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Endothelial progenitor cells (EPCs) derived from bone marrow and blood can differentiate into endothelial cells and promote
neovascularization. In addition, EPCs are a promising cell source for the repair of various types of vascularized tissues and have
been used in animal experiments and clinical trials for tissue repair. In this review, we focused on the kinetics of endogenous
EPCs during tissue repair and the application of EPCs or stem cell populations containing EPCs for tissue regeneration in
musculoskeletal and neural tissues including the bone, skeletal muscle, ligaments, spinal cord, and peripheral nerves. EPCs can
be mobilized from bone marrow and recruited to injured tissue to contribute to neovascularization and tissue repair. In
addition, EPCs or stem cell populations containing EPCs promote neovascularization and tissue repair through their
differentiation to endothelial cells or tissue-specific cells, the upregulation of growth factors, and the induction and activation of
endogenous stem cells. Human peripheral blood CD34(+) cells containing EPCs have been used in clinical trials of bone repair.
Thus, EPCs are a promising cell source for the treatment of musculoskeletal and neural tissue injury.

1. Introduction

Most types of tissue, except the cornea, lens, and cartilage,
have blood vessels that supply nutrition. In addition, the
vascular niche has been reported recently to play a crucial
role in homeostasis, proliferation, and differentiation of
somatic stem cells during development and regeneration of
tissues [1–8]. Therefore, neovascularization is required not
only to supply nutrition but also to improve the environment
for the tissue regeneration. The endothelial progenitor cell
(EPC) has been reported as a promising cell source for
promoting neovascularization [9, 10]. EPCs can differentiate
into endothelial cells and contribute directly to the formation
of new blood vessels in tumors or ischemic disease [11–14].
On the other hand, EPCs also enhance angiogenesis through
the release of proangiogenic factors including vascular
endothelial growth factor (VEGF), angiopoietin-1 (Ang1),
hepatocyte growth factor (HGF), platelet-derived growth

factor (PDGF), monocyte chemotactic protein- (MCP-) 1,
and macrophage inflammatory protein- (MIP-) 1 [15–19].
The transplantation of EPCs has been used to treat ischemic
diseases in animal models and clinical trials [20–25]. EPCs
can also promote the repair of injured tissue through the
acceleration of neovascularization. In the present study, we
examine the application of EPCs to the repair of musculo-
skeletal and neural tissues.

2. Mobilization and Recruitment of EPCs
during Tissue Repair

Circulating EPCs are characterized by the expression of
primitive hematopoietic progenitor markers, CD34 or
CD133, and endothelial markers, CD31, Flk-1/kinase insert
domain receptor (KDR)/VEGF receptor2 (VEGFR2), vas-
cular endothelial- (VE-) cadherin, and Tie2 [26–28]. The
EPC colony-forming unit assay of mononuclear cells was
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developed to assess the quality and quantity of mobilized
EPCs [29].

In animal models of bone fracture, enhanced mobili-
zation of bone marrow-derived circulating EPCs and
incorporation of the mobilized EPCs into the fracture site
have been demonstrated using cell surface markers for
EPC [30, 31]. Stromal-derived factor 1 (SDF-1) and CXC
chemokine receptor 4 (CXCR4), which is a receptor for
SDF-1, play an important role in the mechanism of EPC
recruitment for bone fracture healing [32]. Even in humans,
the mobilization of EPCs related to osteogenesis has been
reported [33]. During distraction osteogenesis of the femur
or tibia, the number of CD34(+) or CD133(+)/VEGFR2(+)
cells in the peripheral blood mononuclear cell population
and the expression level of EPC-mobilizing cytokines includ-
ing VEGF and SDF-1 in the blood plasma are increased
despite no increase in the expression levels of C-reactive
protein (CRP). These findings suggest that EPC mobilization
is enhanced during osteogenesis without relation to an
inflammatory response. Lnk is an adaptor protein and an
essential inhibitor of stem cell factor- (SCF-) cKit signaling
and thrombopoietin (TPO) signaling during stem cell self-
renewal [34–36]. The bone fracture model of Lnk-deficient
mice shows accelerated angiogenesis, fracture healing, and
remodeling through the enhancement of mobilization and
the recruitment of bone marrow EPCs [37]. In addition,
Lnk siRNA transfection enhances the function of EPCs for
vascularization and improves fracture healing [38]. There-
fore, the inhibition of Lnk may have therapeutic potential
to enhance fracture healing. The mobilization and incorpora-
tion of EPCs have also been reported in a spinal cord injury
model using bone marrow transplantation from Tie2/lacZ
transgenic mice into wild-type mice [39, 40]. The number
of circulating mononuclear cells and EPC colonies formed
by the mononuclear cells peaks at day 3 post spinal cord
injury, and EPCs recruited into the injured spinal cord
markedly increase at day 7 after injury. Even in human spinal
cord injury, the number of CD34(+)/CD133(+)/VEGFR2(+)
EPCs in peripheral blood is increased within 7 days post
injury [41].

3. Application of EPCs for Musculoskeletal
Tissue Regeneration

3.1. Bone Regeneration. Intravenous administration of granu-
locyte colony-stimulating factor- (G-CSF-) mobilized human
peripheral blood CD34(+) cells enhances neovascularization
and improves fracture healing in an immune-deficient rat
nonhealing femoral fracture model [42]. The results of
that study indicate a direct contribution of transplanted
CD34(+) cells to vasculogenesis and osteogenesis. The local
administration of G-CSF-mobilized human peripheral blood
CD34(+) cells with atelocollagen scaffold to the fracture site
also results in enhanced angiogenesis, augmented blood flow
recovery, and improved fracture healing in the rat nonheal-
ing femoral fracture model (CD34(+) cells were transplanted
immediately after the creation of nonhealing fracture) and
nonunion model (CD34(+) cells were transplanted at 8 weeks
after the creation of the nonhealing fracture) [43, 44]. The

transplantation of CD34(+) cells for bone regeneration
has been performed in a clinical trial for patients with
femoral and tibial nonunion [45, 46]. The intravenous
administration of G-CSF-mobilized human peripheral
blood CD34(+) cells was also used in immune-deficient
rat osteonecrosis models [47]. In that study, the cells
inhibited the progression of osteonecrosis after the cauteriza-
tion of blood vessels at the femoral neck. The transplantation
of bone marrow mononuclear cells containing CD34(+) cells
has been used to treat patients with idiopathic necrosis at the
femoral head [48, 49]. However, the CD34(+) population is
rare in mononuclear cells derived from bone marrow or
peripheral blood [50, 51]. Therefore, an expansion method
of EPCs from CD34(+) was developed [52]. In this method,
CD34(+) or CD133(+) cells are cultured in serum-free
medium containing VEGF, stem cell factor (SCF), interleu-
kin (IL)-6, Flt3 ligand, and thrombopoietin (TPO). The
expansion culture increases CD34(+) or CD133(+) cells that
maintain EPC colony-forming potential. Ex vivo expanded
CD34(+) cells also show a potential for enhancing bone
regeneration [53]. On the other hand, EPCs cultured from
bone marrow cells were also reported to enhance bone
regeneration in the rat segmental bone defect model [54, 55].

3.2. Skeletal Muscle Regeneration.Muscle tissue regeneration
induced by EPC transplantation has been reported frequently
in ischemic disease models [56–60]. In skeletal muscle injury
models, the local transplantation of G-CSF-mobilized human
peripheral blood CD133(+) cells enhances angiogenesis,
reduces fibrous scar formation, and improves skeletal muscle
repair in an immune-deficient rat skeletal muscle injury
model [61]. The direct contribution of transplanted human
CD133(+) cells to von Willebrand factor- (vWF-) positive
blood vessels, desmin- or MyoD1-positive muscle, and
Pax7-positive pericyte was shown. However, these cells are
rare compared with those on the regenerative area. The
expression of VEGF is increased and that of transforming
growth factor- (TGF-) β is decreased in regenerative tissue
after CD133(+) cell transplantation. Therefore, the paracrine
effects of transplanted cells may be a main mechanism of
skeletal muscle regeneration following CD133(+) cell trans-
plantation. Magnetic targeting was developed as a new cell
delivery system using magnetic forces [62]. CD133(+) cells
are isolated by the magnetic-activated cell sorting (MACS).
Isolated CD133(+) cells are labeled with magnetic beads
bound to CD133 antibodies [63]. These CD133(+) cells can
be attracted by magnetic forces. The magnetic targeting of
G-CSF-mobilized human peripheral blood CD133(+) cells
for the immune-deficient rat skeletal muscle injury model
demonstrated an improvement in muscle repair even with
a small number of CD133(+) cells used in the transplanta-
tion [64]. Adipose tissue-derived regenerative cells (ADRCs)
can be isolated quickly from harvested adipose tissue using
the Celusion system (Cytori Therapeutics, San Diego, USA).
ADRCs are heterogenous and contain a rich EPC cell popula-
tion (CD31+ CD34+ CD45− CD90+ CD105− CD146+) [65].
The local transplantation of human ADRCs to the immune-
deficient rat skeletal muscle injury model results in acceler-
ated revascularization and muscle regeneration [66].
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3.3. Ligament Regeneration. The periodontal ligament (PDL)
is a fibrous connective tissue located between the tooth
root and the alveolar bone. Fibroblastic lineage cells in
PDL tissue have EPC-like properties including the expres-
sion of endothelial cell markers and the ability to facilitate
the construction of a vascular system [67–69]. CD34(+)
cells derived from ruptured human anterior cruciate
ligaments (ACL) of the knee also have EPC-like properties
and the potential to enhance angiogenesis and osteogenesis
[70]. G-CSF-mobilized human peripheral blood CD34(+)
cells with atelocollagen were transplanted locally to an
immune-deficient rat knee medial collateral ligament injury
model [71]. The transplantation of CD34(+) cells increases
the expression of VEGF in the injured ligament and pro-
motes the vascularization and repair of ligament tissue.
Additionally, combined transplantation of rabbit ligament
stem cells and human umbilical cord blood-derived CD34(+)
cells improves ligament repair in rat medial collateral
ligament injury models [72].

4. Application for Neural Tissue Repair

4.1. Spinal Cord Regeneration. Human CD34(+) umbilical
cord blood cells were used initially as an EPC population
for the treatment of spinal cord injury models [73]. In that
study, the effect of intraspinal transplantation of CD34(+)
on spinal cord repair was compared with that of human bone
marrow stromal (BMS) cell transplantation. CD34(+) cell
transplantation achieves greater improvement of functional
recovery following spinal cord injury compared with that
of BMS cell transplantation. Some of the transplanted
CD34(+) cells express glial or neural cell markers including
glial fibrillary acidic protein (GFAP) or neuronal nuclear
antigen (NeuN). However, another study using human
CD34(+) umbilical cord blood cells for spinal cord injury
models showed that transplanted CD34(+) cells survive in
the host spinal cord for at least 3 weeks after transplantation
but disappeared by 5 weeks. Additionally, the transplanted
cells are not positive for neural markers [74]. Therefore, the
differentiation of transplanted CD34(+) cells into glial or
neural cells might not be a main mechanism for spinal cord
repair. Intravenous administration of G-CSF-mobilized
human peripheral blood CD133(+) cells also improves
functional recovery in an immune-deficient rat spinal cord
injury model [75]. In that study, transplanted CD133(+) cells
contribute directly to neovascularization at the injury site.
In addition, the expressions of SDF-1 and CXCR4 increase
after the CD133(+) cell treatment. Another study also
demonstrated that the expressions of SDF-1 and CXCR4
are upregulated after spinal cord injury, along with corre-
sponding trend of endogenous CD133(+) cells with SDF-1
expression [76]. The recruitment of CXCR4(+) cells, includ-
ing endogenous neural progenitor cells through the SDF-1-
CXCR4 axis, may be a mechanism for spinal cord repair after
CD133(+) cell treatment. On the other hand, CD133(+) cells
derived from human peripheral blood or umbilical cord
blood were administrated to an organotypic coculture system
consisting of the spinal cord and cortex from neonatal
rats [77, 78]. This coculture system allows assessment of

the paracrine effect of the transplanted cells on axon growth
in the spinal cord [79–81]. The administration of CD133(+)
cells increases the expression levels of VEGF, reduces neural
apoptosis, and promotes axon growth from the cortex into
the spinal cord [77, 78]. The neuroprotective effect and
improvement of the microenvironment for axon growth
through the upregulation of VEGF expression may be a
critical mechanism of CD133(+) cell administration for
spinal cord regeneration. Ex vivo expanded CD133(+)
human umbilical cord blood cells also show potential for
spinal cord regeneration [82]. The ex vivo expansion cul-
ture of CD133(+) cells increases the number of cells by
62.8± 14.4-fold. Expanded CD133(+) cells have the potential
for EPC colony formation and improvement of neovascular-
ization and spinal cord repair similar to fleshly isolated
CD133(+) cells. The transplantation of a 20-fold number of
expanded CD133(+) cells promotes further angiogenesis,
axon growth, and functional recovery in an immune-
deficient rat spinal cord injury model [82]. Intravenous
transplantation of EPCs cultured from bone marrow mono-
nuclear cells also enhances functional recovery after spinal
cord injury [83]. The transplantation of cultured EPCs pro-
motes the repair of injured spinal cord through the induction
of astrogliosis and vascular regulation. Astrogliosis in the
acute phase of spinal cord injury has been reported to be
important for the repair of the blood-brain barrier and for
the restriction of inflammation, which leads to a reduction
in secondary degeneration after spinal cord injury [84]. A
study using Jagged1 knockout mice showed that transplanted
EPCs contribute to astrogliosis, vascular regulation, and
spinal cord regeneration through the activation of Jagged1-
Notch signaling [83]. The knockdown of Lnk in c-Kit(+),
Sca-1(−), and lineage marker(−) (KSL) bone marrow stem
cell population upregulates the function of these cells as
EPCs. Lnk−/− KSL cells form increased numbers of EPC
colonies compared to that of Lnk+/+ KSL cells. Additionally,
the intravenous administration of Lnk+/+ KSL cells to a
mouse spinal cord injury model promotes angiogenesis,
astrogliosis, axon growth, and functional recovery following
injury, with Lnk−/− KSL being significantly more effective in
inducing and promoting these regenerative events [18]. In
all of the above studies, the direct contribution of trans-
planted EPCs by differentiation to neural cells is very small.
However, EPC transplantation promotes neovascularization
and induces endogenous CXCR4(+) cell recruitment or
astrogliosis. The activation of endogenous stem cells through
neurovascular niche formation may be a main mechanism of
spinal cord regeneration through EPC transplantation.

4.2. Peripheral Nerve Regeneration. The first report of the
application of EPCs for the repair of peripheral nerve
used the intramuscular injection of EPCs cultured from
human cord blood mononuclear cells into hindlimb in
streptozotocin-induced diabetic immune-deficient rats [85].
EPC transplantation improves nerve conduction velocity
and enhances neovascularization of the hindlimb. On the
other hand, peripheral nerve regeneration promoted by the
transplantation of G-CSF-mobilized human peripheral blood
CD133(+) cells was demonstrated in a sciatic nerve defect
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model of the immune-deficient rat [86, 87]. In those studies,
CD133(+) cells embedded in atelocollagen gel were trans-
planted into a silicone tube that was then used to bridge
a 15mm defect in the sciatic nerve. Transplantation of
CD133(+) cells promotes neovascularization and regenera-
tion of myelinated nerve fibers in the silicone tube. In
addition, compound muscle action potentials from ham-
string muscle were observed only in CD133(+) cell-treated
rats following the electronic stimulation of sciatic nerves.
Furthermore, ex vivo expanded CD133(+) cells also show
potential for promoting peripheral nerve regeneration similar
to freshly isolated CD133(+) cells.

5. Conclusions

During the repair of musculoskeletal and neural tissues
including the bone and spinal cord, EPCs are mobilized
and recruited to the injured tissue and contribute to neovas-
cularization and tissue repair. The exogenous administration
of EPCs or a stem cell population containing EPCs enhances
neovascularization and tissue repair. In addition to the direct
contribution of EPCs to neovascularization and tissue repair
by the differentiation of transplanted EPCs to endothelial
cells or tissue-specific cells, the tropic effect derived from
transplanted EPCs and the formation of a vascular niche
may be important for the tissue repair. From all of these

studies, results demonstrate that EPCs are a promising cell
source for the treatment of musculoskeletal and neural tissue
injury (Figure 1).
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