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Abstract
When	humans	age,	changes	in	body	composition	arise	along	with	lifestyle-associated	
disorders	influencing	fitness	and	physical	decline.	Here	we	provide	a	comprehensive	
view	of	dietary	intake,	physical	activity,	gut	microbiota	(GM),	and	host	metabolome	
in	relation	to	physical	fitness	of	207	community-dwelling	subjects	aged	+65	years.	
Stratification	on	anthropometric/body	composition/physical	performance	measure-
ments	(ABPm)	variables	identified	two	phenotypes	(high/low-fitness)	clearly	linked	
to	dietary	 intake,	physical	 activity,	GM,	and	host	metabolome	patterns.	 Strikingly,	
despite	 a	 higher	 energy	 intake	 high-fitness	 subjects	were	 characterized	 by	 leaner	
bodies	and	lower	fasting	proinsulin-C-peptide/blood	glucose	levels	in	a	mechanism	
likely	driven	by	higher	dietary	fiber	intake,	physical	activity	and	increased	abundance	
of	Bifidobacteriales	and	Clostridiales	species	in	GM	and	associated	metabolites	(i.e.,	
enterolactone).	These	factors	explained	50.1%	of	the	individual	variation	in	physical	
fitness.	We	propose	that	targeting	dietary	strategies	for	modulation	of	GM	and	host	
metabolome interactions may allow establishing therapeutic approaches to delay 
and	possibly	revert	comorbidities	of	aging.
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1  | INTRODUC TION

Throughout	 the	course	of	aging,	physical	 impairment	and	changes	 in	
body	composition	may	arise	along	with	a	number	of	lifestyle-associated	
disorders	influencing	physical	decline	and	ultimately	frailty	(Holm	et	al.,	
2014;	Xue,	2011).	Aging	inevitably	occurs	in	all	organisms	with	genet-
ics,	epigenetics,	and	environmental	exposures	(e.g.,	diet,	physical	activ-
ity)	being	modulators	of	the	bodily	deterioration	caused	by	biological	
age	 (Khan,	Singer,	&	Vaughan,	2017).	A	number	of	guidelines	toward	
dietary and daily physical activity recommendations are currently avail-
able;	 however,	 adherence	 remains	 a	 significant	 challenge	 (Gopinath,	
Russell,	Kifley,	Flood,	&	Mitchell,	2016).	Further,	food	perception	and	
dietary	habits	can	be	strongly	altered	during	the	course	of	life,	particu-
larly	those	traits	associated	with	the	loss	of	appetite	(declined	senses	of	
smell	and	taste),	occurrence	of	immune-senescence	and	deterioration	
of	the	gastrointestinal	system	(Giezenaar	et	al.,	2016).

During	the	 last	decade,	 the	gut	microbiota	 (GM)	has	been	recog-
nized	as	a	signaling	hub	that	integrates	dietary	habits	with	genetic	and	
immune	signals	 throughout	 life	 (Thaiss,	Zmora,	Levy,	&	Elinav,	2016).	
Many	inflammatory	and	metabolic	disorders,	such	as	obesity,	diabetes,	
and	 inflammatory	 reactions,	are	 linked	with	GM	dysbiosis	 (Boulangé,	
Neves,	Chilloux,	Nicholson,	&	Dumas,	2016).	Among	 Irish	older	 sub-
jects,	frailty	has	been	linked	with	changing	GM	signatures	(Claesson	et	
al.,	2012)	and	age-related	insulin	resistance	has	been	found	to	be	reg-
ulated	by	the	metabolic	activity	 (e.g.,	production	of	short-chain	 fatty	
acids—SCFA)	of	a	number	of	Clostridiales	species	 (e.g.,	Clostridium IV,	
Ruminococcus, Saccharofermentans)	and	Akkermansia muciniphila	 (Biagi	
et	al.,	2010;	Bodogai	et	al.,	2018;	Kong	et	al.,	2016).	Further,	low	abun-
dance	of	these	bacteria	leads	to	increased	leakage	of	pro-inflammatory	
epitopes	from	the	gut	to	the	bloodstream	(due	to	leaky	gut	syndrome)	
activating	monocytes	inflammation	and	subsequently	impair	insulin	sig-
naling	in	rodents	(Bodogai	et	al.,	2018).

It	is	well-established,	that	frail	older	adults	are	characterized	by	
changed	 dietary	 habits	 and	 altered	 GM	 and	 metabolic	 signatures	
relative	 to	nonfrail	 peers	 (Claesson	et	 al.,	 2012;	 Lustgarten,	Price,	
Chalé,	&	Fielding,	2014),	but	whether	similar	signatures	can	be	iden-
tified	among	nonfrail	older	adults	of	different	physical	capacity	has,	
to	 the	best	of	our	knowledge,	not	been	 investigated	previously.	A	
few	studies	have	focused	on	frail	individuals	showing	that	a	reduced	
consumption	of	dietary	fiber	compromises	the	GM	associated	pro-
duction	of	SCFA	required	for	maintenance	of	colonic	epithelial	cells	
and	regulation	of	immune	and	inflammatory	responses	(Biagi	et	al.,	
2010;	Claesson	et	al.,	2012;	Kong	et	al.,	2016).	Likewise,	GM	signa-
tures	were	 found	 to	correspond	with	 frailty	 indexes	 in	a	 large	co-
hort	of	older	adults,	whose	GM	composition	were	inherently	driven	
by	dietary	 patterns	 (Claesson	 et	 al.,	 2012).	Moreover,	metabolites	
related	 to	 GM	 metabolism	 (e.g.,	 p-cresol	 sulfate,	 indoxyl	 sulfate),	

peroxisome	 proliferator-activated	 receptors-alpha	 activation,	 and	
insulin	resistance	likely	influence	physical	function	in	physically	im-
paired	older	adults	(Lustgarten	et	al.,	2014).

Understanding	how	dietary	intake	and	physical	activity	in	nonfrail	
older	adults	alter	the	GM–metabolome	axis,	and	ultimately	the	phys-
ical	fitness	and	the	risk	of	functional	decline,	is	of	great	clinical	inter-
est	for	the	affected	subjects	as	well	as	for	the	society.	Furthermore,	
identifying	 key	 components	 of	 such	 multifactorial	 processes	 may	
open opportunities to therapeutically address and possibly treat and 
prevent	the	comorbidities	of	aging	(Khan	et	al.,	2017).	Based	on	this	
framework,	we	characterized	dietary	intake,	daily	physical	activity,	
GM,	and	host	metabolome	in	order	to	be	able	to	explain	physical	fit-
ness	of	nonfrail	older	subjects.	To	this	end,	we	included	207	individ-
uals	(65+	years	old,	self-supportive	and	apparently	healthy)	recruited	
through	the	Counteracting	Age-related	Loss	of	skeletal	Muscle	mass	
(CALM)	study	(http://calm.ku.dk)	(Bechshøft	et	al.,	2016).	Our	find-
ings	demonstrate	 that	 physical	 fitness	 and	 function	 corresponded	
to	 signatures	of	 fasting	proinsulin	 and	average	blood	glucose,	 and	
characterized	by	clear	differences	in	energy	and	dietary	fiber	intake,	
daily	physical	activity	as	well	as	differential	abundance	of	GM	mem-
bers	and	a	number	of	fecal	and	plasma	metabolites.

2  | RESULTS

2.1 | Participants inclusion

Two	hundred	seven	individuals	with	body	mass	index	(BMI)	ranging	
between	18.5	and	37.3	kg/m2	(Table	1)	were	included	in	this	cross-
sectional	study	(Bechshøft	et	al.,	2016).	Subjects	are	representatives	
of	community-dwelling,	self-supportive	and	apparently	healthy	older	
adults	living	in	the	Danish	Capital	Region.	Detailed	inclusion	criteria	
have	been	described	previously	(Bechshøft	et	al.,	2016).	From	each	
individual,	 anthropometric,	 body-composition	 and	physical	 perfor-
mance	measurements	 (ABPm),	 average	daily	 physical	 activity,	 die-
tary	intake	and	preferences,	GM	composition,	clinical	biomarkers,	as	
well	as	fecal	and	plasma	metabolome	data	were	obtained	adding	up	
to	1,232	analyzed	features	per	subject	(Figure	S1a).

2.2 | Stratification of subjects according to physical 
fitness and activity monitoring

Participants	were	stratified	based	on	noncollinear	ABPm	variables	
(Table	S1;	Variance	Inflation	Factor,	VIF	<	2,	r-coefficient	<	.5)	 into	
high-	and	low-physical	fitness	phenotypes	(level	of	physical	capac-
ity).	These	included	chair-rise	test	[30	s-test]),	BMI,	and	Dual-energy	

K E Y W O R D S

aging,	energy	and	dietary	fiber	intake,	gut	microbiota,	host	metabolome,	physical	fitness,	
proinsulin-C-peptide
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X-ray	Absorptiometry	 (DXA)	scans	for	body	composition	(given	by	
leg-soft-tissue	fat%	(LST%)),	determined	as	described	previously	 in	
Bechshøft	et	al.	(2016).

For	 stratification,	 hierarchical	 clustering	 analysis	 of	 principal	
component	analysis	(HCP-PCA)	within	sexes	was	used	to	determine	
two	 fitness	phenotypes	 [high	 (HF)	 (n	 =	116)	 and	 low	 (LF)	 (n	 =	91)	
(Figure	1a,b,	Table	2)].	To	this	end,	physical	fitness	was	not	defined	
as	an	outcome,	but	instead	used	as	a	reference	to	generalize	phys-
ical	 performance	 within	 the	 study	 participants.	 All	 participants	

outperformed	 the	 suggested	 ranges	 for	 frailty	 according	 to	 the	
chair-rise	test	(Guralnik	et	al.,	1994),	while	LF	phenotypes	on	aver-
age	had	BMI	ranges	categorized	as	overweight	(WHO,	2000),	as	well	
as	a	greater	deposition	of	fat	mass	in	their	legs	(Figure	1b,	Table	2).	
No	significant	differences	(chi-squared	p	>	.08)	in	type	of	medication	
(e.g.,	blood	pressure	 lowering	and	statins,	see	methods)	or	dietary	
supplements	were	determined	between	the	two	fitness	phenotypes.

In	relation	to	daily	physical	activity,	4-day	activity	monitoring	
(Dowd,	 Harrington,	 &	Donnelly,	 2012)	 showed	 significant	 differ-
ences	(p	<	.001)	between	the	two	phenotypes.	Longer	standing	pe-
riods	(Figure	1c;	HF	mean:	4.6	±	1.3,	LF	mean:	4.2	±	1.5)	and	a	greater	
number	of	steps	per	day	(Figure	1d;	HF	mean:	11,129	±	3,861,	LF	
mean:	8,814	±	3,595)	were	recorded	among	HF	phenotypes.	The	
habitual	daily	 activity	 for	LF	phenotypes	was	 found	 to	be	within	
recommended	ranges	 (taking	approximately	7,000–10,000	steps/
day	(Tudor-Locke	et	al.,	2011)),	resembling	the	average	of	the	adult	
Danish	population	 (8,311	±	3,125	 steps/day,	 age	of	18–75	years)	
(Matthiessen,	 Andersen,	 Raustorp,	 Knudsen,	 &	 Sørensen,	 2015),	
and	markedly	outperformed	by	HF	subjects	(Figure	1d).

2.3 | Dietary food intake in relation to fitness-state

Using	 3-day	weighted	 food	 records	 (3d-WFR)	 (Schacht	 et	 al.,	 2019),	
the	 daily	 average	 energy	 and	 macronutrients	 intake	 were	 quanti-
fied.	On	average,	the	energy	intake	per	person	was	24.5	±	7.4	(range	

TA B L E  1  Description	of	the	study	participants

Number of Participants (n) 207

Sex

Men:	Women 109:98

Age	(y)	Mean	±	SD 70.2	±	3.9

BMI	(kg	m2)	Mean	±	SD 25.7	±	3.8

BMI	<	25 105

BMI	≥	25	<	30 75

BMI	≥	30 27

HbA1c	(mmol/mol)

<39	mmol	mol−1	(<5.7	ABG	–	mmol/L)a 167

39–46	mmol	mol−1	(5.7–6.4	ABG	–	mmol/L) 40

aHbA1c	values	above	47	mmol/mol	(6.5	mmol/L	average	blood	glucose—
ABG)	is	a	criterion	for	diagnosis	of	T2D	(Gardner	&	Shoback,	2011).	

F I G U R E  1  Stratification	of	fitness	
phenotypes.	(a)	Stratification	of	subjects	
(n	=	207)	by	hierarchical	clustering	
analysis	of	principal	components	
analysis	(HCA-PCA).	Stratification	data	
matrix:	[obj	×	vars]	=	[207	×	3].	HCA-
PCA	was	performed	within	sexes	and	
based	on	ABP	measurements.	HF/P:	
high-fitness	(n	=	116)	and	LF/P:	low-
fitness	phenotypes	(n	=	91).	(b)	ABP	
measurements distribution among 
phenotypes	and	sexes.	(c)	4-day	activity	
monitoring displaying hours standing 
and	steps	on	daily	basis	for	both	
phenotypes.	4-day	activity	data	matrix:	
[obj	×	vars]	=	[196	×	2]
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Functional 
Parameter HF/P LF/P p-valuea Refer. range Ref. age

Women

30	s	Chair-
stand test

20.6	±	5.0 15.7	±	3.1 <.001 10–16b 65−74	yearsb

BMI 22.4	±	2.1 28.9	±	3.3 <.001

LST% 35.2	±	4.0 42.7	±	4.6 <.001

Men

Chair-rise	
test

22.9	±	4.4 18.3	±	3.9 <.001 12–18b 65−74	yearsb

BMI 24.0	±	2.2 28.3	±	3.1 <.001

LST% 20.3	±	3.4 27.0	±	3.5 <.001

Abbreviations:	HF/P,	high-fitness	phenotypes;	LF,	low-fitness	phenotypes.
aComparison	between	phenotypes	was	performed	by	two-tailed	Student's	t test. 
bReference	(Guralnik	et	al.,	1994).	

TA B L E  2  Within	sex	summary	of	ABP	
measurements	used	for	stratification	of	
phenotypes

F I G U R E  2  Dietary	intake	
and	distribution.	(a)	Total	energy	
consumption	per	kg-body-weight	per	
day	(Cal	kg	body	weight−1 day−1).	(b)	
Distribution	of	Calories	proportionally	
obtained	from	macronutrients	intake	
in	HF	and	LF	phenotypes.	(c)	Intake	of	
carbohydrates	by	quality	and	saturated	
free	fatty	acids	(g	kg	body	weight−1 day−1).	
(d)	Pearson	correlation	between	dietary	
fiber	(g	kg	body	weight−1 day-1)	 
and	BMI	depicted	according	to	
phenotypes	category.	(e)	Proportion	of	
subjects complying with recommended 
carbohydrates distribution ranges. 
The	gray	areas	correspond	to	
nonrecommended ranges as suggested by 
the	Nordic	Nutrition	Recommendations.	
(f)	Proportion	of	subjects	complying	
with recommended distribution ranges 
of	dietary	fiber	according	to	the	Nordic	
Nutrition	Recommendations.	Dietary	data	
matrix:	[obj	×	vars]	=	[181	×	11]
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of	11.5–55.2)	Cal	kg	body	weight−1 day−1.	Protein	contributed	less	of	
the	energy	intake	(18.9%	±	4.1,	range	9%–36%)	compared	to	the	aver-
age	energy	 intake	of	 fat	 (36.7%	±	7.3,	22%–64%)	and	carbohydrates	
(44.4%	±	7.7,	17%–66%)	expressed	as	percentage	of	total	energy	intake.

Total	 energy	 consumption	 per	 kg	 body	weight	 (Figure	 2a)	 dif-
fered	significantly	(p	<	.001)	between	phenotypes,	with	an	average	
daily	 intake	of	29.3	Cal	 kg	body	weight−1 day−1	 in	HF	phenotypes	
versus.	23.1	Cal	kg	body	weight−1 day−1	in	LF	phenotypes.	The	higher	

F I G U R E  3  Dietary	intake	and	fitness	phenotypes	are	linked	with	species-level	GM	patterns.	(a)	Gut	microbiota	(GM)	composition	
determined	through	Correspondence	Analysis	of	16S	rRNA	gene	(V3-region)	amplicons	(summarized	zOTUs	at	species	level)	determined	
in	the	stool	samples	of	the	study	participants.	(b)	Correspondence	Analysis	revealed	compositional	GM	differences	between	fitness	
phenotypes.	(c)	Constrained	Correspondence	Analysis	(CCA)	displays	discrimination	of	phenotypes	based	on	permutational	test	
(p	=	.03,	explained	variance	=	3.2%).	(d)	Correspondence	Analysis	of	GM	composition	depicting	gradients	of	total	energy	consumption	
(Cal	kg	body	weight−1 day−1),	intake	of	(e)	starch	(g	kg	body	weight−1 day−1)	and	(f)	dietary	fiber	(g	kg	body	weight−1 day−1),	(g)	steps	per	day,	
and	(h)	BMI.	(i)	Regularized	canonical	correlation	(rCC)	analysis	depicting	the	relationship	between	gradients	of	energy	consumption,	starch	
and	dietary	fiber	intake,	steps	per	day	and	BMI,	and	variations	in	the	abundance	of	GM	members.	Heatmap	displays	the	correlation	of	161	
species	with	a	minimum	correlation	coefficient	of	|0.2|r	from	1st	to	3rd	components.	Species	are	depicted	based	on	family-level	phylogeny.	
Figure	S3	displays	taxonomy	at	species	level,	as	well	as	correlations	per	canonical	axis	and	explained	variance	between	GM	composition	
and	lifestyle	covariates	derived	from	rCC	analysis.	GM	profiling	was	based	on	11.3	million	reads	derived	from	the	16S	rRNA	gene	V3-region	
with	an	average	of	116,476	(48,872	SD)	sequences	per	subject.	Adonis	tests	were	performed	on	Bray–Curtis	distances.	GM	data	matrix:	
[obj	×	vars]	=	[184	×	874].
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energy	intake	among	HF	subjects	was	reflected	in	a	larger	fraction	of	
energy	(expressed	as	%	energy)	from	carbohydrates	(p	=	.01)	as	com-
pared	to	that	of	dietary	protein	(Figure	2b	and	Figure	S1b).	The	same	
pattern	was	 also	 observed	 across	 daily	 average	 intake	 (g	 kg	 body	
weight−1 day−1)	of	dietary	fiber	(p	<	.0001),	starch	(p	<	.0001),	simple	
sugars	(p	=	.0002),	and	saturated	fatty	acids	(p	=	.0001)	(Figure	2c).	
Moreover,	significant	(p	<	.0001)	negative	correlations	between	BMI	
with	dietary	fiber	consumption	(r	=	−.52)	(Figure	2d)	energy	intake	
(r	=	−.52),	starch	(r	=	−.35)	and	simple	sugars	(r	=	−.35),	as	well	as	posi-
tive	associations	between	chair-stand	test	and	energy	intake	(r	=	.25)	
were	found	(Figure	S1c–f).	Questionnaires	on	food	choices	showed	
that	HF	subjects	to	a	higher	degree	than	LF	subjects	consider	healthy	
food	as	an	important	element	of	their	daily	life	(Figure	S1g).

A	considerable	proportion	of	subjects	from	both	phenotypes	did	
not	 comply	with	 the	 recommended	minimum	proportion	of	energy	
obtained	 from	 carbohydrates	 (Figure	 2e)	 and	 dietary	 fiber	 intake	
(Figure	2f)	as	established	by	the	Nordic	Nutrition	Recommendations	
(Nordic	Council	of	Ministers,	2012).	Yet,	the	frequency	of	compliers	
to	noncompliers	was	significantly	higher	(carbohydrates:	p	=	.006,	di-
etary	fiber:	p	=	.03)	in	HF	individuals.	Furthermore,	using	the	Goldberg	
cutoff	 (Black,	2000),	46	under-reporters	 (UR)	and	 two	over-report-
ers	 (OR)	of	energy	intake	were	identified.	Nonetheless,	 if	excluded,	
individuals	with	 higher	 physical	 capability	 (HF	 phenotype)	 still	 had	
a	higher	energy	(p	<	 .001)	and	energy	from	carbohydrates	(p	<	 .06)	
intake	as	compared	to	LF	subjects	(Table	S2).	Since	UR	and	OR	sub-
jects	did	not	change	the	overall	findings,	they	were	not	excluded	in	
downstream analyses.

2.4 | Characterization of GM and correspondence 
with fitness and diet

The	analysis	of	amplicon-sequencing	data	generated	10,084	zOTUs	
(sequence	variants)	summarized	over	875	cumulative	species	(spe-
cies	richness)	and	eight	core	species	(defined	as	being	present	in	all	
recruited	subjects)	 (Figure	S2a)	with	a	 relative	abundance	ranging	
between	18%	and	84%	(Figure	S2b).	Between	sexes,	no	significant	
differences	in	beta-diversity	(Figure	3a)	and	alpha-diversity	(Figure	
S2c)	were	observed.	Furthermore,	regardless	of	sex,	the	study	par-
ticipants	were	characterized	by	higher	relative	abundance	of,	for	ex-
ample,	Lachnospiraceae	spp.,	Akkermansia spp.,	Blautia	spp.,	along	

with	reduced	proportions	of	Bacteroides	spp.	 (Figure	S2d)	as	com-
pared	to	the	community-dwelling	group	of	older	adults	recruited	for	
the	Irish	ELDERMET	study	(Claesson	et	al.,	2012).	This	may	reflect	
differences	associated	with	dietary	habits,	age	[mean	age:	baseline-
CALM	70	 ±	 4	 years,	 ELDERMET	78	 ±	 8	 years],	 and	 geographical	
location.

A	substantial	higher	alpha-diversity	(p	=	.06,	Observed	Species)	
was	observed	 (Figure	S2c)	among	HF	phenotypes	compared	to	LF	
phenotypes,	as	well	as	weak	but	significant	(p	<	.05)	correlations	of	
observed	species	with	BMI,	energy,	and	starch	intake	(Figure	S2e–g).	
Correspondence	analysis	and	analysis	of	variance	(Adonis)	on	Bray–
Curtis	(weighted	beta-diversity)	distance	metric	calculated	from	spe-
cies-level	 abundance	 showed	 significant	 correspondence	 (p	 =	 .04)	
and	dissimilarities	 (p	=	 .01)	 in	GM	composition	 in	connection	with	
the	two	physical	phenotypes	(Figure	3b,c).

Also,	GM	composition	was	clearly	associated	with	(p	<	.05)	gra-
dients	of	energy	consumption	(Figure	3d),	starch	(Figure	3e),	dietary	
fiber	 (Figure	3f)	steps	per	day	 (Figure	3g),	and	BMI	 (Figure	3h)	 re-
flecting	fitness	phenotypes.	Using	regularized	canonical	correlation	
(rCC)	analysis	associations	between	those	 lifestyle	covariates	 (e.g.,	
dietary	 factors	 and	 physical	 activity)	 with	 161	 microbial	 species	
were	disclosed	(Figure	3i,	Figure	S3)	explaining	<5%	and	13%	of	the	
total	variance	of	the	microbiota	and	lifestyle	covariates,	respectively	
(Figure	S3a,b).	 Increased	 intake	of	 energy,	 starch,	 dietary	 fiber,	 as	
well as steps per day correlated positively with the relative abun-
dance	of	up	 to	103	of	 those	 species	 (e.g.,	 higher	Bifidobacteriales	
abundance)	and	correlated	negatively	with	BMI	(e.g.,	Proteobacteria	
being	signatures	for	high	BMI)	(Figure	3i,	Figure	S3b).

2.5 | Host metabolic state in relation to fitness and 
dietary intake

Untargeted	 gas	 chromatography–mass	 spectrometry	 (GC-MS)	
metabolomics	 of	 human	 fecal	 extracts	 and	 blood	 plasma,	 as	 well	
as	 targeted	 SCFA	 analysis	 using	 GC-MS	 generated	 a	 total	 of	 304	
analytes	 (181	analytes	 in	the	fecal	and	123	analytes	 in	the	plasma	
metabolome).	 Nearly	 half	 of	 the	metabolites	 variables	were	 iden-
tified,	 either	 at	 level	 1	 or	 level	 2	 according	 to	 the	Metabolomics	
Standards	Initiatives	(Sumner	et	al.,	2007).	These	metabolites	were	
monosaccharides,	amino	acids,	organic	acids,	sterols	and	long-,	and	

F I G U R E  4  Profiling	of	host	metabolome	in	relation	to	dietary	intake.	(a)	Correspondence	Analysis	on	combined	fecal,	plasma	
metabolomes	and	clinical	biomarkers	of	the	study	participants.	Significant	differences	due	to	sex	were	determined	with	constrained	
correspondence	analysis	(CCA).	Inset	shows	a	partial	Correspondence	Analysis	after	conditioning	for	the	cofounding	effect	of	
sex.	(b)	Correspondence	Analysis	discriminates	compositional	differences	in	metabolomic	profiles	between	fitness	phenotypes.	(c)	
Correspondence	Analysis	of	metabolites	in	relation	to	total	energy	consumption	(Cal	kg	body	weight−1 day−1),	intake	of	(d)	dietary	fiber	
(g	kg	body	weight−1 day−1),	(e)	starch	(g	kg	body	weight−1 day−1)	and	(f)	simple	sugars	(g	kg	body	weight−1 day−1),	(g)	steps	per	day,	(h)	hours	
standing,	and	(i)	BMI.	(j)	Regularized	canonical	correlation	(rCC)	analysis	showing	the	relationship	between	gradients	of	energy	consumption,	
dietary	fiber,	starch	and	simple	sugar	intake,	steps	per	day,	hours	standing	and	BMI,	with	variations	in	metabolome	composition.	Heatmap	
displays	the	correlation	of	34	clinical/metabolome	variables	with	a	minimum	correlation	coefficient	of	|0.2|r	from	1st	to	4th	components.	
Figure	S4	shows	correlations	per	canonical	axis	as	well	as	explained	variance	between	metabolome	composition	and	lifestyle	covariates	
derived	from	rCC	analysis.	(k)	Significantly	(t	test,	p	=	.02)	different	relative	distributions	in	enterolactone	determined	in	fecal	samples	of	
HF	and	LF	phenotypes.	(l,m)	Range	of	fecal	SCFAs	and	O/B-CFAs	concentrations	sorted	according	to	fitness	phenotype.	Metabolome	data	
matrix:	[obj	×	vars]	=	[184	×	335]



     |  7 of 13CASTRO-MEJÍA ET Al.

short-chain	fatty	acids.	In	addition,	31	biomarkers	for	immunological	
function,	 renal	and	 liver	 function,	as	well	 as	glucose	and	 lipid	me-
tabolism	were	acquired	through	blood	clinical	profiling.

Correspondence	analysis	on	 the	combined	metabolome	blocks	
showed	weak	 discrimination	 of	 sexes	 (Figure	 4a)	 and	 pronounced	
discrimination	 between	 fitness	 phenotype	 (Figure	 4b)	 based	 on	
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their	metabolic	profile.	Variations	 in	metabolome	composition	cor-
responded	clearly	(p	<	.05)	with	energy	intake	and	consumption	of	
dietary	 fiber,	 starch,	 simple	 sugars	 (Figure	 4c–f),	 as	 well	 as	 steps	
per	day	and	hours-standing-per-day	(Figure	4g,h,	including	stratify-
ing	variables:	BMI	(Figure	4i),	chair	stand	and	LST%,	Figure	S4a,b).	
Likewise,	 rCC	 analysis	 showed	 significant	 associations	 between	
lifestyle	 covariates	 and	 34	 clinical/metabolic	 variables	 (Figure	 4j),	
explaining	 9%	 and	 15%	 of	 the	 total	 variance	 of	 the	 metabolome	
and	 lifestyle	 covariates,	 respectively	 (Figure	 S4c).	 The	 strongest	
associations	 (>|0.2|r)	were	 observed	 for	 19	 clinical	 biomarkers,	 10	
gut	metabolites,	and	five	plasma	metabolites	 (Figure	4j).	 Increased	
intake	of	energy,	starch,	dietary	fiber	(or	dietary	covariates),	as	well	
as	steps	per	day	correlated	positively	with	mono-	and	di-saccharides	
and	negatively	with	amino	acids	(Pro,	Ala,	Trp),	glucose	metabolism	
parameters	 (proinsulin,	 glucose	 HbA1c,	 HbA1c),	 lipid	 metabolism	
(triglycerides,	vLDL)	and	renal	function	(creatinine,	 inversely	to	es-
timate	 glomerular	 filtration	 rate	 (eGFR))	 measurements,	 primary	
bile	acids	 (lithocholic	acid),	and	N-Nitrosotrimethylurea	 (Figure	4j).	
Moreover,	a	higher	proportion	of	enterolactone	in	the	fecal	metab-
olome	of	HF	subjects	were	also	found	(Figure	4k).	Remarkably,	the	
concentrations	of	SCFA	as	well	as	other/branched-chain	fatty	acids	
(O/B-CFA)	 in	 the	 fecal	 samples	did	not	differ	according	 to	pheno-
types	(p	>	.13)	or	dietary	intake	factors	(Figure	4l,m).

2.6 | Dietary intake, gut microbiota, and metabolic 
signatures explain fitness levels independently from 
physical activity

Characterization	 of	 subjects	 after	 variable	 selection	 based	 on	
Random	 Forest	 and	 backward	 elimination	 procedure	 selected	 55	
variables	(Figure	5a,b)	that	discriminate	the	two	phenotypes	with	a	
high	 level	of	accuracy	 (Figure	5c,d).	The	features	 included	25	bac-
terial	 species	 belonging	 to	 seven	 bacterial	 orders	 (Clostridiales,	
Saccharibacteria,	 Bacteroidales,	 PAC001057,	 Enterobacterales,	
Erysipelotrichales,	and	Bifidobacteriales),	seven	dietary	components	
(energy,	saturated	fatty	acids,	simple	sugars,	starch	and	dietary	fiber	
intake,	 and	 energy	 derived	 from	proteins	 and	 carbohydrates),	 and	
five	 clinical	 biomarkers	 (alanine	 transaminase,	 triglycerides,	 vLDL,	
fasting	proinsulin,	average	blood	glucose/HbA1c).	In	addition,	seven	
plasma	metabolites	 (amino	 acids	 and	 organic	 acids),	 ten	 fecal	me-
tabolites	 (sugar	alcohols,	amino	acids,	primary	bile	acids,	and	urea)	
and	physical	activity	(steps	per	day)	were	also	tabbed	(Figure	5a).

Discrimination	of	the	two	phenotypes	based	on	all	the	selected	
features	(combined	datasets)	had	the	highest	level	of	accuracy	(22%	
out-of-bag	error	rate,	OOB),	followed	GM	and	clinical/metabolome	
features	(23%	OOB),	dietary	intake	(36%	OOB),	and	physical	activ-
ity	parameters	(46%	OOB)	(Figure	5d).	Through	redundancy	analy-
sis	(RDA),	the	effect	of	the	selected	variables	(within	blocks)	on	the	
stratifying	 variables	 showed	 that	GM	had	 the	 largest	 explanatory	
power	(24.7%),	followed	by	dietary	intake	(17.3%),	clinical	biomark-
ers	(16.8%),	gut	metabolome	(8.8%),	plasma	metabolome	(6.2%),	and	
physical	activity	(5.2%)	(Figure	5e).	Notably,	the	cumulative	explained	

variance	conferred	by	the	pool	of	selected	features	reached	50.1%,	
and	even	after	conditioning	the	effect	of	physical	activity	over	the	
stratifying	variables,	the	cumulative	explained	variance	reached	up	
to	44.9%	(Figure	5f).

3  | DISCUSSION

The	number	of	older	adults	over	the	age	of	65	will	increase	by	more	
than	50%	worldwide	over	the	next	three	decades	(NIH,	2011),	po-
tentially	with	huge	implications	for	the	health	and	economy	of	the	
implicated	individuals	and	society	as	a	whole.	With	this,	understand-
ing	 the	 physical	mechanisms	 and	 lifestyle	 conditions	 linked	 to	 fit-
ness	and	independence	in	older	adults	becomes	a	relevant	field	of	
research.

Despite	 the	homogeneity	of	 the	recruited	subjects	 (all	nonfrail	
and	without	serious	disease)	noticeable	significant	differences	in	fit-
ness	level	was	observed	and	based	on	noncollinear	ABPm	variables	
(chair-rise	test,	BMI	and	DXA	scan-based	body	composition)	result-
ing	 in	two	fitness	phenotypes	 (LF	and	HF)	that	differed	 in	dietary,	
GM,	host	metabolome	signatures	and	physical	activity.

In	regard	to	the	dietary	intake,	HF	subjects	were	characterized	
by	a	higher	 consumption	of	 foods	of	plant	origin	as	also	 reflected	
by	 their	 higher	 levels	 of	 total	 carbohydrates	 (i.e.,	 starch,	 simple	
sugars)	 and	 dietary	 fiber,	 accompanied	 by	 a	 higher	 adherence	 to	
the	recommended	intake	of	carbohydrates	and	dietary	fiber	intake	
given	by	the	Nordic	Nutrition	Recommendations	(Nordic	Council	of	
Ministers,	 2012).	 These	differences	were	observed	 in	 spite	of	 the	
methodological	limitations	of	3d-WFR	to	capture	long-term	variabil-
ity	 (Yang	et	al.,	2010).	Furthermore,	whether	awareness	of	dietary	
guidelines	 influenced	 the	selection	of	dietary	choices	 in	 the	study	
participants	remains	to	be	 investigated,	but	 it	 is	worth	mentioning	
that	HF	subjects	consider	healthy	food	as	an	important	component	
in	their	life	as	also	described	by	Schacht	et	al.	(2019).	Furthermore,	
the	nutrient	intake	recorded	in	our	study	population	is	highly	com-
parable	 to	 that	 reported	 for	 a	 representative	 sample	 population	
of	older	adult	 community-dwelling	Danes	as	well	 as	 for	communi-
ty-dwelling	Western	 elderly	 in	 general	 (Schacht	 et	 al.,	 2019).	 This	
indicates	that	the	food	intake	generally	is	comparable	in	our	study	
population	 compared	 to	 elderly	 community-dwellers	 in	 Denmark	
and	other	Western	countries.

The	GM	community	and	host	metabolome	clearly	discriminated	
between	the	HF	and	LF	phenotypes	and	was	largely	associated	with	
the	consumption	of	total	energy,	and	plant-derived	nutrients	(such	
as	starch	and	dietary	fibers	as	well	as	enterolactone,	all	being	higher	
in	HF	subjects).	A	number	of	features	(Figure	5a)	selected	from	GM,	
host	metabolome,	 dietary	 intake,	 and	 daily	 physical	 activity	 were	
able	 to	 strongly	 discriminate	 and	 explain	 variation	 between	 phe-
notypes,	 thereby	 indicating	 their	 strong	 association	 with	 physical	
function.	Daily	physical	 activity	 showed	 the	 lowest	power	 toward	
phenotypic	differentiation	(in	spite	of	the	high	validity	of	the	method	
for	activity	monitoring	(Dowd	et	al.,	2012))	and	explaining	only	5%	
of	the	phenotypic	variance.	Albeit	conditioning	for	physical	activity,	
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the	remaining	set	of	selected	features	explained	up	to	45%	of	 the	
total	variance	of	the	stratifying	variables.	In	particular,	dietary	intake	
(17%	of	explained	variance),	GM	composition	(24%),	and	host	metab-
olome	(25%)	signatures	are	important	drivers	of	phenotypic	differ-
entiation	(Figure	5)	and	also	described	in	animal	models	(Fujisaka	et	
al.,	2018).	Accordingly,	HF	subjects	showed	a	higher	proportion	of	

GM	members	commonly	known	for	 their	protective	 roles,	 such	as	
Bifidobacterium adolescentis and Christensenella	species	(Goodrich	et	
al.,	2014),	and	whose	abundance	corresponded	negatively	with	glu-
cose	and	lipid	metabolism	biomarkers	(proinsulin,	HbA1c,	vLDL,	tri-
glycerides).	Contrarily,	LF	phenotypes	had	increased	levels	of	these	
biomarkers	 and	 a	 higher	 relative	 abundance	 of	 pro-inflammatory	

F I G U R E  5  Signatures	discriminating	physical	phenotypes.	(a)	Heatmap	displaying	mean	centered	normalized	abundance	of	55	features	
selected	using	Random	Forest	toward	discrimination	of	phenotypes	and	(b)	their	importance	as	determined	on	the	basis	of	Mean	Decrease	
in	Accuracy.	(c)	Multidimensional	scaling	plot	discriminates	subjects'	phenotype	based	on	the	selected	features.	(d)	ROC	curves	and	out-
of-bag	error	rate	(OOB)	for	Random	Forest	classifier	based	on	the	selected	variables,	for	combined	datasets	(all	selected	features),	GM	and	
metabolome,	dietary	intake,	and	physical	activity.	(e)	Captured	variance	for	fitness	variables	(BMI,	chair	stand,	and	LST%)	as	a	function	of	
selected	features	through	redundancy	analysis	(RDA).	Individual	Explained	Variance	displays	the	size	effect	of	a	given	dataset,	CE	variance	
represents	the	cumulative	explained	variance	and	CE	variance	|	physical	activity	shows	the	accumulative	explained	variance	conditioned	by	
physical	activity.	Pie	charts	summarize	the	total	proportion	of	explained	variance	before	and	after	conditioning	for	physical	activity.	Data	
matrix:	[obj	×	vars]	=	[181	×	56]
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microbial	members	in	the	gut,	as	for	example	Enterobacterales	(Fei	
&	Zhao,	2013;	Khan,	Nieuwdorp,	&	Bäckhed,	2014).	Similar	obser-
vations	have	been	reported	in	another	cohort	of	Danish	adults	(with	
an	age	range	of	20–65	years),	where	a	reduced	abundance	of	several	
members	of	Christensenellaceae	and	Ruminococcaceae	families	cor-
responded	with	increased	levels	of	proinsulin,	HbA1c,	triglycerides,	
and	C-reactive	protein	(Allin	et	al.,	2018).

Short-chain	 fatty	 acids	 derived	 from	 GM	 activity	 have	 been	
identified	 as	 signaling	 molecules	 responsible	 for	 maintenance	 of	
the	integrity	of	colonic	epithelium,	glucose	homeostasis,	lipid	me-
tabolism,	and	appetite	regulation	(Morrison,	Preston,	Morrison,	&	
Preston,	2016).	Claesson	et	al.	 (2012)	 reported	higher	SCFA	con-
centrations	(acetate,	butyrate,	and	propionate)	in	the	fecal	metab-
olome	 of	 older	 adults	 living	 as	 community-dwellers	 compared	 to	
frail	individuals	living	in	residential	care.	Moreover,	decreasing	con-
centrations	of	these	SCFAs	were	associated	with	advanced	 levels	
of	frailty	given	by	diet	and	specific	transitions	in	GM	composition	
(Claesson	et	al.,	2012).	However,	 in	the	present	study	no	correla-
tions	between	 fecal	SCFA	and	O/B-CFA	concentrations	with	nei-
ther	macronutrient	distribution	or	fitness	phenotype	were	found.	
This	suggests	that	levels	of	physical	function	amidst	healthy	older	
adults may not be primarily dependent upon changes in the pro-
duction	of	these	compounds.	Instead,	this	could	be	due	to	signals	
of	 glucose	metabolism	 deterioration	 as	 reflected	 by	 significantly	
(p	 <	 .001)	 higher	 proinsulin	 levels	 and	 higher	 average	 blood	 glu-
cose	 (determined	 by	 HbA1c-levels)	 in	 the	 LF	 phenotypes	 (1/116	
HF	and	20/91	LF	subjects	had	higher	 than	normal	 ranges	of	pro-
insulin	(chi-squared	p	<	.001),	10/116	HF	and	30/91	LF	had	higher	
ranges	than	those	recommended	for	HbA1c	 (Gardner	&	Shoback,	
2011)	(chi-squared	p	<	.001),	see	Table	S3).	High	concentrations	of	
proinsulin	indicate	high-insulin	secretion	and	hence	diminished	pe-
ripheral	insulin	sensitivity	resulting	in	a	number	of	metabolic	con-
ditions,	 compromising	muscle	 strength	 and	physical	 performance	
(Segerström	et	al.,	2011).	Proinsulin	was	the	most	important	feature	
of	phenotype	discrimination	and	corresponded	inversely	with	the	
abundance	 of	Bifidobacterium adolescentis	 and	 several	 species	 of	
Christensenella,	and	Ruminococcaceae	(Figure	5a),	strongly	indicat-
ing	 that	GM-proinsulin	 interactions	could	be	mediators	of	 fitness	
phenotype. Bifidobacterium	species	(including	B. adolescentis)	have	
previously	 been	 described	 as	 promoters	 of	 adiponectin	 and	 de-
creasing	expression	of	interleukin-6,	both	playing	prominent	roles	
in metabolic derangements associated with glucose regulation and 
fatty	acid	oxidation	(Aoki	et	al.,	2017;	Straub	&	Scherer,	2019;	Su	
et	al.,	2015).	Christensenella minuta	(another	Clostridiales	member)	
is	enriched	in	individuals	with	low	BMI	and	has	been	demonstrated	
to	reduce	weight	gain	and	adiposity	in	mice	(Goodrich	et	al.,	2014).	
Furthermore,	 while	 playing	 a	 protective	 role	 against	 inflamma-
tion,	 some	Clostridiales	members	 act	 as	 promoters	 of	 regulatory	
T	 cells	 by	 interacting	with	 toll-like	 receptors	 2	 (TLR2)	 on	 intesti-
nal	 epithelial	 cells	 (Kashiwagi	 et	 al.,	 2015).	 Contrarily,	 species	 of	
Enterobacterales	have	been	consistently	 linked	with	 insulin	 resis-
tance	and	inflammatory	responses	(Fei	&	Zhao,	2013;	Khan	et	al.,	
2014),	and	by	means	of	cell	epitopes	 (i.e.,	LPS)	 they	 interact	with	

TLRs	 triggering	 pathogen	 recognition,	 low-grade	 inflammation	
(Franceschi	&	Campisi,	2014)	and	fat	accumulation	in	adipose	tissue	
that	ultimately	influence	muscle	strength	(Boulangé	et	al.,	2016).

In	summary,	our	findings	suggest	that	dietary	patterns	underlie	
mechanisms	of	physical	phenotype	differentiation	among	well-func-
tioning	 community-dwelling	 older	 adults,	 particularly	 as	 a	 driver	
of	GM	and	glucose	metabolism	 interactions.	We	are	aware	of	 the	
cross-sectional	 nature	 of	 the	 study	 and	 the	 possibility	 of	 reverse	
causation	effects	that	may	limit	any	possible	attempt	to	determine	
causal	features	governing	physical	fitness	as	outcome.	However,	in	
spite	of	this	we	identify	lifestyle,	microbiome,	metabolic,	and	daily	
physical	activity	signatures	able	to	 largely	explain	physical	 fitness,	
while	revealing	factors	that	could	be	considered	as	therapeutic	tar-
gets	in	future	interventions.	More	specifically,	our	study	emphasizes	
the	central	 role	of	diet	 toward	 the	onset	of	physical	deterioration	
and	its	implications	prior	to	clinical	manifestations	of	frailty,	for	ex-
ample,	 muscle	 composition	 and	 diminished	 strength	 (Xue,	 2011).	
Many	of	the	dietary,	GM,	and	metabolomic	signatures	seen	in	frail	
older	 adults	 (Bodogai	 et	 al.,	 2018;	 Claesson	 et	 al.,	 2012;	 Kong	 et	
al.,	 2016;	 Lustgarten	 et	 al.,	 2014)	 are	 already	 evident	 in	 the	 non-
frail,	 community-dwelling	older	adults	of	 low-fitness	of	 this	study,	
pointing	at	the	 importance	of	early	 intervention	strategies,	also	 in	
this	age	group.	Thus,	in	view	of	these	findings,	developing	strategies	
to improve awareness and adherence to dietary recommendations 
(complying	with	dietary	reference	intakes	or	even	with	personalized	
nutrition	 (Zeevi	 et	 al.,	 2015)),	 targeting	 the	 regulation	 of	GM	and	
host	metabolome	interactions,	can	open	opportunities	to	delay	the	
comorbidities	of	aging.

4  | E XPERIMENTAL PROCEDURES

4.1 | Study participants

Two	hundred	and	seven	subjects	 (65+	years	of	age)	were	selected	
at	baseline	of	 the	CALM	 intervention	project	 following	previously	
described	 criteria	 (Bechshøft	 et	 al.,	 2016).	 Participants	 were	 not	
allowed	to	take	part	 in	any	organized	sports	or	 resistance	training	
more	than	once	a	week,	did	not	suffer	from	defined	metabolic-,	tis-
sue-,	 or	 gastrointestinal	 disorders,	 nor	were	prescribed	 antibiotics	
3	 months	 prior	 sample	 collection	 and	 enrollment.	 Medication	 re-
cords	of	participants	were	documented	and	summarized	over	blood	
pressure	 lowering,	 statins,	 proton-pump	 inhibitors,	 antihistamine,	
anti-inflammatory	medications,	and	dietary	supplements	 (including	
fish	oil,	vitamins,	and	calcium).

4.2 | Ethics approval and consent to participate

Procedures	 of	 the	 CALM	 project	 (Clinical	 Trials	 NCT02115698)	
were	 approved	by	 the	Danish	Regional	Ethical	Committees	of	 the	
Capital	Region	(J-nr.	H-4-2013-070)	and	performed	according	to	the	
Declaration	of	Helsinki	 II	 and	 the	experimental	 designed	 followed	
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as	previously	described	(Bechshøft	et	al.,	2016).	Upon	inclusion,	all	
subjects	gave	their	written	 informed	consent	to	participate	also	 in	
accordance	with	the	Declaration	of	Helsinki	II.

4.3 | Samples and metadata collection

At	 baseline,	 study	 participants	 completed	 a	 3-day	 weighted	 food	
record	where	 total	 food	 and	 beverage	 intake	were	 registered	 for	
3-consecutive	days	(Wednesday	to	Friday).	The	dietary	information	
collected	in	these	food	records	was	then	typed	into	the	electronic	
dietary	assessment	 tool,	VITAKOST™	 (MADLOG	APS),	which	uses	
the	Danish	Food	Composition	Databank	 (version	7.01)	 to	estimate	
individual	energy	and	macronutrient	intake.

Fecal	and	blood	plasma	samples	were	collected	and	handled	ac-
cording	to	the	following	procedures:	(a)	fecal	samples	were	kept	at	
4°C	 for	maximum	48	 hr	 after	 voidance	 and	 stored	 at	 −60°C	 until	
further	 use;	 (b)	 overnight-fasted-state	 (OFS)	 plasma	 samples	were	
collected	and	deposited	in	heparin,	centrifuged	at	3,000	g	for	10	min	
at	4°C,	and	then	stored	at	−60°C.

For	screening	of	blood	biomarkers,	the	following	tests	were	per-
formed:	 complete	 blood	 count	 (CBC),	 proinsulin-C-peptide	 (P-CP),	
glycosylated	 hemoglobin	 (HbA1c),	 coagulation	 factor,	 estimate	 glo-
merular	filtration	rate	(eGFR),	thyroid-stimulating	hormone	(TSH),	and	
iron–ferritin	 test	 determined	 as	 previously	 described	 (Bechshøft	 et	
al.,	2016).	On	average	biohumoral	measurements	showed	an	interse-
rial	uncertainty	range	of	3%–15%.	For	anthropometric	and	functional	
capacities,	height	(cm)	and	body	weight	(kg)	in	OFS	were	measured.	
Average	fast-pace	gait	speed	was	measured	on	an	indoor	400	m	hor-
izontal	 track.	Number	of	chair	stands	 in	30	s	from	a	standard	table	
chair	was	 recorded.	Relative	 leg-soft-tissue	 fat%	 (LST%)	was	deter-
mined	as	an	estimate	of	leg-soft-tissue	fat-free	and	fat	mass	based	on	
a	dual-energy	X-ray	absorptiometry	(DXA)	scan	(Lunar	 iDXA	Forma	
with	 enCORE	 Software	 Platform	 version	 15,	 GE	 Medical	 Systems	
Ultrasound	&	Primary	Care	Diagnostics)	performed	on	participants	
following	standardization	of	subject	presentation	and	positioning	on	
the	scanning	bed,	as	well	as	manipulation	of	the	automatic	segmen-
tation	of	regional	areas	of	the	scan	results	(Nana,	Slater,	Stewart,	&	
Burke,	2015).

4.4 | Quantitative questionnaires on food habits

Quantitative	 questionnaires	 contained	 information	 on	 food	 habits,	
perceptions	 and	 preferences,	 as	well	 as	 information	 about	 lifestyle	
changes	and	dietary	habits	over	the	life	course	(Bechshøft	et	al.,	2016).

4.5 | GM and metabolomics

Procedures	for	profiling	and	process	GM	and	metabolomics	data	are	
described	in	Supplementary	Methods.

4.6 | Statistical analyses

Stratification	of	individuals	was	based	on	ABP	measurements	using	
the	variables	described	in	Table	S1.	Collinear	variables	were	initially	
removed,	leaving	chair	stand	[30	s-test]),	DXA	scans	(leg-soft-tissue	
fat%	determined	in	both	legs)	and	BMI	as	features	with	a	variance	
inflation	factor	(VIF)	<	2	and	r-coefficient	<	.5.	Subjects	were	divided	
according	 to	sex,	and	a	hierarchical	clustering	analysis	of	principal	
component	 analysis	 (Husson,	 Josse,	 Lê,	 &	Mazet,	 2019)	 was	 per-
formed	on	the	selected	variables	(100	iterations).

For	univariate	data	analyses,	pairwise	comparisons	were	carried	
out	with	unpaired	two-tailed	Student's	t	test,	Pearson's	coefficient	
was	used	for	determining	correlations	and	chi-square	test	for	eval-
uating	groups	distributions.	For	multivariate	data	analyses,	 the	 in-
fluence	 of	 covariates	 (e.g.,	 dietary	 components	 and	 BMI)	 on	 data	
blocks	 (GM	 and	 metabolome)	 were	 assessed	 with	 (Constrained-)	
Correspondence	Analysis	with	 permutation	 tests	 (1,000	permuta-
tions),	as	well	as	analysis	of	variance	using	distance	matrices	(Adonis	
test,	999	permutations)	on	Bray–Curtis	distances	 (implemented	 in	
the Vegan	R	package	(Oksanen	et	al.,	2019)).

Correlation	of	covariates	with	the	same	datasets	were	determined	
with	regularized	canonical	correlation	(rCC)	analysis	using	the	mixOm-
ics	R	package	(González,	Cao,	Davis,	&	Déjean,	2012).	Regularized	ca-
nonical	 correlation	was	 crossed-validated	 (leave-one-out	 approach)	
with	grids	(lambda	1	and	2)	of	0.05–1.0	and	a	length	of	20.

Feature	selection	for	combined	datasets	was	performed	with	
Random	Forest.	Dataset	was	randomly	divided	200×	(200	subsets)	
into	 training	 (70%)	 and	 test	 sets	 (30%),	 keeping	 this	 proportion	
over	 the	number	of	subjects	within	each	fitness	group	for	every	
split.	 For	 a	 given	 training	 set,	 the	 party	 R	 package	 (Hothorn,	
Hornik,	Strobl,	&	Zeileis,	2019)	was	run	for	feature	selection	using	
unbiased-trees	 (cforest_unbiased	 with	 6,000	 trees)	 and	 AUC-
based	 variable	 (varimpAUC	 with	 100	 permutations),	 and	 subse-
quently,	the	selected	variables	were	used	to	predict	(6,000	trees	
with	1,000	permutations)	 their	corresponding	test	set	using	 ran-
domForest	R	package	(Liaw,	2018).	The	features	derived	from	the	
subset with a prediction rate within 1 SD above the mean predic-
tion	 (based	on	the	200	subsets)	were	selected	and	subsequently	
subjected	to	sequential	rounds	of	feature	selection	(following	the	
same	tuning	of	unbiased-trees	and	AUC-based	variable)	until	pre-
diction	 could	 no	 longer	 improve.	 Variation	 partitioning	 of	 strat-
ifying	variables	 (BMI,	CS,	 and	LST%)	based	on	 selected	 features	
derived	 from	the	different	datasets	 (i.e.,	GM,	diet,	host	metabo-
lome,	physical	activity)	was	performed	using	redundancy	analysis	
(RDA)	 (Oksanen	 et	 al.,	 2019).	 All	 statistical	 analyses	 were	 per-
formed	in	R	versions	≤3.6.0.
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