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Multiple organ dysfunction syndrome (MODS), defined as the presence of altered organ function in an acutely ill

patient such that homeostasis cannot be maintained without intervention, is a cause of high morbidity and mortality in

humans and animals. Many advances have been made in understanding the pathophysiology and treatment of this syn-

drome in human medicine, but much still is unknown. This comparative review will provide information regarding the his-

tory and pathophysiology of MODS in humans and discuss how MODS affects each major organ system in animals.
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Multiple organ dysfunction syndrome (MODS) is
defined as “the presence of altered organ func-

tion in an acutely ill patient such that homeostasis can-
not be maintained without intervention.”1 In people,
MODS is most commonly a sequela to severe sepsis or
septic shock, but it also develops secondary to trauma,
neoplasia, or other causes of the systemic inflammatory
response syndrome (SIRS). The exact incidence of
MODS in people is difficult to estimate because there is
no true consensus for the definition of dysfunction in
each individual organ system2; but it has been esti-
mated that 15% of all people admitted to the intensive
care unit (ICU) will develop MODS.3,4 Mortality rates
for surgical and medical ICU patients with MODS
range from 44 to 76%.5 A reported incidence of MODS
in dogs is approximately 4% with trauma and approxi-
mately 50% with sepsis; in both cases MODS is associ-
ated with a poor outcome.6,7 This comparative review
will outline the history and pathophysiology of MODS,
discuss similarities and differences in the epidemiology
of MODS in humans and animals and review how
MODS manifests itself in each organ system.

History

Multiple organ dysfunction syndrome is a relatively
new concept in both human and veterinary medicine
and it has been described as an iatrogenic disorder.8

Application of advanced medical knowledge and tech-
nology has allowed people and animals to survive
initial insults that at one time would have been fatal
so relatively long-term sequela like MODS can be
manifested. The 1st reports of individual forms of
organ dysfunction were during World War II and the

Vietnam War when improved resuscitation techniques
allowed soldiers to survive the initial battlefield injury
only to go on to die from renal failure or respiratory
failure (ie, Da Nang Lung or Vietnam Lung).9 In
1969, multiple organ dysfunction was first reported in
8 people with acute gastric ulcerations and sepsis that
developed a clinical syndrome associated with respira-
tory failure, hypotension, and icterus.10 Similarly, in a
1973 retrospective study of 18 people with abdominal
aortic aneurysms, 17 died from sequential multiple
organ dysfunction starting with pancreatic and pulmo-
nary failure which progressed to cardiac and upper
gastrointestinal hemorrhage. In these patients, pulmo-
nary failure was considered to be the primary cause of
death.11 As life-support technology continued to
improve, the incidence of multiple organ dysfunction
secondary to infectious10,12–14 and noninfectious15–17

diseases became increasingly more common.
In 1991, the American College of Chest Physicians

and the Society of Critical Care Medicine held a
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consensus conference to develop definitions for clinical
syndromes including MODS with the goal of improv-
ing disease detection, and to allow early therapeutic
intervention and patient stratification in clinical trials.2

The syndrome of multiple organ dysfunction and fail-
ure that had been described over the previous 20 years
was officially termed “MODS.” The term “failure” was
excluded from the name because it implied an absolute
presence or absence of function as opposed to a con-
tinuum. MODS was defined as the “presence of altered
organ function in an acutely ill patient such that
homeostasis cannot be maintained without interven-
tion.”2 Furthermore, MODS was described as a pri-
mary process in which the organ dysfunction could be
directly attributable to the insult itself or as a second-
ary process in which the organ dysfunction was a con-
sequence of the systemic response to a distant insult.
Specific criteria for clinical identification of MODS
were not described.2

Epidemiology

Sepsis is the most common inciting cause of MODS
in people, and MODS is more common in people with
sepsis compared to other forms of critical illness (75%
versus 43%).18 In 1995, it was estimated that 9.3% of
all human deaths in the United States were related to
severe sepsis with a total healthcare cost of $16.7 bil-
lion dollars.5 The incidence of sepsis has increased
over time. In a review of 750 million hospitalizations,
there was an annualized increase in the episodes of
sepsis from 82.7 episodes/100,000 hospital admissions
in 1979 to 240.4 episodes/100,000 hospital admissions
in 2000.19

There is a limited amount of information regarding
the epidemiology of MODS in animals, although sepsis
and trauma appear to be common inciting causes. A
multicenter report of 114 dogs treated surgically for
abdominal sepsis found 78% of dogs had dysfunction
of ≥1 organ systems and 50% had dysfunction of ≥2
organ systems.6 In a smaller study of dogs with
abdominal sepsis, 5/14 (35.7%) met the criteria for
MODS.20 A retrospective study of 235 dogs with
severe blunt trauma reported MODS in 4% of dogs.7

Pathophysiology

The pathophysiology of MODS is complex, multi-
factorial, and poorly understood. Three models to
explain the initiation of MODS have been proposed.
The first is the “one-hit” model in which organ failure
develops as the direct result of a massive initial insult,
such as sepsis, polytrauma, or burn injury. The 2nd
model, or the “two-hit” model, describes a priming
insult (1st “hit”) which is followed by a subsequent
insult (2nd “hit”). The subsequent insult may seem
small, such as a catheter-related infection, and it
induces enhanced inflammation and immune dysfunc-
tion. An experimental “two-hit” canine model of
MODS has been described and involves hemorrhagic
shock followed by Escherichia coli endotoxin given

IV.21 The 3rd model is known as the “sustained-hit
model.” This model describes a continuous insult such
as ventilator-associated pneumonia which causes both
the initial insult and sustains the dysfunction.22

The current understanding of the pathophysiology
leading to MODS involves intricate cross-talk among
multiple cell populations, hormonal systems, metabo-
lites, and neural signaling along with alterations in
oxygen delivery, derangements in oxygen utilization,
and modifications in cell phenotypes. There are several
proposed mechanisms for the development of MODS
including (1) cell or tissue hypoxia, (2) induction of
cellular apoptosis, (3) translocation of microbes or
components of microbes from the gastrointestinal
tract, (4) immune system dysregulation, and (5) mito-
chondrial dysfunction. Although MODS likely results
from a complex combination of these factors and oth-
ers yet to be identified, emerging evidence suggests that
immune system dysregulation and subsequent mito-
chondrial dysfunction might be the prevailing path-
ways.23 The following sections will describe immune
system dysregulation and mitochondrial dysfunction in
greater detail.

Immune System Dysregulation

Immune system dysregulation is the imbalance
between proinflammatory and anti-inflammatory coun-
terregulatory mechanisms.24 To maintain normal
homeostasis, the innate immune system is designed to
respond rapidly to danger signals including pathogen-
associated molecular patterns (PAMPs) and danger-
associated molecular patterns (DAMPs). PAMPs are a
diverse set of microbial molecules that share a number
of different recognizable biochemical features that alert
the organism to the invading pathogen. DAMPs are
similar to PAMPs, but they are markers of endoge-
nous cell damage.25

Pathogen-associated molecular patterns and DAMPs
are identified by the innate and adaptive immune sys-
tems, most commonly via toll-like receptors, which
then activate signaling pathways to incite inflamma-
tion.25 Once activated, first responder cells of the
innate immune system (predominantly macrophages)
produce proinflammatory cytokines (eg, tumor necro-
sis factor [TNF]-a, interleukin [IL]-1b). These early
cytokines stimulate the synthesis of other inflammatory
mediators and result in the activation of other leuko-
cytes.23 Late inflammatory mediators (eg, high-mobil-
ity group box-1 [HMGB-1], IL-6) provide signaling for
ongoing inflammation as appropriate.23

In response to the production of proinflammatory
cytokines, anti-inflammatory cytokines (eg, IL-10) are
produced to help maintain immune system balance,
known as the compensatory anti-inflammatory
response syndrome (CARS). The purpose of CARS is
to limit the damage caused by the proinflammatory
response while not interfering with pathogen elimina-
tion. CARS can be detrimental and lead to immune
system dysregulation when its effects are overexagger-
ated or poorly timed. An unchecked CARS response

1142 Osterbur et al



can lead to a phenomenon known as “immunoparaly-
sis,” which leaves the host vulnerable to further injury
and infection.26–28

Neutrophils are also major contributors to the path-
ogenesis of innate immune dysregulation. Neutrophil
priming by cytokines (eg, TNF-a) leads to alterations
in cell surface protein expression, interaction with vas-
cular endothelium, trafficking to various extravascular
sites, and production of superoxides.29 Neutrophils
undergo downregulation of apoptotic pathways during
inflammation resulting in relative neutrophil “immor-
tality.” This sets up a scenario in which neutrophils
infiltrate tissues, produce superoxides, and induce tis-
sue damage. These changes result in the perpetuation
of inflammation through various pathways, including
release of HMGB1 from damaged cells.30

Mitochondrial Dysfunction

Mitochondrial dysfunction and the resultant cyto-
pathic hypoxia also may be key in the pathogenesis of
MODS. Neutrophils contribute to relative cellular dys-
function by activating mitochondrial dysfunction path-
ways. Superoxide from neutrophils along with nitric
oxide (NO) production from vascular endothelium
combine to form peroxynitrite. Peroxynitrite causes
inhibition of several aspects of mitochondrial respira-
tion and mitochondrial synthesis of ATP by activating
the enzyme poly-(ADP-ribose) polymerase.31 Oxidative
stress and proinflammatory cytokine signaling lead to
uncoupling of oxidative phosphorylation via mitochon-
drial permeability transition (MPT). In MPT, a pore is
opened in the inner mitochondrial membrane which
allows an inappropriate proton gradient within the
mitochondria and uncoupling of oxidation from phos-
phorylation.32,33 These acquired intrinsic derangements
in cellular energy metabolism during MODS are
referred to as cytopathic hypoxia.34 The concept of
cytopathic hypoxia was developed to explain the dis-
connect between adequate oxygen delivery and poor
utilization of oxygen at the tissue level.32

When mitochondrial energy production is decreased
because of cytopathic hypoxia, the result is cellular
dysfunction and, in some cases, cell death. Mitochon-
drial dysfunction has been documented during sepsis-
induced MODS in people with naturally developing
sepsis and in experimental models.35–37 Pharmacologic
inhibition of mitochondrial derangement prevents the
development of MODS in experimental bacterial sepsis
indicating that mitochondrial damage is a causative
factor in the development of MODS and thus could be
a therapeutic target.38

Although generally viewed as “bad” clinically,
downregulation of mitochondrial function might be a
cellular adaptive response to prolonged inflamma-
tion.39 In general, cell death (necrosis) is not a com-
mon finding in people with MODS. Instead, it appears
that mitochondrial dysfunction causes a transient
decrease in cellular activity that can return when the
animal recovers. This phenomenon has been referred
to as a cellular hibernation-like state. However, if this

phenomenon occurs for too long, irreversible organ
damage may result.23

Individual Organ System Dysfunction

Several different forms of organ dysfunction have
been recognized in people and animals during sepsis
and other inflammatory states. The predominant organ
systems involved in MODS and those characterized
clinically are the hepatic, respiratory, gastrointestinal,
cardiovascular, coagulation, renal, central nervous,
and endocrine systems.40 These forms of organ
dysfunction are discussed in detail below.

Hepatic Dysfunction

Hepatic damage caused by sepsis or other forms of
SIRS typically is divided into primary and secondary
stages.41 In the primary stage, septic shock results in
hepatic hypoperfusion leading to decreased protein
synthesis, lactate clearance, gluconeogenesis, and gly-
cogenolysis. Hypoglycemia results from decreased glu-
coneogenesis and glycogenolysis. Blood concentrations
of aminotransferases increase as the result of hepato-
cellular leakage and coagulopathy may become clini-
cally apparent.42 The secondary stage of hepatic
dysfunction results from Kupffer cell activation and
subsequent production of proinflammatory cytokines,
chemokines, reactive oxygen species, and NO leading
to further liver damage and dysfunction.43

In the context of MODS, hepatic dysfunction often
is defined as hyperbilirubinemia in the absence of pre-
existing liver disease. Other definitions such as
increased blood concentrations of alanine transaminase
(ALT) or alkaline phosphatase (ALP) or the presence
of hepatic encephalopathy are sometimes used. These
definitions make it difficult to assess the overall inci-
dence of hepatic dysfunction in people and small ani-
mals and to compare the incidence of hepatic
dysfunction among various studies.44 Hepatic dysfunc-
tion is an inconsistent predictor of mortality in people
and dogs with MODS.6,44–49 The incidence of hepatic
dysfunction in people in the ICU approached 11% in
1 multicenter prospective study of critically ill patients.
The incidence of hepatic dysfunction, when classified
by increases in ALT and ALP or bilirubin concentra-
tion in dogs with sepsis ranges from 33 to 72%.6,50,51

Respiratory Dysfunction

Acute respiratory distress syndrome (ARDS) is 1
manifestation of respiratory dysfunction in people and
animals. ARDS can result from 2 different pathways:
(1) direct pulmonary causes (eg, bacterial or aspiration
pneumonia, lung contusions, inhalation injury) or (2)
indirect causes (eg, sepsis, pancreatitis, trauma, burns,
blood transfusions [transfusion-associated acute lung
injury]).52–59 ARDS is characterized by neutrophil
infiltration of the lung, alveolar–capillary barrier
damage, pulmonary vascular leakage, and alveolar
and systemic release of proinflammatory cytokines.
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Alveolar–capillary barrier damage and increased
vascular permeability result in pulmonary edema while
the production of cytokines perpetuates inflammation,
promotes atelectasis, and causes structural damage to
the type I alveolar pneumocytes.60,61

Acute respiratory distress syndrome has been associ-
ated with a 4-fold higher risk of in-hospital mortality
in people.62 Mortality rates for ARDS in people are
difficult to accurately estimate because of the variabil-
ity in diseases that cause ARDS, but range from 15 to
80% with no difference in overall mortality between
direct and indirect causes of ARDS.52,63 Survival rates
of ARDS in veterinary medicine are thought to be
lower than in human medicine, although it is difficult
to estimate the true survival rate because of the influ-
ence of economic or philosophical confounding vari-
ables. In addition, there is limited information
available pertaining to ARDS-specific mechanical ven-
tilation in small animals. Description of successful
management of dogs with ARDS has been limited to
case reports and case series.64–66 In a retrospective
study of dogs and cats that required mechanical venti-
lation, 12/73 met the criteria for the diagnosis of
ARDS and only 1 survived.67

Gastrointestinal Dysfunction

Gastrointestinal dysfunction is described in people
and animals as hyporexia or anorexia, inability to tol-
erate enteral feedings, decreased intestinal motility,
hemorrhagic diarrhea, increased intestinal permeabil-
ity, and bacterial translocation.68–70

Bacterial translocation often is discussed in the con-
text of MODS and can be defined as the process by
which intestinal bacteria or Candida cross the intesti-
nal mucosal barrier to reach mesenteric lymph nodes.71

The principal mechanisms thought to be responsible
for bacterial translocation are an alteration in the nor-
mal gastrointestinal flora and physical disruption of
the gut mucosal barrier.72 After a severe insult such as
polytrauma or cardiac arrest, the gut flora (including
obligate anaerobes and Lactobacillus) is destroyed
immediately and the number of intestinal pathogenic
bacteria gradually increases.73 Destruction of gut flora
is detrimental because these commensal organisms are
an important defense against pathogenic bacteria colo-
nization and thus aid in the prevention of bacterial
translocation.74

Bacterial translocation after physical disruption of
the gut mucosal barrier is thought to be caused by
inflammatory mediator, endotoxin, and NO-induced
changes in and decreased production of tight junction
proteins.75 Dogs and cats with experimentally induced
endotoxemia have significantly increased gastrointesti-
nal mucosal permeability when compared to control
animals.76 Cats also exhibit jejunal epithelial necrosis
and neutrophil infiltration.76,77

In addition to barrier dysfunction, sepsis also causes
changes in gastrointestinal motility and absorption of
nutrients. Endotoxin given IV to dogs causes a
decrease in the number and strength of jejunal

contractions as well as decreased net absorption of
water, electrolytes, and glucose from the jejunum,78,79

decreased colonic absorption of water and sodium,80

and increased colonic motility and contractions.81

These changes can lead to diarrhea, dehydration, and
electrolyte abnormalities. If severe, these changes ulti-
mately may lead to decreased oxygen delivery and tis-
sue perfusion, putting the patients at an increased risk
of developing MODS.

The incidence of overall gastrointestinal dysfunction
in people and animals is difficult to gauge compared to
other forms of organ dysfunction because of the lack
of a clear definition and subjective nature of its assess-
ment69,82; however, it is considered to be com-
mon.68,69,83

Cardiovascular Dysfunction

Cardiovascular dysfunction is characterized by
biventricular dilatation, decreased ejection fraction,
hypotension often despite fluid therapy, and decreased
response to catecholamines.84 The cause of cardiovas-
cular dysfunction is often multifactorial but generally
is thought to be associated with the production of sub-
stances that lead to decreased cardiac contractility and
mitochondrial damage. Endotoxin, cytokines (eg, IL-
1b,TNF-a, platelet activating factor), and calcium leak
from the sarcoplasmic reticulum, ultimately leading to
a decrease in myocardial cell contractility.85,86 In
humans, and canine and guinea pig models, several
cardiac abnormalities occur, including decreased con-
tractility, left ventricular dilatation, and decreased left
ventricular ejection fraction after exposure to Staphylo-
coccus aureus and E. coli,87 TNF-a,88–90 IL-1b,89 and
IL-6.91 The proinflammatory complement protein C5a
also may play a role in myocardial dysfunction by pro-
ducing reactive oxygen species.84 NO production leads
to decreased cardiac contractility by downregulating
the beta-adrenergic myocardial receptors and decreas-
ing cytosolic calcium.92,93 Peroxynitrite is formed from
NO and results in oxidative mitochondrial damage
and decreased cardiac contractility.94

Critical illness-induced left ventricular dysfunction
has been described in 16 dogs in which primary heart
disease was not suspected and congestive heart failure
was not present; over half of these dogs had bacterial
sepsis or cancer.95 A similar case report described a
dog with idiopathic septic arthritis that had evidence
of myocardial dysfunction on physical examination
and echocardiogram. An echocardiogram performed
3 months later showed resolution of the myocardial
dysfunction, indicating the initial echocardiographic
abnormalities were a consequence of the septic arthritis
and not from underlying heart disease.96

In people and small animals, cardiovascular dys-
function often is thought of in the context of the
peripheral vasculature. For patient stratification in ret-
rospective or prospective studies, cardiovascular dys-
function has been defined as hypotension requiring
vasopressor treatment and is associated with decreased
survival.6,7 Cardiovascular dysfunction occurring
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secondary to sepsis is referred to as septic shock,
which is defined as sepsis-induced arterial hypotension
despite adequate fluid resuscitation.2

Cardiovascular dysfunction is common in people
with sepsis; some studies report an incidence of up to
66%.97,98 It is also considered a prognostic factor for
poor outcome98 and is associated with mortality rates
as high as 70%.88,98,99

Septic shock carries a poor prognosis in veterinary
medicine, and several veterinary studies show survival
rates of 10% or less.6,50,100,101 Mortality also is
increased in dogs with septic shock that require a
greater number of vasopressors.102

Literature regarding sepsis-induced cardiovascular
dysfunction in cats is lacking. Relative bradycardia is
a common and unique finding in cats with sepsis; 19/
29 cats with severe sepsis were reported to have an
inappropriately low heart rate, and this mechanism is
suspected to be secondary to increased vagal tone or
cytokine-associated myocardial dysfunction.103 The
combination of bradycardia and hypothermia was a
negative prognostic indicator in a case series of 12 cats
with primary bacterial septic peritonitis,104 but another
study did not support this conclusion.103 Recovery of
cardiovascular function for cats requiring vasopressor
support is variable.104,105

Coagulation Dysfunction

Coagulation is a physiologic process intended to
localize inflammation at the site of infection, prevent
the spread of microorganisms, stop active hemorrhage,
and promote wound healing.106 Disseminated intravas-
cular coagulation (DIC) is the most severe form of
coagulation dysfunction and occurs when the appro-
priate physiologic response is exaggerated by the pres-
ence of proinflammatory cytokines such as IL-1b,
IL-6, and TNF-a. This proinflammatory response
leads to fibrin formation and microvascular thromobo-
sis through the upregulation of procoagulant path-
ways, downregulation of anticoagulant pathways, and
suppression of fibrinolysis. The generation of thrombin
leads to the production of additional proinflammatory
cytokines that act as a positive feedback loop to per-
petuate the coagulation cascade.107 Animals with DIC
may develop microvascular thrombosis or hemorrhage
resulting from consumption and exhaustion of coagu-
lation factors, or both simultaneously.108 DIC most
commonly occurs in people with sepsis, trauma, and
cancer.109

In humans and animals, a diagnosis of DIC is not
required for the classification of coagulation dysfunc-
tion. In dogs, coagulation dysfunction has been
defined as prolongation of prothrombin time (PT) or
partial thromboplastin time (PTT) >25% above the
upper reference limit, a platelet count ≤100,000/lL or
both.6

Coagulation dysfunction is common in humans,
affecting 15–30% of patients with severe sepsis,110 and
has been shown to be an independent predictor of
mortality in patients with sepsis.111,112 The incidence

of thrombocytopenia in human patients with sepsis is
35–59% and an inverse relationship exists between
severity of disease and platelet count.113,114

Coagulation dysfunction is a negative prognostic
indicator in dogs with sepsis and trauma.6,7 Of dogs
with sepsis, 60.5% had coagulation dysfunction, and
coagulation dysfunction was the most common disor-
der diagnosed in a recent multicenter retrospective vet-
erinary study.6,115 Of 10 dogs with septic shock and
MODS because of babesiosis, 9 had thrombocytopenia
and none of these dogs survived.50 Other coagulation
abnormalities found in dogs with naturally developing
sepsis include increased D-dimers, fibrinogen degrada-
tion products (FDP), and von Willebrand factor, and
depletion of antithrombin and activated protein
C.6,115–117 There is some evidence that decreased anti-
thrombin concentrations are associated with decreased
survival in dogs with critical illness including sep-
sis,118,119 whereas other studies show no correlation.115

There is less information regarding coagulation dys-
function in cats compared to dogs. A retrospective
study evaluated the coagulation profiles of 46 critically
ill cats in which the most common primary diseases
were neoplasia, sepsis, and pancreatitis. Coagulation
abnormalities included a prolonged PT (26/34 cats)
and PTT (33/33 cats), thrombocytopenia (12/24 cats),
increased FDP (10/33 cats), and decreased fibrinogen
concentration (22/33 cats).120 Additional retrospective
evaluations of DIC in cats have shown similar coagu-
lation profiles.121,122

Renal Dysfunction

Renal dysfunction is referred to as acute kidney
injury (AKI). Like many forms of organ dysfunction,
AKI is caused by several different pathways. There are
2 main forms of AKI associated with MODS. One
form involves a more traditional definition of kidney
failure which is characterized by renal epithelial necro-
sis; renal hypoperfusion and ischemia often are cited in
the pathogenesis.123–126 This form is the least common.
A review of 6 studies evaluating AKI caused by sepsis
in humans found that only 22% of patients with sepsis-
induced AKI had histopathologic evidence of acute
tubular necrosis. Similarly, only 37% and 23% of pri-
mate and rodent sepsis-induced AKI models, respec-
tively, were consistent with acute tubular necrosis
whereas canine and sheep sepsis-induced AKI models
had no evidence of acute tubular necrosis. In fact, the
majority of animals or people in these studies were
reported to have histopathologically normal kidneys.127

The 2nd form of AKI is specific to MODS and is
not associated with necrosis; this is the most common
form in people. Apoptosis caused by inflammatory
cytokines (eg, TNF-a) and endotoxin appears to be a
predominant mechanism of this form of sepsis-induced
AKI.128 Apoptosis is difficult to appreciate on routine
histopathology, which may explain the lack of histo-
pathologic damage in AKI.129 Instead of global hyp-
operfusion during sepsis, renal blood flow is adequate
or increased which may explain the lack of acute
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tubular necrosis.130–132 It has been proposed that dur-
ing sepsis-induced AKI, the efferent arteriole dilates to
a greater degree than the afferent arteriole resulting in
increased renal blood flow, decreased glomerular capil-
lary pressure, and decreased glomerular filtration
rate.133

Acute kidney injury is an important form of organ
dysfunction in people because it markedly increases
mortality.134–138 A multinational, multicenter study in
humans found that AKI had a prevalence of 5–6%
and only 40% of these people survived to discharge.
Septic shock was the most common cause of AKI in
this study.139 AKI occurs in up to 65% of people with
septic shock.140 A retrospective analysis of critically ill
trauma patients found that patients with AKI had a
mortality rate of 29.6%, which was significantly higher
than the overall mortality rate of 9.2%.141

The prevalence of AKI in dogs is unknown, but
AKI is considered to decrease survival. In a popula-
tion of dogs that underwent surgery for septic peritoni-
tis, 12.3% met the investigators’ criteria for renal
dysfunction (increase in serum creatinine concentra-
tions by ≥0.5 mg/dL from preoperative concentrations)
and only 14% of these dogs survived to discharge.6 A
recent veterinary study evaluated AKI in critically ill
dogs. The investigators found 14.6% of dogs met crite-
ria for AKI (increase in serum creatinine concentration
of >150% from baseline) during hospitalization and
the survival rate was 45.8%.142 The survival rates
between these 2 studies are markedly different, and the
disparity can most likely be related to differences in
patient population. The 1st study involved only
patients with septic peritonitis whereas only approxi-
mately half of the patients with AKI in the 2nd study
had sepsis because of various causes.

Central Nervous System Dysfunction

Sepsis-associated encephalopathy (SAE) is an acute
and sometimes reversible deterioration of mental status
characterized by changes in consciousness, awareness,
cognition, and behavior in people.143 The pathophysi-
ology of SAE is not completely understood. Initially,
the blood–brain barrier is intact and this protects the
brain from systemic inflammation. Inflammatory medi-
ators (eg, IL-1b, TNF-a) stimulate the afferent fibers
of the vagus nerve, which acts as a conduit to the cen-
tral nervous system. After stimulation of the vagus
nerve, cerebral endothelial cells then are activated,
resulting in breakdown of the blood–brain bar-
rier.144,145 Activation of cerebral endothelial cells also
induces microcirculatory dysfunction and coagulopa-
thy and changes in vascular tone leading to hemor-
rhagic and ischemic lesions.146 In addition, reactive
oxygen species are formed which compromise neuronal
and microglial cell function and survival and eventu-
ally lead to apoptosis and edema. Finally, SAE is
thought to decrease the vasodilatory response of the
cerebrum leading to impairment of cerebral autoregu-
lation of blood flow.145 Brain histopathology from
patients with septic shock is characterized by a variety

of lesions including cerebral edema, infarcts, microab-
scesses, intravascular thrombosis, and neuronal cell
death.146

Sepsis-associated encephalopathy is the most com-
mon form of encephalopathy in people with an inci-
dence of 8–70% of people with sepsis in the ICU.147

However, the recognition of SAE often is hindered by
the use of sedatives for mechanical ventilation. SAE is
associated with a poor prognosis in people. In 1
report, the mortality rate of septic patients with an
altered mental status was 49% compared to 26% of
septic patients with no neurologic clinical signs.148 The
development of SAE in people with sepsis has long-
term detrimental consequences including neurologic
impairment, decreased cognitive scores in children, and
psychologic disorders.149–151 The incidence and long-
term impact of this phenomenon in veterinary species
is unknown.

Adrenal Dysfunction

Critical illness-related corticosteroid insufficiency
(CIRCI) is defined as inadequate corticosteroid activity
relative to illness severity. CIRCI describes a reversible
dysfunction of any aspect of the hypothalamic–pitui-
tary–adrenal axis caused by proinflammatory media-
tors (eg, TNF-a).152 In addition, corticosteroid tissue
resistance increases in acute inflammatory diseases
such as sepsis. Thus, although adequate amounts of
cortisol are produced, corticosteroid receptor binding
is impaired.153 CIRCI is a dynamic process that is
characterized by basal serum cortisol concentrations
that are often within or above the reference interval,
but after adrenocorticotropin hormone (ACTH)
administration there is dampened cortisol secretion.100

Critical illness-related corticosteroid insufficiency is
believed to have an approximate overall prevalence of
30% in critically ill people and the prevalence increases
to approximately 60% in people with septic shock.154

Despite several research studies supporting the exis-
tence of and treatment for CIRCI,155–160 there is also
evidence of the contrary.161,162 It is considered a con-
troversial concept in human medicine and not widely
accepted.163

There are a few veterinary studies regarding CIRCI,
and the majority has found that critically ill animals
have similar adrenal dysfunction to people.100,164–168 In
1 study, 48% of dogs with sepsis had CIRCI, and dogs
with a D-cortisol (difference between cortisol measured
pre- and post-ACTH stimulation) of <3 lg/dL were
more likely to be hypotensive and less likely to sur-
vive.100 There is only 1 case report each of a dog and
cat with septic shock and evidence of CIRCI in which
shock was reversed by the use of hydrocortisone or
dexamethasone, respectively. Both animals experienced
complete recovery.165,168

Prognosis

In people with MODS, the number of dysfunctional
organ systems correlates with mortality in the
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ICU.18,169 People with severe sepsis and multiple organ
dysfunction are 2.2 times more likely to die than
patients with severe sepsis and single organ dysfunc-
tion,170 and people with ≥4 dysfunctional organs are 4
times more likely to die than those with single organ
dysfunction.170 One multicenter study found mortality
rates corresponding with 1, 2, 3, and more than 4 dys-
functional organ systems were 21.2%, 44.3%, 64.5%,
and 76.2%, respectively, in critically ill people.5 Chil-
dren with MODS have worse functional outcomes,
higher mortality, and longer stays in the ICU than
children who do not have MODS.171 Mortality rates
associated with MODS in people are influenced by
comorbidities such as chronic kidney disease, cancer,
and diabetes,5,172 and cumulative comorbidities are
associated with greater risk for organ dysfunction.173

The development of MODS and increasing number
of organ systems affected also are associated with
poorer outcome in veterinary medicine. In a recent
study of dogs with abdominal sepsis, the overall sur-
vival rate was 79% compared to 40% in dogs with
MODS.20 In a separate study of dogs treated surgically
for abdominal sepsis, dogs with MODS had a survival
rate of only 30% compared to a 75% survival rate in
dogs without MODS.6 Survival was inversely propor-
tional to the number of dysfunctional organ systems;
reported survival rates were 46%, 24%, 8%, and 0%
with 2, 3, 4, and 5 failed organs, respectively. Similar
results were found in a report of MODS caused by
canine babesiosis.174 MODS secondary to trauma in
dogs is less common than in sepsis, but mortality
reached 100% in 1 retrospective study.7

Conclusion

Multiple organ dysfunction syndrome is associated
with high morbidity and mortality in both human
beings and animals. Compared to human medicine,
there is very little known regarding MODS in veteri-
nary species outside of a laboratory setting. To better
characterize MODS in clinical veterinary cases, the
veterinary community needs to first develop consensus
statements regarding the definition of MODS in ani-
mals that can then be used as the basis for prospective
studies in this area.
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