. All messages sent during protocol execution are
acknowledged. All messages and retransmissions are sent with a small random delay to limit the
amount of message collisions.

4.3. Practical Examination of Published Results

The goal of the first experiment was the verification of the performance of the HD Final protocol
and of the most favourable attacker strategy for maintaining a compromised state in a WSN network.
We investigated three different attacker settings: (1) The attacker remains stationary in her starting
position and does not move at all. (2) The attacker patrols a small area around her starting position
(in a range of approximately 1.5 metres), remaining in the same room. (3) The attacker patrols a larger
area including locations more distant from her initial starting position, even visiting the two adjacent
rooms. Moreover, we investigated the performance of the HD Final protocol for an attacker starting
outside the rooms and patrolling the corridor along the bottom side of Figure 6.

We considered two different compromise patterns. (1) Random nodes are compromised, with up
to 50% of links being compromised. When a node is compromised, all keying material is extracted, but
the node continues to perform legitimately in all subsequent operations. Using this process, 53% of the
link keys were compromised on average during our experiment. (2) The worst-case scenario, in which
the keys from all nodes are compromised, resulting in 100% of the links being initially compromised.

The experimental results are shown in Figure 7 for an attacker starting within the WSN. We can
observe a security improvement provided by the SA protocol on the real hardware and in the real
environment. There is a proven benefit to using SA protocols, HD Final in particular. Execution of the
HD Final protocol improves network security, but the success rate strongly depends on the attacker’s
behaviour. We observe only a small improvement for the case in which all links are compromised
(approximately 3.5% improvement), but a larger improvement for the case in which 53% of the links
are compromised (approximately 15% improvement). These findings illustrate the strength of SA
protocols using non-compromised paths.
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Figure 7. Performance of the HD Final protocol for an attacker starting in a suitable position within the
network, as shown in Figure 6.

The experimental results for an attacker starting outside the network in the corridor are shown
in Figure 8. The success rates of the HD Final protocol are greatly improved as a result of the
disadvantageous position of the attacker. The success rate is greater than 85% even for the case in which
100% of the link keys are initially compromised, provided that the attacker does not remain stationary.



Sensors 2019, 19, 5041 12 of 19

0

10

20

30

40

50

60

70

80

90

100

0 30 60 90 120 150 180 210 240 270 300

Fr
ac

ti
on

 o
f s

ec
ur

ed
 li

nk
s (

%
) 

Protocol duration (in seconds)

   Initial compromise 53%,
   static attacker

   Initial compromise 53%,
   small area patrolled

   Initial compromise 53%,
   bigger area patrolled

   Initial compromise 100%,
   static attacker

   Initial compromise 100%,
   small area patrolled

   Initial compromise 100%,
   bigger area patrolled

Figure 8. Performance of the HD Final protocol for an attacker starting outside the network in the
corridor running along the bottom side of Figure 6.

These results provide clear confirmation that the most beneficial strategy for the attacker is to
remain stationary and consistently eavesdrop a particular area. Any kind of attacker movement results
in a non-monitored part of the network (the area being eavesdropped by the attacker positioned before
the movement and not being monitored after the movement) that is immediately re-secured by the SA
protocol. Even a short period of time (before the attacker returns to the original position) is sufficient
for a significant improvement of the success rate.

This verifies the findings from [18] that were based on simulations. Furthermore, the larger is the
area patrolled by the attacker, the fewer links remain compromised and, consequently, the higher is the
SA success rate. This confirmation is consistent with the results of Ostadal et al. presented in Figure 5.

The small improvement achieved in the worst-case scenario, in which all link keys are
compromised and the attacker remains stationary at the most suitable position, is due to packet
collisions and interference causing the attacker to mishear eavesdropped communications. This was
the main motivation for the experiment reported in the following section.

4.4. SA Protocol Performance in the Worst-Case Scenario

The objective of this experiment was to identify the number of repetitions of the HD Final protocol
(and the protocol duration) required to achieve reasonable network security (more than 85% secured
links) for the scenario in which all links are initially compromised. We repeated the complete HD
Final protocol 24 times, with the resulting execution time of 2 h. We also include an evaluation of the
protocol performance for the case where 53% of the links (instead of all links) are initially compromised
as a reference for comparison. The results are presented in Figure 9.
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Figure 9. Performance of the HD Final protocol when the attacker starts in a suitable position within
the network, as shown in Figure 6.
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The HD Final protocol results in a reasonably secure network after 15 min for the case in which
half of the links are initially compromised and after one hour for the worst-case scenario. Moreover,
the protocol is able to ensure that 98% of the links are secured after 100 min in the worst-case scenario.
The average numbers of messages sent per node are 282 for a protocol duration of 15 min, 1128 for a
one-hour run, and 1880 for a 100-minute execution time.

The increase in the number of secured links is initially rapid, as the protocol can immediately use
the newly secured links to its advantage. As the network approaches the state in which most links are
secured, the increase slows, as not all secured paths are used (the HD Final protocol identifies only
two intermediate nodes) and it may be more difficult to secure particular links (e.g., because of a lack
of common neighbours for a neighbouring pair on the border of the network).

5. Conclusions

Our work reviews the evolution of SA protocols, from their first conception up to the real
implementation of the best-performing protocol, HD Final, for the Arduino and TinyOS platforms
to enable facile integration into real-world applications. Using the principles of crowdsourcing, the
HD Final protocol is executed independently of the decisions made by other nodes and even without
knowledge of whether a particular link is compromised, resulting in a very simple protocol that
permits easy synchronisation and parallel execution.

The attacker model was investigated in detail, and realistic attacker capabilities and behaviour
were considered, concluding with an identification of the worst-case scenario. The HD Final protocol
was shown to be robust against different attacker parameters, providing great benefit even in the
worst-case scenario. The HD Final protocol can ensure that 98% of all links are secured after 100 min
(with 1880 messages sent per node on average) when it is executed in a network in which all link
keys are initially compromised and with the attacker covering the entire network and remaining
stationary. We conducted testbed experiments in a real WSN, obtaining findings that confirmed the
simulation results.

One of the key characteristics of SA protocols is their good performance even when a non-trivial
proportion of the link keys are compromised. SA protocols can be used either in reaction to a network
compromise or even as a preventive measure as part of an overall layered security strategy. Another
usage mode is to execute an SA protocol after plaintext key exchange in a newly established network,
thereby ensuring the required level of network security with a reasonable investment of time and
energy resources.

Considering the simplicity of SA protocols and the benefits they provide, we expect that their use
cases should not be limited to the IoT world. As crowdsourced security has and will have many other
applications, our findings and implementations may also find use in different applications based on or
related to key re-securing/updating.
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Abbreviations

The following abbreviations are used in this manuscript:
SA Secrecy amplification
WSN Wireless sensor network
IoT Internet of Things
KMS Key management scheme
RSSI Received signal strength indication

Appendix A. Detailed Description of Discussed Protocols

We provide a detailed description and a pseudo-code of discussed SA protocols: NO Best, GO
Best, HD Best and HD Final.

Every network node orchestrates the protocol execution in the role of a master node. The master
node continuously selects slave nodes from its neighbours. The link key shared between the master
and slave nodes is updated. Several other neighbouring nodes could participate in the protocol
in the role of intermediate nodes. Intermediate nodes do not update any link keys in node-oriented
and hybrid designed protocols. Link keys among all participating nodes are updated in case of
group-oriented protocols.

Every node in the protocol is modelled as a computing unit with a limited number of memory
slots. Each memory slot can contain either a key update generated on the node or the key update
received from a neighbouring node. SA protocol is then a sequential chain of primitive instructions,
generating key updates into memory slots and exchanging key updates among nodes. The two
instructions being used follow:

• RNG Na Ri – generate a random key update on node Na into slot Ri.
• SND Na Nb Ri Rj – send a value from Ri on node Na to slot Rj on Nb.

Appendix A.1. NO Best Protocol

The NO Best protocol is 4-party node-oriented protocol, requiring the involvement of the master
node, the slave node, and two intermediate nodes. The pseudocode of the NO Best protocol is provided
in Protocol 1. We assume that every node is aware of its neighbours before the protocol is executed.

Every node executes the NO Best protocol in a role of the master node (row 1). The master node
selects iteratively slave nodes (row 3) and two intermediate nodes (rows 4 and 5) from its neighbours.
After the determination of all parties, the master node informs the intermediate node 1 about its role
(row 6) as the node is responsible for key update generation.

Three key updates are generated during the execution of the NO Best protocol for every selected
4-tuple: two by the master node and one by the intermediate node 1. Key updates need to be shared
by both master and slave nodes, as the two nodes will later update the shared link key. The first key
update is generated by the master node and sent directly to the slave node (rows 7 and 8). The second
key update is generated by the master node and sent to the intermediate node 2; the intermediate node
2 delivers the key update to the slave node (rows 9–11). The third key update is generated by the
intermediate node 1. The key update is delivered directly to the master node and to the intermediate
node 2. Intermediate node 2 finally sends the key update to the slave node (rows 12–15). All three key
updates are independent and the order of the delivery is not important.

Master and slave nodes mutually confirm every received key update. The key updates are used to
update the link key after the successful confirmation (row 16).
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Protocol 1 Pseudocode of the NO Best protocol.

1 Nmaster ← current node ID;
2 C ← number of node’s neighbours - 1;
3 for Nslave ← Neighbours[0 .. C] do
4 for Ninter1 ← Neighbours[0 .. C] do
5 for Ninter2 ← Neighbours[0 .. C] do

6 Ninter1 is notified about its role;

7 RNG Nmaster R1;
8 SND Nmaster Nslave R1 R1;

9 RNG Nmaster R2;
10 SND Nmaster Ninter2 R2 R2;
11 SND Ninter2 Nslave R2 R2;

12 RNG Ninter1 R3;
13 SND Ninter1 Nmaster R3 R3;
14 SND Ninter1 Ninter2 R3 R3;
15 SND Ninter2 Nslave R3 R3;

16 Nmaster and Nslave confirm key updates and link key is updated;
17 end for
18 end for
19 end for

Appendix A.2. GO Best Protocol

The GO Best protocol is a group-oriented protocol requiring the involvement of the master node,
the slave node, and up to 33 intermediate nodes. The number of intermediate nodes is highly dependent
on the number of master node’s neighbours. The pseudocode of the GO Best protocol is provided in
Protocol 2. We assume that every node is aware of its neighbours and of the distances between the
node and every neighbour before the protocol is executed. Those distances can be obtained through
received signal strength indication (RSSI) measurements, or the network topology may be known
in advance.

Every node executes the GO Best protocol in a role of master node (row 1). The whole group of
neighbours (the master node and all its neighbours) allocate 12 memory registers for the amplification
run with this particular master node (row 3). The memory slots of the neighbours involved (for
the same master node) are not cleared between the protocol executions with different slave nodes.
This enables the group-oriented protocol to propagate key updates among a group of neighbours.
This requirement results in total 12 ∗ (numbero f neighbours + 1) memory registers to be allocated by
every node in the network.

The master node selects iteratively the slave nodes from its neighbours (row 4). The slave node
provides a list of distances from all its neighbours to the master node (row 5). Based on the actual
deployment of nodes, parties of the protocol are replaced by real identification of the nodes that are
positioned as close as possible to the relative identification given by master and slave nodes in the
protocol (row 6). All participating nodes are informed by the master node about their roles in the
protocol (row 7). Please note that one real node can be assigned multiple roles in case this node is the
nearest one with respect to multiple relative distances. Multiple key updates are generated and shared
within the group of participating nodes (rows 8-45). Finally, the link keys are updated among every
pair of neighbours within the group of nodes participating in the protocol for particular master and
slave nodes (row 46). Please note that the memory registers are not erased and all stored values could
be used in the iteration with the next slave node.
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Protocol 2 Pseudocode of the GO Best protocol.

1 Nmaster ← current node ID;
2 C ← number of node’s neighbours - 1;
3 Nmaster notifies all neighbours to allocate 12 memory registers to this amplification;
4 for Nslave ← Neighbours[0 .. C] do
5 Nslave provides a list of neighbours with distances;
6 assign real nodes to relative distances;
7 notify all participating nodes about their role;

8 SND N0.66_0.93 N0.53_0.09 R5 R6;
9 SND N0.28_0.06 Nslave R10 R11;

10 SND N0.63_0.93 Nslave R5 R7;
11 RNG Nslave R6;
12 RNG N0.92_0.80 R5;
13 RNG Nslave R9;
14 SND N0.48_0.94 Nmaster R8 R1;
15 SND N0.94_0.79 Nslave R5 R1;
16 RNG N0.09_0.90 R5;
17 SND Nslave N0.44_0.96 R6 R5;
18 RNG N0.25_0.59 R5;
19 SND N0.31_0.58 Nslave R5 R3;
20 RNG Nslave R5;
21 RNG Nslave R10;
22 RNG Nmaster R5;
23 SND Nslave N0.14_0.90 R9 R5;
24 RNG Nmaster R12;
25 SND N0.72_0.06 Nslave R10 R8;
26 RNG N0.43_0.36 R5;
27 SND Nmaster N0.26_0.34 R12 R5;
28 SND Nslave N0.52_0.74 R10 R8;
29 SND N0.51_0.74 Nmaster R8 R8;
30 SND N0.21_0.39 Nslave R5 R2;
31 SND N0.37_0.63 Nmaster R5 R3;
32 SND N0.08_0.73 N0.45_0.37 R9 R8;
33 SND N0.28_0.44 Nmaster R5 R10;
34 SND Nmaster N0.12_0.56 R5 R11;
35 SND N0.08_0.57 Nslave R11 R12;
36 SND N0.40_0.95 Nmaster R5 R9;
37 SND N0.92_0.80 Nmaster R5 R6;
38 SND N0.18_0.93 Nmaster R5 R4;
39 SND N0.60_0.14 Nmaster R6 R11;
40 SND N0.42_0.68 Nslave R5 R4;
41 RNG N0.52_0.92 R5;
42 RNG N0.53_0.71 R5;
43 RNG N0.51_0.46 R5;
44 RNG N0.88_0.90 R5;
45 SND N0.50_0.73 NC R8 R7;

46 all participating nodes confirm key updates and link keys are updated;
47 end for
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Appendix A.3. HD Final and HD Best Protocols

HD Final and HD Best are hybrid designed protocols requiring the involvement of the master
node, the slave node, and intermediate nodes, 2 and 5 respectively. The number of intermediate nodes
is the only difference between the two protocols. Removing 3 intermediate nodes from the HD Best
protocol saves 6 messages in every protocol iteration for only a negligible drop of the success rate.
The pseudocode of HD Final and HD Best protocols is provided in Protocols 3 and 4, respectively.
We use the HD Best protocol as the reference protocol in the following paragraphs. Nonetheless, all
statements hold also for the HD Final protocol. We assume that every node is aware of its neighbours
and of the distances between the node and every neighbour before the protocol is executed. This is the
same assumption as in the case of group-oriented protocols.

Every node executes the HD Best protocol in a role of the master node (row 1). The whole protocol
is repeated three times (row 3). The master node selects iteratively slave nodes (row 4). Each slave node
provides a list of distances from all its neighbours to the master node (row 5). Based on the actual
deployment of nodes, parties of the protocol are replaced by real identification of the nodes that are
positioned as close as possible to the relative identification given by master and slave nodes in the
protocol (row 6). There is no requirement to inform intermediate nodes about their roles, as all the nodes
only retransmit messages towards their destination.

Five key updates are generated for each combination of master and slave nodes. Every key update
is generated by the master node and shared with the slave node through a different intermediate node.
A detailed description of the process together with relative distances of intermediation nodes is provided
in pseudocode rows 7–21. All five key updates are independent and the order of the delivery is not
important. Master and slave nodes mutually confirm every received key update. The key updates are
used to update the link key after the successful confirmation (row 22).

Protocol 3 Pseudocode of the HD Final protocol.

1 Nmaster ← current node ID;
2 C ← number of node’s neighbours - 1;
3 for i← 0..2 do
4 for Nslave ← Neighbours[0 .. C] do
5 Nslave provides a list of neighbours with distances;
6 assign real nodes to relative distances;

7 RNG Nmaster R1;
8 SND Nmaster N0.69_0.98 R1 R1;
9 SND N0.69_0.98 Nslave R1 R1;

10 RNG Nmaster R2;
11 SND Nmaster N0.01_0.39 R2 R2;
12 SND N0.01_0.39 Nslave R2 R2;

13 Nmaster and Nslave confirm key updates and link key is updated;
14 end for
15 end for
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Protocol 4 Pseudocode of the HD Best protocol.

1 Nmaster ← current node ID;
2 C ← number of node’s neighbours - 1;
3 for i← 0..2 do
4 for Nslave ← Neighbours[0 .. C] do
5 Nslave provides a list of neighbours with distances;
6 assign real nodes to relative distances;

7 RNG Nmaster R1;
8 SND Nmaster N0.32_0.85 R1 R1;
9 SND N0.32_0.85 Nslave R1 R1;

10 RNG Nmaster R2;
11 SND Nmaster N0.69_0.98 R2 R2;
12 SND N0.69_0.98 Nslave R2 R2;

13 RNG Nmaster R3;
14 SND Nmaster N0.01_0.39 R3 R3;
15 SND N0.01_0.39 Nslave R3 R3;

16 RNG Nmaster R4;
17 SND Nmaster N0.56_0.70 R4 R4;
18 SND N0.56_0.70 Nslave R4 R4;

19 RNG Nmaster R5;
20 SND Nmaster N0.89_0.01 R5 R5;
21 SND N0.89_0.01 Nslave R5 R5;

22 Nmaster and Nslave confirm key updates and link key is updated;
23 end for
24 end for
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