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ABSTRACT: We present here a newly developed workflow
which we have called PASIVdesigned to provide a solution to a
practical problem with design of experiments (DoE) methodology:
i.e., what can be done if the scoping phase of the DoE cycle is
severely hampered by burden and toxicity issues (caused by either
the metabolite or an intermediary), making it unreliable or
impossible to proceed to the screening phase? PASIVstanding
for pooled approach, screening, identification, and visualization
was designed so the (viable) region of interest can be made to
appear through an interplay between biology and software. This
was achieved by combining multiplex construction in a pooled
approach (one-pot reaction) with a viability assay and with a range
of bioinformatics tools (including a novel construct matching tool).
PASIV was tested on the exemplar of the lycopene pathwayunder stressful constitutive expressionyielding a region of interest
with comparatively stronger producers.
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■ INTRODUCTION

Dealing with Large Combinatorial Spaces: Review. To
optimize the output of a metabolic pathway, there are many
design parameters that one can vary when engineering the
pathway, such as the variation of its coding sequences, the
engineering of expression levels by gene dosage, or transcrip-
tional and translational engineering.1 This results in a very large
combination of design parameters. Combinatorial design can be
achieved through different means, either brute force where all of
the possible combinations are made, which is limited by the
number of combinations and permutations of parts from the
metabolic pathway, also known as the problem of combinatorial
explosion or by applying combinatorial strategies.2 When
optimizing a metabolic pathway with a combinatorial approach,
one of the main issues is scale and how to deal with large design
spaces. For example, consider the violacein pathway (five
genes)3 and an operon designyielding 105 possible combina-
tions for even a small library of 10 RBS. Varying more
components in the design (e.g., the promoter driving the operon
or adding degradation tags to the enzyme to control their
expression) expands the design space by further orders of
magnitude and easily reachesmillions of potential combinations.
Such large spaces then become prohibitively expensive and
difficult to investigate with standard construction and analysis
methods.
It is desirable to gain as much information as possible from a

minimal number of experiments.4 In recent years, design of

experiments (DoE) has become a popular method5 and is used
for different applications to design and optimize synthetic
biology systems. DoE techniques are employed for protocol
development such as optimizing media and culture conditions
for a maximum yield of the metabolic pathway,6,7 optimizing a
transformation protocol,8 or the optimization of a cell-free
system.9 DoE techniques have also been applied recently to the
optimization of metabolic pathways. Cis-regulatory elements in
pathways such as promoters and RBS can be selected to
optimize their outputs. Recent advances in metabolic engineer-
ing have made use of DoE techniques for pathway
simplification.10 Others leverage the combination of DoE and
high-throughput automation platform by developing an
automated design−build−test−learn (DBTL) cycle11 or
utilizing full-featured DNA foundry platforms.12

The standard theoretical textbook DoE workflow as described
by Gilman et al.5 is grouped in three categories of iterative
experiments: scoping, screening, and optimization. The scoping
experiment is used to identify the region of interest. The
screening experiments identify the most significant factors, and
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finally, the optimization stage consists of fine-tuning the factors
to optimize the response.
In this work, we focus on the scoping phase of the DoE cycle

when applied to the optimization of the production of a
metabolite over a large combinatorial design space of constructs.
In particular, we focus on the case when finding an adequate
region of space to explore, screen, and optimize over is difficult
due to toxicity and burden issues. To this end, we have
developed a novel scoping approach, which we called pooled
approach, screening, identification, and visualization (PASIV).
Lycopene Exemplar. For the development of the novel

approach, we have used a popular pathway in metabolic
engineering: the lycopene pathway. To create the necessarily
challenging conditions, we will consider its production under
constitutive expression.
Lycopene, a naturally produced bright red pigment, is a

carotenoid present inmany plants and organisms13 and is of high
bioeconomic interest for the pharmaceutical (thanks to its
antioxidant properties) and cosmetic and food industries (as a
coloring agent).14,15

The demand in the industry for carotenoids such as lycopene
in medical and pharmaceutical applications keeps increas-
ing,16−18 but its chemical synthesis is limited by high cost, low
yield, and quality.19 Microbial lycopene production is an
alternative promising strategy and has been developed in
various hosts such as yeast,20,21 Bacillus subtilis22 or Yarrowia li
polytica,23 and Escherichia coli.16,24−26 The lycopene synthetic
pathway (Figure 1A) comprises three successive enzymatic

reactions catalyzed by the enzymes crtE, crtB, and crtI.27,28 Such
simplicity, coupled with the fact that all of the associated
regulatory mechanisms have been characterized in several
strains, makes the lycopene pathway an appealing exemplar case
study for optimization problems in metabolic engineering.
Lycopene production can also be crippled by metabolic burden
(strong production of lycopene and intermediaries take away
resources otherwise used for cellular growth)29 and toxicity
lycopene having been proven to be toxic to the cell15,30 due to its
accumulation in the cellular membrane.
The construct design used in this study will be the design

already used in Exley et al.31 in the context of the use of well-
characterized parts for DoE workflows. The construct design
(see Figure 1B) is based on the following principles:

• An operon design is used as it is a common design feature
in nature and in synthetic biology. It also reduces the

design space compared to a design where each gene has its
own transcription unit and reduces the chances of
homologous recombination if promoters are reused.

• A constitutive promoter drives the operon. Five
constitutive promoters are chosen from the SynBIS
library32 to span a range from weak (K137085) to strong
(Kelly’s reference promoter J23101)33 to very strong
(BioFab promoter apFab32)34see Table S1 for their
relative strengths.

• An insulating element RiboJ35 is inserted between the
promoter and first UTR-RBS as a direct consequence of
using the BASIC assembly method and its library parts.

• All three RBS in the operon can be varied, as per Blazeck
et al.36 and Salis et al.37 For each position, three RBS parts
from a subset of the Biolegio library (referred to as RBS1,
2, and 3 in the rest of this paper) are used.

• Finally, the design does not fix the gene order and allows
for permutation insteadthus permitting a reinvesti-
gation of previous studies such as Nishizaki et al.38 with
the carotenoid pathway in E. coli (and yeast), which
demonstrated the influence of the said gene order. In the
rest of this article, constructs are labeled according to their
gene order (e.g., BEI is labeled 1)see Table S2.

These original choices by Exley et al.31 lead to a design space
of 810 promoter/RBS/gene order combinations (6 permuta-
tions of the gene order, 5 promoters, and 3 RBS in 3 positions).
The size of the design space (810 constructs) makes this
combinatorial optimization problem an ideal test bed for their
integration of automation and software, as it is small enough to
build all combinations using standard modular plasmid
construction methods such as BASIC assembly,39 vehicle
being large enough to employ DoE and for any developed to
be capable of scaling to larger, more complex problems.

Failures and Failure Modes. The design space in our work
follows that of Exley et al.31 As a preliminary study for this work,
the same initial DoEworkflow as Exley et al.31 was implemented.
An initial set of 8 constructs out of the 88 random constructs

selected by DoE software in that study were assembled and
transformed into E. coli. The transformants were plated and left
for growth in an attempt to isolate some colonies for a further
culture to extract and measure the produced lycopene. It was
then observed that the growth of the transformed colonies was
either nonexistent or very slow and the first colonies observed
took as long as 72 h to grow. To further investigate the reason for
the observed growth discrepancy, the colonies that grew were
picked and sent for Sanger sequencing. Two sets of issues were
identified. Sequencing results showed that many operon genes
had either been deleted or mutated and construct parts could
not be identifiedshowing a propensity of the cells to mutate or
get rid of the operon. A significant number of nonexpressing
lycopene colonies were observed growing on top of lycopene-
expressing ones and outcompeting them on the Petri dish.
These failures can be attributed to two biological factors:

metabolic burden (strong production of lycopene and
intermediaries take away resources otherwise used for cellular
growth)29 and toxicitylycopene having been proven to be
toxic to the cell15,30 due to its accumulation in the cellular
membrane. Practically, these failures are compounded by two
sources of technical failuresexperimental failures and
assembly failures.
In the context of a DoE cycle, burden and toxicity are major

obstacles to an efficient, reliable, and reproducible investigation

Figure 1.Three-gene lycopene pathway and its implementation with an
operon design. (A) The lycopene pathway is made up of three enzymes
(crtE, crtB, and crtI). (B) The design includes these three genes
arranged in an operon pattern. All gene orders are permitted. A
constitutive promoter drives the operon, and an insulating RiboJ is
inserted post promoter.
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of the design space; in the worst cases, they are stumbling blocks.
In general, burden leads to discrepancy in cellular growth, which
is itself a major hindrance to any effort to operate colony picking
since colonies cannot be picked within the same time frame
thus reducing the throughput of the entire operation, whether
conducted manually or with automation. In titration assays,
growth discrepancy is also a significant source of variation in the
data. Toxicity (and mutations) will restrict the viable portion of
the design spacemore or less severe depending on the capacity
of the chassis to tolerate the said toxicity.40 Practically, cells
containing constructs lying outside the said viable region will fail
to grow.
Debugging individual failuresi.e., identifying the reason for

a failure to transform and grow a colony is, in general,
cumbersomefor instance, transformation failures cannot be
observed immediately after the act itself but only later in the
process. Separating failure modes at population levels is much
easier, however, since they are distributed very differently over
the design space (as illustrated in Figure 2):

• Assembly failures are sparsely occurring events (Figure
2A)common modular assembly methods are very
effective when short pathways are assembled as is the
case for the lycopene exemplar and can be assumed
independent from the construct (see the discussion on
our solution PASIV).

• Assay failures are uniformly distributed: assay/exper-
imental failures are independent of the construct; their
frequency depends on the skills of the experimentalist (or
the level of automation) and the protocol adopted (Figure
2B).

• Toxicity and burden issues are NOT independent of the
construct. The constructs encode a set of enzymes, and
the recorded output (viability, OD, concentration of a
metabolite) depends on the concentration of enzymes
that are produced. When toxicity and burden are too low
to affect the constructs, the entire design space is, a priori,
viable (Figure 2C, left). Conversely, when toxicity and

burden are issuesonly contiguous portionsthe design
space is viable (Figure 2C, right).

Bootstrapping the DoE Cycle. Typically, the scoping
phase of a DoE cycle consists of the random draw of a
comparatively small subset of the design space, to be followed by
successive, targeted, draws based on data analysis of the
collected data, and finally an optimization phase once a
narrow-enough region of interest has been identified. Figure
3A shows what can be expected at the end of the scoping study

for two extreme caseswhen the whole design space is
unaffected by toxicity and burden issues (nontoxic caseFigure
3A, left) and when toxicity and burden issues are severe but in a
small region of the design space (toxic caseFigure 3A, right).
In the nontoxic case, it is possible to transform, grow, and assay
for the vast majority of the initial constructsfailures can be
solely attributed to technical issuesand enough data can be
collected to proceed to the targeted rounds. The scoping round
works as intended. Conversely, in the toxic case (for instance,
the exemplar lycopene study), a few of the constructs that are
initially drawn lie in this viable region. Failures may also be due
to assembly or experimental issues rather than burden or
toxicity. Overall, only a very few data can be collected at the end
of this scoping phasetoo few to analyze and proceed to the
later phases of the DoE cycle. The scoping round fails.
Figure 3B shows the expected outcome of a scoping round if

the whole design space was used as input. In the nontoxic case,
most colonies corresponding to the input constructs will grow

Figure 2. Failure modes affecting the scoping round. Three types of
failures are considered in this work. (A) Randomly distributed assembly
failures. (B) Assay failures (also randomly distributed). (C) Toxicity-
induced failures (highly correlated).

Figure 3. Expected outcome to a scoping round in the nontoxic and
toxic cases and for two different sets of input constructs. (A) A subset
generated by a random draw from the design space is used as input. (B)
The whole space is used. In the toxic case, colonies will only grow for
constructs located in the viable region. Only by using a dense input data
set will the viable region reveal itself by continuitythis simple remark
is the foundation of the PASIV method.
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and yield dataas before (the few) failures can be assigned to
assay or assembly issues. In the toxic case, colonies will only
grow for constructs located in the viable region. The viable
region reveals itself by continuity when successful assays are
mapped in the construct space. Using the whole space as input is
of course totally impracticaland implementing a brute force
approach is antithetic to the idea of DoE. It is possible and
tractable, however, to randomly sample large sets using
multiplex construction in a pooled approach (PA). The high
density of the input data set will then still allow us to exploit the
different distributions of the failure modes and identify the
continuous regions.
We present in the next section a novel workflowcoined

PASIVthat implements this idea and, through an interplay
between biology (multiplex construction in a pooled approach)
and software (a range of bioinformatics tools including a novel
construct matching tool to overcome issues inherent to pooled
approaches), offer a novel way to perform the scoping phase of
the DoE cycle and identify the (viable) region of interest.

■ RESULTS AND DISCUSSION
PASIV Approach. The acronym PASIV stands for pooled

approach, screening, identification, and visualizationthe four
distinct phases of the workflow. PASIV is also, as its name
implies, a passive method, as the viable region of the design
space is allowed to appear through the viability assay (unlike the
more active standard approach of drawing random samples and
inferring the regions of interest from them). The PASIV
approach comprises four sequential phases (illustrated in Figure
4).
Phase 1: Construction with a Pooled Approach (PA).

Instead of the targeted construction of a set of constructs (drawn
at random), multiplexed construction via a pooled approach is
implemented. The purpose of this stage is to build all possible
constructs simultaneously in a fast and effective manner.
Practically, it is expected to generate a large number of
constructs from across the entire design spacewith no obvious
bias (large gaps, different relative frequencies). A pooled
approach helps ensure that the same experimental conditions
apply to all of the constructs that are built, thus minimizing one
of the potential sources of errors previously listed.
The BASIC assembly method39 is used for the modular

assembly of the constructs in a one-pot reaction, where all
varying parts (promoters, RBS, etc.) are mixed in equal
quantities to achieve a purely combinatorial assembly. When
several gene orders are investigated, it is necessary to operate
several poolseach corresponding to a given gene order. In the
lycopene exemplar, six pools that correspond to the six possible
orders of gene combinations (crtE, crtB, and crtI) were created.
BASIC assembly relies on standard 21 base-pair overhangs and
12 base-pair adapters for ligation and to drive assembly toward
the specified constructs. The overhangs are highly specific, and
their efficiency is assumed to be unaffected by the upstream and
downstream sequences (to the best of the authors’ knowledge,
no results have been published to indicate such an effect at the
time of publication of this paper).
Phase 2: A Viability Screening (S) Assay. The cells are

transformed with the genetic pool in another one-pot reaction.
The transformed cells are then plated and grown for the
selection of viable candidates. Viable candidates are then picked
up from the plate(s) and sent for sequencing. Selection should
be at random and, in particular, should not be affected by the
apparent production (as assessed by the color of the colonies)

ideally, all colonies should be picked to reduce possible biases. A
titration assay can then be run with the viable candidates to
collect data onmetabolite production. This second assay collects
standard titration features such as the optical density (either as a
time series or as an end point of assay) and the concentration of
the metabolite of interest and intermediaries if available (also
either as a time series or as an end point of assay).

Phase 3: An Identification (I) Phase. Since the cells have
been transformed with a mix containing all possible plasmids,
there is little prior knowledge of the genetic content of the
picked coloniesexcept that it matches a given template, was
assembled from a known set of components, and therefore lies in
a, possibly large, space of possibilities. There is also no certainty
that all constructs will feature among the picked colonies, while
somemay be represented several times. This identification phase
is crucial to the overall success of the methodwithout it, no
consequent data visualization and analysis are possible.
Identification is achieved using a construct matching software
called cMatch (see below) that was developed as part of
PASIVand that is now routinely used in-house for other
applications such as quality control of the modular assembly.
cMatch analyzes sequences and identifies the closest member of
a design space corresponding to a given template and a set of
component librariesor returns an error if the sequences are of
poor quality or too distant from the constructs in the design
space.

Figure 4. PASIV workflowsummary. PASIV is made of four
successive phases. Phase 1, a construction step using modular assembly
in a pooled approach and aiming at building all constructs at once.
Phase 2, a viability assay consisting of a transformation and culture step
followed by a colony picking step (the assay may be followed by a
titration assay where metabolite production by the yet unidentified
colonies is measured). Phase 3, an identification step where the genetic
content of the picked colonies is identified. Phase 4, a visualization/
analysis step that combines all collected information.
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Phase 4: A Visualization (V) Phase. Finally, the collected
data (colony content and assay measurements) are combined,
analyzed, and visualized. The goal of this stage is the localization
of the viable regionthat is, the region least affected by toxicity
and therefore eligible for titer optimization.
Within PASIV, metabolite production is treated with a black-

box approach. The constructs in the design space are seen as an
enzyme producer. Enzyme production is itself viewed as a
multidimensional stimulus to the chassis, which is controlled by
tuning construct components (promoter, RBS, etc.). The
bacterial chassis has its own limited resources, feedback systems,
including resistance to toxicity, and capacity for producing a
metabolite of interest. No attempt is made to model these

processes; instead, we rely on the data to estimate the dose−
response relationship. After data combination, all constructs in
the design space are assigned:

• A multiplicity order: the number of times the construct
has been identified among the picked coloniesthis is
assumed strong evidence of whether the colony is viable
and/or subject to burden issues.

• The data collected during the titration assay (if any). To
distinguish between the different sources of biological
noise, they are aggregated at two levelsby colony and
for each colony by assay sample (see the Results and
Discussion section). Titration data can also be used to
further restrict the viable region.

Figure 5.Main features of the construct matching software cMatch. (A) The core algorithm cMatch used for construct matching is made of three steps.
Step 1: cMatch looks for all possible individual components in the input sequence. Poor matches (low scores, in red) are pruned out. Step 2: the list of
all admissible constructs is generated. Dynamic reconstruction was implemented. A construct matching score is generated from the individual
component matching scores for all possible constructs. Step 3: constructs with the highest scores are returned. (B) cMatch uses two types of inputs: a
JSON template encoding the positional and combinatorics constraints for a given search space and the sequence data to analyze (single or multiple
input). Single inputs are processed with the core algorithm CM_1 detailed above; multiple inputs by an extension CM_2. cMatch returns a JSON file
listing the best match, as well as a ranking of all admissible constructs.
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PASIV uses a minimal set of coordinates corresponding to
estimates of the synthesis rates of all products encoded by the
construct (the enzymes crtE, crtB, and crtI in the case of the
lycopene example). These coordinatescalled “modeling
coordinates” in the rest of this work as they are based on the
modeling of protein productioncorrespond to a representa-
tion of the stimulus amplitude. Modeling coordinates can be
used as universal coordinates for constructs encoding the same
functions (e.g., enzyme production)and thus grant compar-
isons between constructs with different gene orders or based on
different patterns (operon vs transcription units). They also
allow for the deployment of the most commonmachine learning
preprocessing techniques such as dimension reduction,
distribution normalization/standardization, and outlier correc-
tion if needed (for instance, in high-dimensional problems).
Crucially, metabolic burden and toxicity effects are correlated to
the amplitude of the stimulus−the higher the stimulus, the
higher the burden and in the case of lycopene, the more
lycopene is produced, the higher the toxicity for the cells. This
makes such a set of coordinates ideal to differentiate toxicity
effects from construction and experimental issues.
Construct Identification with cMatch. PASIV uses

software called cMatch that has been developed for the purpose
of automating quality control in (high-throughput) workflows
encountered in combinatorial pathway approaches to metabolic
engineering. Thanks to the way it performs quality control
(detailed below), cMatch can be applied to the more general
problem of the identification of synthetic constructs lying in a
specified design space without having to perform a brute force
search for the best match in that design space.
cMatch deals with identification problems of plasmid-level

complexity: constructs are expected to include a few genes (10 at
most), while sequences to analyze will only be a few kbp-long
(15 kbp at most). Furthermore, information will not be evenly
distributed in the sequences. The biological functions encoded
in the constructs will have sequences spanning several orders of
magnitude (CDS are 1 kb or more, promoters around a 100 bp,
UTRs around 50 bp or less, while degradation tags are often less
than 10 bp long). At the same time, very short sequences
(regulatory components, as well as short adjacent sequences to
functional components) may massively affect the output to the
construct30,41,42 and will need to be identified with the utmost
precisionin contrast to applications such as barcoding,43

where short barcode sequences (with a space of possibilities in
the billions) are used to identify constructs in a design space of
several thousands/millions.
To deal with such features and constraints, cMatch adopts a

very different strategy to recent annotation tools such as
pLannotate,44 which rely on BLAST45 for matching and do not
use any positional and combinatorial information. First, cMatch
uses the highly validated Smith−Waterman algorithm,46,47

instead of BLAST,48 which is better suited to genome length
sequences. This choice was born out of the need for a high level
of precision and the relatively short length of the sequences to
analyze. Second, cMatch heavily exploits positional and
combinatorial informationwhich also happen to be the only
pieces of information available on the genetic material when
pooled construction workflows are used, namely:

• The template, describing their modular structure
(component types, relative order, interfacing constraints)
and providing the structural constraints for the space.

• For each component of the template, a library of
admissible elementsproviding a description of the
combinatorial constraints for the space.

Rather than using a brute force approach to search the design
space for the constructs that best match an input sequence,
cMatch performs a three-level process. cMatch first searches for
the individual components listed in the template and then
generates all admissible combinations. Finally, the combinations
are ranked. The matching (homology) scores generated at both
levels of the process are not only used to rank the admissible
combinations but also automate its decision-making and
quantify the reliability of the prediction. cMatch’s (core)
algorithm practically proceeds, as shown in Figure 5A:

• Step 1component matching: this looks for the
individual components in the input sequencelooping
over all libraries of components to match each of their
elements to a subsequence of the input sequence
assigning a matching score (normalized by the length of
the component) and a position (or several) in the process.
Pruning follows: only matches with a score above a user-
specified threshold are kept.

• Step 2reconstruction and pruning: the list of all
admissible constructs is generated. Rather than using a
purely combinatorial approach with a combinatorial
product of the results of the first step, followed by
pruning against the template, an iterative reconstruction
has been implemented. Combinatorial recombination
proves extremely costly indeed when the input contains
repetitions and elements are detected in several
locationsexpanding the number of combinations by
several orders of magnitude. Instead, positional con-
straints are applied as early as possible to prune out entire
branches of the reconstruction tree.

• Step 3output: all admissible constructs are assigned a
global score (the geometric mean of their component
scores). The combinations with the highest scores are
returned as best matches.

Focusing on the individual components of the constructs and
then on their combination is an efficient way to investigate large
combinatorial spaces and control combinatorial explosion, as it
exploits the high level of similarity among constructs in the same
design space to flatten the design space and reduce the number
and complexity of the computations. Even with the simple
example of the lycopene operon, the power of the approach is
apparent. There are 810 admissible combinations in the design
space (101 250 with the entire Biolegio library), but the 9
libraries only contain 18 elements (1 library of 5 promoters, 3
libraries with 3 RBS each, 3 libraries with 1 CDS each, and 1
library with 1 terminator)54 with the entire Biolegio library.
Positional constraints are powerful pieces of information in
general. There are 9!/3! = 60 480 as many ways to arrange the
components, i.e., almost 50 millions (and more than 5 billions
with the entire Biolegio library) when their order is not imposed.
In the context of reconstruction, the positional constraints can
be applied very efficiently to accept/reject combinations since
the relative positions of the components can be simply inferred
from the positions of the components as returned during the first
phase (component matching).
As it operates at both component and construct levels, cMatch

performs a more thorough operation than simple sequence
alignment. This operation, called “construct matching”, returns
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(and quantifies) a description of the modular structure of the
construct, including:

• Structure matching: Does the construct match the design?
Are all components present? Do their order and
interfacing match the construct design?

• Quality of the matching: How close is the matching? Are
there any close constructs? Are any components affected
by mutations? Are there any insertions or deletions?
Matching (homology) scores are generated for all
components and constructs.

It is worth emphasizing that such a level of analysis is only
possible thanks to the use of the template and knowledge of the
elements in the component libraries. Likewise, the identification
of a construct would also be intractable without these pieces of
information.
cMatch uses two types of inputs: a JSON template encoding

the positional and combinatorics constraints for a given search
space and the sequence data to analyze (Figure 5B). Sequence
data can be either single-input, long-read data (as with next-gen
sequencing) ormultiple-input, short-read data (typical of Sanger
sequencing, which was the case in this study). Two algorithms,
the core algorithm CM_1 detailed above and an extension
CM_2 have been developedeach tailored for a type of input
(CM_1 for single input, CM_2 for multiple input). cMatch
returns a JSON file listing the best match, as well as a ranking of
all of the constructs in the search space (or an error log), and all
intermediary results.
cMatch has been implemented in Python 3.9 and is publicly

available as an open-source package on the Kitney Lab Github
page (https://github.com/kitneylab) under MIT license
(https://choosealicense.com/licenses/mit/). The core func-
tionalities are implemented as three different modules:
matching.py, reconstruction.py, and extension.py, which,
respectively, implement the core sequence, component libraries
and component classes and their matching methods (calling
biopython pairwise2 local alignment function), and the
reconstruction and extension functions. All input and output
files are in JSON (for simplicity) except the sequence files.
Application of PASIV to the Lycopene Exemplar. We

now illustrate how the general PASIV workflow can be used in
practice with the lycopene exemplar. Three of the four phases of
the workflow were customized as follows (the third phase,
identification, is completely independent of the application and
need not be customized).
Phase 1: Pooled Approach. The BASIC assembly method39

is used for the modular assembly of the constructs in a one-pot
reaction. As previously mentioned, when several gene orders are
investigated, it is necessary to operate several poolsone for
each gene order. This is of course, primarily, to ensure no
combination lying outside the design space (constructs with
multiple repeats of some CDS and missing CDS) is constructed.
In the context of lycopene, where toxicity and burden are the
most limiting factors, it is crucial to the success of themethods as
constructs missing one of the pathway enzymes will exhibit a
significant growth advantage (no lycopene made) and will
therefore be overwhelmingly represented at the screening stage.
Six different poolseach corresponding to one of the six

possible gene combinations for crtE, crtB, and crtIwere
created. For each of these pools:

• The other varying parts (promoters, RBS) are mixed in
equal quantities.

• The cells are transformed with these genetic pools in a
one-pot reaction.

• The transformed cells are plated and grown for the
selection of viable candidates.

Phase 2: Screening of the Viable Candidates. Viable and
lycopene-expressing colonies are selected and picked. Practi-
cally, the transformed cells that have grown on the Petri dish and
that express the characteristic orange color hue phenotype of
lycopene expression49 are selected and colonies are picked and
grown in liquid culture for 24 h for further analysis: lycopene
extraction and measurement, and sequencing. Lycopene is
extracted with dimethyl sulfoxide (DMSO) (see the Methods
section) from the liquid culture of each of the viable candidates.
OD600 and absorption at 471 nm, the characteristic wavelength
of lycopene,50 are measured, and the lycopene yield is estimated.

Phase 4: Derivation of the Modeling Coordinates. In the
lycopene study, the production of each enzyme can be modeled
with the standard constitutive expression model

= − ×dm t K d m/d 1 m

= × − ×E t K m d Ed /d 2 E

where K1 is the effective transcription rate, K2 is the effective
translation rate, dm is the effective mRNA degradation rate, and
dE is the effective enzyme degradation rate. The synthesis rate is
K1K2/dm, and the corresponding steady-state concentration is
K1K2/dmdE.
Since visualization, clustering and other operations conducted

in phase 4, can be conducted up to a multiplicative constant, not
all quantities need to be estimated and those who do can
themselves be estimated up to a multiplicative constant.
The degradation rates of the three enzymes crtE, crtI, and crtB

are constants of the problem. Thanks to RiboJ’s protection of
mRNA at the 5′ end, the mRNA degradation rate can also be
assumed a constant of the problemindependent of the gene
order, albeit hard to estimate. It was therefore decided to use
K1K2, which is the product of the effective transcription rate and
the effective translation rate for the effective synthesis rate,
instead of the exact K1K2/dm to represent the synthesis rate. All
synthesis rates used in the rest of this paper are henceforth
expressed in arbitrary units due to this simplification.
With the lycopene operon used in this study, the effective

transcription rate K1 for each gene is estimated from the
characterization data of the leading promoter (Table S1). All
values are expressed in relative promoter unit (RPU, a relative
unit of strength common in promoter characterization,33 which
has been estimated at approximately 0.02 RNAP/s/pro-
moter).51 The use of the insulating element RiboJ35 ensures
that transcription and translation are decoupled from each other
and these estimated promoter strengths could be used for the
first gene of the operon. Effective transcription rates for the other
positions were derived by multiplying its strength by a factor
depending on its position down the operon, as suggested by
Nishizaki38 whose experimental results proved that “mRNA
abundance decreased by roughly half from one gene to the next”.
The decoupling of transcription and translation is an example

of favorable compositional contextunfortunately, no such
simplification is possible for the estimation of the effective
translation rate. Context is the set of interrelated factors that
modulate the operation of biological processes. These factors are
traditionally grouped as composition-specific, environment-
specific, and host-specific.52 In general, the expression of
functional components is affected by short adjacent upstream/
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downstream sequences.41,42,53 Calculator tools such as the RBS
calculator (https://www.denovodna.com/)37,54 now require 35
bp upstream and 60 bp downstream to estimate the translation
rate of an RBS.
No attempt was made at experimentally characterizing the

RBS in context. The effective translation rate K2 was estimated
with the RBS calculator instead for all of the RBS in the Biolegio
library and for all possible contexts with the operon design
(upstream and downstream sequences from the flanking genes
or RiboJlisted in the Supporting files Pool 1 - BEI; Pool 2 -
BIE; Pool 3 - EBI; Pool 4 - EIB; Pool 5 - IBE; and Pool 6 - IEB).
Corresponding estimations can be found in the Supplementary
Information and provide a vivid illustration of the influence of
context on RBS expressionnot only do translation rates can
vary by as much as 3 orders of magnitude indeed but the ranking
orders between RBS in the library are also not conserved when
context changes. Such unpredictability contrasts sharply with
transcription, which varies with gene order in a predictable
manner by a factor of up to 4.
Preliminary Investigation of the Design Space. The

first immediate application of the set of coordinates was to

conduct a preliminary investigation (Figure 6) of the design
space generated by the operon design and for the entire BASIC
Biolegio library and the chosen subset of {RBS1, RBS2, RBS3}.
For all visualizations in this paper, the synthesis rates
(synthesis(crtE), synthesis(crtB), synthesis(crtI)) are used as
coordinates. We will refer henceforth to this set of coordinates as
“synthesis coordinates” and use the shorthands E, B, and I for the
enzyme names crtE, crtB, and crtI, respectively.
Using the entire 15-strong Biolegio RBS library yields a design

space made of 101 250 constructs (5 promoters, 15 RBS in
position 1, 15 RBS in position 2, 15 RBS in position 3, and 6
permutations for the gene order). The corresponding design
space (Figure 6A) is highly anisotropic. Constructs exhibit a
larger density close to the origin, along the E and B axes, and are
also overwhelmingly located close to the E−B planethis is
expected as it corresponds to low crtI production and is a direct
consequence of the blocking effect the crtI coding region has on
RBS upstream of it. This was verified by conducting a codon
optimization of the crtI sequence (https://eu.idtdna.com/
pages/tools/codon-optimization-tool) and comparing the esti-
mated translation rates for both crtI and its codon-optimized

Figure 6. Design space generated from the entire RBS Biolegio library and the subset {RBS1, RBS2, RBS3}. Constructs are color-coded according to
their gene order/pool. (A) The design space generated from the entire Biolegio library has 101 250 constructs and is heavily concentrated by the E−B
plane. (B) The design space generated from the subset {RBS1, RBS, RBS3} only includes 810 constructs ((B), left) and covers a region closer to the
origin. A zoom onto the origin ((B), right) shows a dense sampling of this very weak region.
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sequence. Results (see the Supporting Information) show an
increase by an order of magnitude with the codon-optimized
sequence. A wide region by the origin ([0,25 000] × [0,25 000]

× [0,1000] in E−B−I coordinates) was densely sampled by the
design space, while regions further and further from the origin
were less and less so.

Table 1. Results of the Sequence Identification Stepa

aConstructs of higher multiplicity (4 and above) are colored red. The predominant pools, 3 and 4, are colored blue and purple, respectively. Finally,
the RBS placed before crtE are also color-coded (green for RBS1, yellow for RBS2) to illustrate the predominance of RBS1 in that position.
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Influence of the gene order can be glimpsed thanks to the
color scheme used in the figure. Separate visualization of the
constructs by gene order (see the Supporting Information)
shows that constructs tend to be located in different sections of
space depending on their gene ordersuggesting a possible
reason why some gene orders are associated with better
production and yield: over-representation in production sweet
spots. Separate visualization of the constructs by promoters
(Supporting Information) shows that the dense regions are the
results of not only the expression of the RBS in different contexts
and modulated transcription but also the weighting by
promoters of different strengths.
Figure 6B shows the 810-strong design space used in the

constitutive study (5 promoters, 3 RBS in position 1, 3 RBS in
position 2, 3 RBS in position 3, and 6 permutations for the gene
order). The design space generated with this subset is much
sparser as it is reduced by a factor of more than a 100 (810
instead of 101 325). It also exhibits a truncated coverage as
coordinates cannot go above 30 000 along the E-axis, and
coordinates do not exceed 1000 along the I axis (Figure 6B, left).
A zoom on the region close to the origin (Figure 6B, right),

corresponding to the weakest constructs, producing the
enzymes in little quantity and thus expected to produce little
lycopene, shows that the region remains densely (in the E−B
plane) but only contains very low values along the I coordinates
due to the blocking effect of crtI. Preliminary results obtained
while attempting to reproduce Exley et al.31 have shown how
difficult it is to obtain results even for weak constructs; therefore,
it was decided to stick to the original {RBS1, RBS2, RBS3}
subset and not try to extend the design space with stronger (in
context) RBS. Further post hoc justification for this choice of the
reduced RBS library was supplied by the experimental results
presented in the next section, showing that all constructs yielded
by the pooled approach were located well within this region of
weak constructs.

Screening Results. In phase 2 of the PASIV workflow,
viable colonies are picked to be sequenced and cultured for a
titration assay. Colony picking was conducted irrespective of the
color of the colony. Only a few colonies were present
confirming previous attempts at cultivating the E. coli for
lycopene production and how difficult it is. Overall, 99 colonies
(from pools 1 to 6) were isolated (see Table S3). Pools 3 (EBI;

Figure 7. Location of the identified isolates in the E−B−I coordinate system. (A) Identified isolates (red dots) cluster very close to the originand
only lie in a small portion of the available design space (blue dots). (B) Constructs are colored according to their multiplicity in the sequence data set
from blue (low multiplicity) to red (high multiplicity). A zoom on the region closest to the origin ((B), right) shows that constructs with the highest
multiplicity coincide with the lowest available value of E.
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37/99) and 4 (EIB; 54/99) were overwhelmingly represented

among these isolates as these pools yielded the most colonies for

picking. Pools 1, 2, and 6 yielded very few viable colonies (all

were picked), while pool 5 yielded none.

All picked colonies were sent for Sanger sequencing (see the
Methods section for details on the primers). Returned
sequences were then analyzed with cMatch to identify each of
the components of the constructs (promoters, RBS, CDS) and
reconstruct them. Eighty-seven of these constructs were

Table 2. Yield Results (in mg/g of Dry Cell Weight) for All Unique Constructs Drawn with the Pooled Approacha

aConstructs of higher multiplicity (4 and above) are colored red. The best performers in terms of yield are colored purple (max yield) and blue
(mean yield of the replicates). A new measure of yield is denoted as “new yield”high performers according to this metric are colored magenta.
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successfully sequenced. Seventy-three out of the sequenced 87
isolates could be identified with sufficient reliabilitythat is,
they met the minimum quality requirements for construct
matching (each component could be matched with a sufficiently
high score). Most of the identified isolates proved to be
duplicates, and, in the end, only 23 constructs were unique. Such
a low number was anticipated since preliminary experimental
results hinted at a very limited viable region for the design space
and toxicity and burden effects having very noticeable effects on
visible outcomes (cell viability and lycopene production).
Table 1 lists these 23 distinct constructs, their components,

and their multiplicity among the 73 reconstructed sequences.
Instead of listing construct components in template order
(promoter, RBS in position 1, CDS in position 1, etc.), they are
ordered in (promoter, RBS_E, RBS_B_RBS_I, gene order)
order, where RBS_E (respectively, RBS_B, RBS_I) is the RBS
located in front of the CDS for crtE (respectively, crtB, crtI).
This was done to make the results easier to compare across gene
orders and also to match the idea of modeling coordinates,
which is independent of the gene order. Results indicate that:

• K137085 (the weakest promoter) is the most commonly
represented promoter (12/23) and is used in all of the
constructs with high multiplicity (4 or more; all colored in
red). This is consistent with a scenario where toxicity is
the limiting factor.

• Conversely, apFab32 (the strongest promoter) is not
represented at allagain consistent with toxicity as a
limiting factor.

• The RBS placed before crtE is almost always the weakest
RBS in context RBS1 (22/23, all colored in green), except
in one case (RBS2, the second weakest one, in yellow)
again consistent with toxicity as a limiting factor.

• No construct uses the same RBS in all three positions at
the same time. This observation contradicts projections
by the EFM calculator (https://barricklab.org/django/
efm/)55,56 that repetitions of the RBS only has a minor
effect on the overall RIP score (adding an extra 0.1),
whereas the choice of promoter has a significantly larger
effect (K137085 and its ATATATATATATATAT
sequence being estimated to have add 50 points to the
RIP score). A possible explanation is that the weight used
in the EFM calculator corresponds to much more benign
context than the toxic context our cells are under and
therefore underestimates the possibility of recombination
events when all RBS are identical.

• Pools 3 (EBI; 9/23; colored in purple) and 4 (EIB; 10/
23; in blue) remain the most dominant pools (see Table
S4 for the aggregated statistics). They also contain all of
the higher-multiplicity constructs (hence the relative drop
in prevalence compared to the colony results)hinting at
a growth and/or production advantage for some
constructs in these pools.

Location and Multiplicity. When plotted in E−B−I
(synthesis) coordinates, the identified isolates were all found
to cluster close to the origin (Figure 7A, left). All constructs
inherited the low-I distribution from the design space.
Comparison with the whole design space (Figure 7A, right)
illustrates how concentrated the constructs are close to the
origin, compared to the available space sampled by the design
space.
When construct multiplicity is added to the plots (Figure 7B,

left), it can be seen that all higher-multiplicity constructs are not

only located close to the origin but also coincide with the lowest
values for E-synthesis (Figure 7B, right)illustrating results in
Table S3, which show that these constructs used the weakest
promoter and the weakest RBS in front of E. These findings are
consistent with the toxicity explanation, where cells die due to
lycopene-induced toxicity (accumulation in the membrane),
and therefore, higher synthesis levels of enzymes lead to higher
lycopene production and accumulation in the membrane. In the
E−B−I synthesis coordinates, all isolates were located in a box
[0,2500] × [0,1500] × [0,200]. Highest-multiplicity isolates
(exhibiting a growth advantage) were located in a smaller box
[0,100] × [0,200] × [0,25].

Analysis of the Titration Assay Data. Lycopene
production and growth data were acquired as per the protocols
described in the Methods section: optical density at 600 nm
(standard optical density) and 471 nm, to be, respectively,
converted into dry cell weight (DCW) and lycopene
concentration. Corresponding yields (in mg/g of dry cell
weight) were finally computed, as it is the most commonly used
metric for metabolic performance.
When using PASIV, biological replicates are of two sorts. For

each isolate that is picked up, several biological repeats
originating from that colony are run as part of the titration
assay (four in the exemplar study)they are referred to as “type
1” in this section. Only after identification of their genetic
material can the isolates, and associated repeats, be grouped
according to their genetic material (the construct)type 2
repeats. For type 1 repeats, the biological samples are from the
same colony, and it is expected that measurements can be safely
aggregated and that the statistics derived from these operations
will be indicative of the performance of the colony (and the
accuracy of the measuring process). For type 2 repeats, however,
variations will also be indicative of the differences in terms of
metabolic state for colonies with identical genetic material. This
distinction between types 1 and 2 is especially relevant to the
case of a constitutive design, placing significant duress on the
cells (especially for the higher-producing constructs) and where
assays cannot be synchronized as they would be with an
inducible designand thus liable to result in significantly
different metabolic states for colonies containing identical
genetic materials.
Analysis of the measurements was therefore conducted in two

steps to separate sources of variation in the data (interisolate vs
interconstruct) and aggregate data safely. Only analysis of type 2
data (aggregated by construct) is presented in this section;
analysis of the type 1 data can be found in the Supporting
Information.
Table 2 lists the results for the yield for all of the 23 distinct

constructs. Three statistics are used to identify the best
performers in terms of yield: mean of all of the replicates
associated with the construct, maximum over these replicates,
and a more robust statistic presented below to compensate for
the possible variance in metabolic states. Both mean yield and
maximum yield identify a similar list of strong performersthe
discrepancies between both lists being caused by the multiplicity
of the construct. Average yields for the constructs with the
highest multiplicity (hence with the highest number of
replicates) were often significantly lower than their max value
(by as much as 80%)indicating that genotypically identical
constructs in the pool were liable to feature in disparate
metabolic states. At the other end of the spectrum, construct
C_01 with a multiplicity of only one returned similar values of
the mean and max. The best performers are, in all but two cases,
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among the constructs with higher multiplicity (located in the
cluster closest to the origin). The best performer, C_22
(K137085, RBS1, RBS3, RBS3), is also located in the cluster.
This was surprising, as constructs in the cluster (with some
fitness advantage) were not expected to be strong producers (an
activity imposing duress). The best yields corresponded to the
strongest RBS (RBS2 and RBS3) placed in front of the final
enzyme of the pathway (crtI)hinting that better yields could
be found with stronger RBS in front of crtI and that our original
choice of RBS was too restrictive (stronger RBS placed in front
of crtI should be tolerated and lead to better yields).
To decouple interisolate and interconstruct variation, the

following statistic was added. The statistic is computed in two
stages. First, for all isolates, the average is computed for all
features (DCW, lycopene concentration, and yield). These
average statistics are considered reliable indicators of the
behavior of the isolate. Then, for constructs of multiplicity
larger than one, the isolate, the most representative of the
potential of a construct, is identified. The averaged features of

that isolate are then assigned to the construct. In the present
case, the isolate with the largest mean yield is selected as we are
interested in lycopene production (mean lycopene concen-
tration could also be used). Table 2 shows the value of this new
yield statistic (alongside the mean and max) for all constructs.
The new statistic does not penalize constructs with higher
multiplicity as much as the mean of all repeats. Conversely,
because it is based on some averaging, it does not reward outliers
as much as the maximum.
The new statistic was used to separate the constructs into high

and low producers. k-means clustering was used on the 23-
construct data set for two target clusters and using all three
dimensions (yield, concentration, and DCW). Figure 8A shows
the location of both clusters in EBI coordinates. Red dots are
used for the strong performers; blue dots are used for the weak
ones. Red dots are all located in the cluster closest to the origin
and associated with higher multiplicityconfirming that the
cluster and nearby region should be investigated further if one
wishes to find good, reliable performers. A black dot is used to

Figure 8. Separating the high and low producers. (A) Location of the high- and low-producer clusters in EBI coordinates. Red dots are used for the
strong performers; blue dots are used for the weak ones. Strong performers are all located in the cluster closest to the origin and associated with higher
multiplicity. (B) Result of k-means clustering (n = 2) in the yield vs OD plane (left) and the concentration vs OD plane (right). Red dots are used for
the strong performers; blue dots are used for the weak ones. Linear regression was performed on both clusters in both cases.
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label construct C_02, which has a high yield but is also
associated with low dry cell weight. As the construct is on its
own, surrounded by blue dots (low producers), it either
corresponds to an outlier (unlikely since it has a multiplicity of 3
in the pool) or is located in a region of the metabolic landscape
(high yield, low OD/DCW) that is difficult to access via a
pooled approach.
Figure 8B displays the result of the clustering in the yield vs

OD plane (left) and concentration vs OD plane (right). Linear
regression was performed on both clusters. In the yield vs OD
plane, the high performers (red) show a clear downward trend
(consistent with a classic growth−production trade-off), while
the trend is almost flat for lower producers. In the concentration
vs OD plane, no clear trend can be observed for the high
performers (red).
Identification of a Region for Further Investigation.All

viable constructs were located in the [0,2500] × [0,1500] ×
[0,200] box (in E−B−I coordinates), while the best performers
were in a much smaller box [0,100] × [0,200] × [0,25] (Figure
9). The fact that higher producers were very heavily clustered
inside the region, while lower producers were spread further
from the origin, coupled with our expectations regarding the
effect of toxicity and burden on production, and the results of the
viability assay (very few viable colonies) convinced us not to
look for further regions of interest in the lycopene case. Instead,
it was decided to concentrate on the region containing the most
promising isolates, as it clearly was the region to favor for the
screening phase. In parallel, the larger region containing all
isolates was to be retained for a possible separate screening, as it
had been much more sparsely sampled.
Another important feature of the construct design is gene

order. Although a safe approach would be to consider all possible
orders, using fewer gene orders would simplify construction
workflows. Practically, it was decided it would be advantageous
to only use pools 3, 4, and 6 (EIB, EBI, and IEB) since

• Pools 3 and 4 yield the most constructs and some of the
strongest performers.

• Pool 6 yields fewer constructs but the best performers.
• Other pools yield very few constructs and weaker ones

than can be found in other pools.

Finally, as a way to account for possible errors in the process
and to make sure that as little as possible of the promising
higher-producing region is left out, the region was extended as
follows:

• Along the B and E dimensions, the maximum value was
doubled.

• Yield data for the stronger producers hint that it is
advantageous to have stronger RBS than RBS3 in front of
crtI; the maximum along the I dimension was therefore
substantially increased from 25 to 100.

Analysis of the data has identified two overlapping regions of
the design space: the blue box containing all of the identified
constructs and a red box containing the higher-producing region
(in red). To compensate for possible errors in the process, it was
decided to expand the higher-producing region (in red)most
noticeably in the I direction; the resulting region (in purple) is
considered the most promising and should be the subject of
further investigation.

■ DISCUSSION

The paper has presented a novel workflow to bootstrap DoE
cycles for combinatorial optimization problems affected by
severe toxicity issues. More specifically, we have presented a
novel workflowwhich we have called PASIVto perform the
scoping phase of the DoE cycle and identify a suitable region of
the design phase for the screening and optimization phases to be
conducted on (or subregions of).
PASIV is based on a multiplex construction phase via a pooled

approach in conjunction with a viability assay. This experimental
phase is coupled to a software phase, where the isolated colonies
are sequenced, their genetic content (construct) is identified, to
finally yield an estimated location for one (or several) region(s)
of interest. We believe that this form of interplay between
biology and software methodology provides a flexible, time-
efficient solution. Even at the relatively modest scale of this
study, identification of the viable region of the design space
would have been a cumbersome, lengthy, and unreliable process
without these tools and methods.

Figure 9. Concluding the scoping study. The higher-producing constructs feature in the red boxclose to the origin. To compensate for possible
errors in the process, the region is expandedmost noticeably in the I directionyielding the purple box, which is considered themost promising and
should be the subject of further investigation.
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Although PASIV has been illustrated with lycopene (a very
bright pigment with a short pathway), it is worth emphasizing
that the workflow has not been developed for a broader range of
applications. The modular assembly method, BASIC, is also
known to perform well for longer pathwaysthus extending the
range of pathways PASIV can be applied to. The screening phase
is also not dependent on the presence of a visual reporter (be it a
colorful metabolite or through the addition of a dedicated
sensor57). PASIV rests on a viability assay indeedviable
colonies are to be picked regardless of the visual stimulus they
emit. The viability assay is followed by a titration assay, which is
specific to the metabolite of interest. For instance, in the
lycopene exemplar (see theMethods section), lycopene was first
extracted with50 DMSO from the liquid culture and its
concentration was estimated from absorption reading at 471
nm.50 Visual reporters could, in theory, be used to steer toward
high-producing regions in the picking phase, but no attempts to
do so were conducted in our work, as too few viable colonies
were present on the plates and the authors were concerned with
importing possible biases in the screening phase. As for the
software phases of the workflow, they are agnostic to the chosen
pathway.
In the lycopene exemplar, a homogeneous, contiguous region

of space, containing strong performers could be identified. The
region, as could be expected for a problem where toxicity plays a
major role, corresponds to the weakest constructs. Equivalently,
it was located close to the origin with the minimal set of
coordinates (the enzyme synthesis rates) used by PASIV.
Although extrapolating from the data yielded with PASIV should
be done with suitable care, there are good reasons to consider
the identified region for further investigation.
The identified region had an enviable set of properties.

Collected data show a continuous, viable region of space that
contains healthy and productive colonies: some constructs
indeed yield colonies with high multiplicity, with a clear growth
advantage and performing well. In the context of metabolic
engineering, these constructs would be good choices as they are,
most likely, reliable performers. Conversely, constructs that fail
the pooled approach, while possibly capable of good production,
are more likely to be subject to the toxicity effects and be
unreliable performers.
Higher producers were also very heavily clustered inside the

region, while lower producers were spread further from the
origin. This fact, coupled with our expectations regarding the
effect of toxicity and burden on production, and the results of the
viability assay (very few viable colonies) convinced us not to
look for further regions of interest in the lycopene case. Instead,
the region containing the most promising isolates was expanded
(as shown in the Results and Discussion section and further
discussed below)as it clearly was the region to favor for the
screening phase. In parallel, the larger region containing all
isolates was retained for a possible separate screening, as it
contained more constructs but had been much more sparsely
sampled. Metabolic landscapes are in most cases not as
accommodating as the lycopene landscape. And it is, in general,
not possible to tell with certainty if the whole of the viable region
has been identified without several repeats of the workflow
especially for more complex pathways where several viable
regions may exist. Even in such a case, advantages in using
PASIV remain. The multiplex construction remains fast and
simple as all components are mixed at once in a one-pot
reactionwith identical experimental conditions. More im-
portantly, each new round of PASIV will yield constructs that

accumulate in the viable regionswhich remains a better
outcome than the outcome of random sampling rounds (with a
lot of failures).
Turning the locations of the identified constructs into a region

of interest for further investigation means performing a practical
trade-off between efficiency (region should not be too large) and
safety (region should be large enough)and involves design
decisions that are typical of a scoping study. On the one hand,
preliminary analysis of the data can lead to some forms of
restriction on the region of interest. In the lycopene exemplar, a
reasonable case could be made for not using all six gene orders
but only three instead. On the other hand, it is better to identify a
region that is too large than too small, lest the best-producing
constructs are missed. PASIV is inherently conservative: its goal
is not to identify some optimal region, but a region worthy of
further investigation instead. Also, due to the way the viability
screening works, gaps between identified constructs are to be
expected and should be filledthe viability assay will miss some
viable constructs, even if they are represented on the plates, as
there are practical limits to the number of colonies that can be
picked. In the Results and Discussion section of this work, a very
simple strategy was adopted: the E−B−I coordinates were used
to group all of the constructs that were identified into a single
box. An extension of that box was also performedpractically
the boundaries of the previous box were changed to give
ourselves a margin of error for the entire PASIV process.
Although the development of a rigorous statistical framework

to assess whether the viable region(s) have been identified
already, or if more rounds are needed, is beyond the scope of this
work, some elements of such a framework are worth discussing.
Since the purpose of PASIV is the safe identification of viable
regions and is followed by a targeted sampling of these regions, it
is enough to ensure its outcome remains stable over a range of
iterations. We suggest using an equivalent criterion, but more
amenable to quantification, and turn PASIV’s outcome into a
simple predictive model (inside the box(es): predicted to be
viable, outside: predicted not to be viable) and track its
performances over a range of iterations of PASIV by comparing
its predictions against the data collected during a new iteration.
A stopping condition can easily be constructed from the
standard classification performance metrics (recall and F1 since
the scoping round aims to avoid false negatives). When there are
several subregions, clustering metrics (silhouette score, Davies−
Bouldin index, Calinski−Harabasz index) can also be used to
quantify the evolution of the clustering results. In parallel, as
more data are collected, estimation of the production landscape
(mean, confidence interval) can be refined, as can the low-
producer/high-producer clustering.
The benefits of conducting a proper titration assay in the

second phase, and not just a viability assay, extend beyond
collecting data that will be of use in the subsequent rounds of the
DoE cycle: the collected data can be useful in identifying the
location of the region of interest, as shown in the lycopene
example. Clustering identified two clusters (one of lower
producers, one of higher producers)the stronger producers
being located very close to the originand corresponded to the
lowest values of E-synthesis. Also, the yield data hint that it is
advantageous to have stronger RBS than RBS3 in front of crtI
and that regions with strong producers should be expanded
along the I dimension.
A benefit of using coordinates to define a region of interest is

to enable resampling of the said region to make it less sparse
this would be of clear benefit to generate constructs even closer
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to the E-axis. In practice, it means identifying more constructs
using the specified operon design but outside the original design
space as they use new components. This can be achieved, for
instance, by extending the RBS libraries to include all of the
members of the Biolegio collection and drawing from the
constructs that fall in the newly identified region of interest.
Likewise, more suitable constructs can be generated by adjusting
the promoter in the operon and using weak promoters.
Finally, another benefit of operating at the region level (rather

than individual construct level) and adding margins of error to
the location of the region of interest is to be found in the final
visualization step in PASIV. The visualization phase relies on a
minimal set of coordinates related to enzyme synthesis and for
these coordinates to be estimated for each element in the design
space. Transcription values were derived from promoter
characterization data in a similar context. For translation, it
was decided to rely solely on a bioinformatic tool, the RBS
calculator, to estimate the translation rates of all of the RBS
involved in the study and for all possible upstream and
downstream contexts. The decision was taken for several
practical reasons. First, the RBS calculator is a popular tool that
is consistently improved. Second, experimental characterization
of the RBS in context (to determine translation rates) was
cumbersome:

• First, common reporters such as GFP cannot be used
outright since their first 60 bp differ from the crtE, crtI,
and crtB enzymes.Modifying the reporters at their 5′ ends
was rejected as too liable to modify the reporters’
properties. Using a fusion protein was also rejected as it
was liable to alter too much the metabolic burden (and
could lead to folding problems).

• His-tag characterization of protein concentration was also
investigated but protein purification considerations,
concerns about folding, and concerns about potential
overexpression of the recombinant proteins58 led to its
rejection.

Finally, although there are other methodsmost notably
targeted proteomics59,60that are well suited to directly assess
protein levels, they were rejected for the scoping phase, as these
modern capacities are not widely accessible yet, and PASIV
relies on growth information first (multiplicity and OD) and
production information second. These methods should of
course be considered for the subsequent targeted rounds of the
DoE cycle.
Although it is tempting to use calculators, when possible, due

to their simplicity of use, it is important to bear in mind that their
use may lead to some features of some of the constructs being
estimated with a significant margin of errormaking individual
construct predictions risky. While this is a potential issue in the
screening and optimization phases (protein measurements
should then be conducted), we argue that it is less of a problem
in the scoping phase as conducted in PASIV. PASIV’s purpose is
the identification of a region that is worthy of further
investigation. PASIV is not so much concerned with minimizing
false positives (including constructs that should not be) than
maximizing true positives (making sure the region covers the
right area of the design space). This is reflected in the simple
manner the region of interest is reconstructed from the data
(clustering the identified isolates into boxes with added margins
for errors).

■ CONCLUSIONS
The PASIV approach presented in this work offers a simple
solution to a particular issue in DoE cycles: what can be done if
the scoping phase is severely hampered by burden and toxicity
issues. It is also a showcase for a systematic approach to synthetic
biology based on a few principles:

• As far as possible, the biology should be allowed to behave
naturallythe first two phases of PASIV harness biology,
so the viable region reveals itself.

• Reproducibility, reliability, and robustness are key. In
PASIV, they featured in the design of the workflowto
account for possible failure modesas well as the
conservative approach adopted to identify the viable
region.

• Automation and software are to be deployed as much as
possible to operate at scale and make it possible to reliably
collect and process large amounts of data. PASIV would
not work without its software identification phase (phase
3).

• Synthetic biology should move further into the direction
of data scienceand the biology be abstracted as much as
possible. The visualization phase (phase 4) is but a small
example of such an application.

As a consequence of these principles, several computational
tools, as well as a set of problem-specific experimental methods,
have been developed. Although the most obvious application
area for these tools and methods is metabolic engineering and
large combinatorial optimization problems, we are confident
that they can be applied to a wider range of problems.

■ METHODS
BASIC DNA Assembly. BASIC linkers and part preparation

were done using the standard BASIC part preparation protocol
(https://www.basic-assembly.org/protocols). BASIC assem-
blies were also done following the standard BASIC assembly
protocol in a 96-well standard plate either manually or with the
Opentrons OT-2.

Preparation of BASIC Linkers and BASIC Bioparts.
BASIC linkers were obtained from Biolegio. Synthesized genes
were ordered as gBlocks from NEB. New linkers are prepared as
follows:

1. Spin down the tubes with lyophilized linkers to ensure
oligos are at the bottom of the tube.

2. Set the heating block to 95 °C.
3. Add 200 μL of the linker annealing buffer to each linker

tube and leave it on the bench for 1 h.
4. Vortex the tubes and collect the liquid at the bottom of the

tube with a quick centrifuge spin.
5. After the heating block reaches 95 °C, place the tubes into

the block and slightly loosen the tube caps to allow for
heat expansion.

6. After 5 min, switch off the heating block and tighten the
tube caps again to avoid evaporation.

7. Allow the tubes to cool down to room temperature over at
least 1 h in the heat block.

8. Collect the solution at the bottom of the tube with a quick
centrifuge spin.

9. Linkers are stored at −20 °C. Bioparts for the BASIC
assembly are provided in storage plasmids (pSEVA18).
For each BASIC linker ligation reaction, 50 ng of plasmid
per 1 kb of total plasmid size (including BASIC part and
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storage backbone pSEVA18) is required. Usually, that
amount of DNA is provided in 1 μL of a typical miniprep
of biopart storage plasmids (200 ng/μL for a 4 kb
plasmid). If polymerase chain reaction (PCR) products or
gene fragments are used as reaction inputs, 50 ng per 1 kb
linear DNA is required.

BASIC Reaction. For each BASIC linker ligation reaction,
one PCR tube with 30 μL total volume was set up: dH2O 17 μL,
Promega T4 buffer (10×), 3 μL prefix linker, 1 μL suffix linker, 1
μL BASIC biopart 0.5−6 μL (50 ng per 1 kb total plasmid size),
dH2O was added to reach 28.5 μL volume, NEB BsaI-HF v2
enzyme (R3733) 20 U/μL, 1 μL Promega T4 ligase (M1801),
1−3 U/μL 0.5 μL mix by pipetting up and down. After mixing,
the tubes are placed in a PCR machine running the following
program: (37 °C, 2 min) × 20 cycles (20 °C, 1 min), (37 °C 5
min), (80 °C, 20 min).
Magbead Purification. This was done using 0.5 mL of 70%

EtOH per BASIC reaction and bringing the magnetic beads
stored at 4 °C back into the homogeneous mix by shaking
thoroughly. We used 96-well Falcon plates (Falcon 351177) in
combination with an Ambion magnetic plate (AM10050) for
quick magbead immobilization and easy pipetting access.
Purification protocol was applied as follows:

1. Add 54 μL of magnetic beads into a 96-well Falcon plate
(one well per BASIC reaction) and add 30 μL BASIC
linker ligation from the PCR machine step, mix by
pipetting 10 times.

2. Wait 5 min to allow DNA binding to magbeads.
3. Place the Falcon plate on the magnetic stand and wait for

rings to form and the solution to clear.
4. Remove the solution with a 200 μL pipette tip from the

center of each well.
5. Add 190 μL 70% EtOH to each well and wait for 30 s.
6. Remove the solution from each well (pipette set to 200 μL

volume).
7. Add 190 μL 70% EtOH to each well and wait for 30 s.
8. Remove the solution from each well (pipette set to 200 μL

volume).
9. Leave the plate to dry for 1−2 min.
10. Remove the Falcon plate from the magnet and resuspend

magbeads in 32 μL dH2O.
11. Wait for 1 min for DNA to elute.
12. Place the Falcon plate back on the magnetic stand and

allow the ring to form and the solution to clear.
13. Pipette 30 μL ofH2Owith elutedDNA into a fresh 1.5mL

Eppendorf tube for direct use in assembly or storage at
−20 °C for up to 1 month.

Assembly Reaction. For each BASIC assembly, parts were
combined with buffer in a PCR tube: dH2O 2 μL, NEB
CutSmart buffer 10 × 1 μL, linker ligated BASIC part crtE 1 μL,
linker ligated BASIC part crtB 1 μL, Linker ligated BASIC part
crtI 1 μL, dH2O top up to 10 μL total volume. Assembly reaction
is run in a PCR machine with the following program: 50 °C for
45 min followed by 4 °C on hold.
Transformation. Fifty microliters of chemically competent

cells DH5alpha with high transformation efficiency (109 CFU/
μg pUC19, for instance, NEB C2987I) was used to transform 5
μL of each BASIC assembly:

1. Chemically competent cells are stored at −80 °C.
2. Thaw the competent cells on ice (takes 5−10min); 50 μL

per BASIC assembly to be transformed.

3. Cool 5 μL of the BASIC DNA assembly in a 1.5 mL
Eppendorf tube on ice.

4. Add 50 μL of competent cells to each precooled 5 μL
BASIC reaction.

5. Incubate on ice for 20 min.
6. Apply heat shock in a 42 °C water bath for 45 s and place

back on ice for 2 min.
7. Add 200 μL of the SOC medium to each tube and

incubate shaking at 37 °C for 1 h recovery.
8. Spot or plate cells on agar plates with the appropriate

antibiotics. Depending on the number of parts assembled
and the transformation efficiency, 2−250 μL might be
spotted or plated.

9. Incubate agar plates at 37 °C overnight, and the next day,
pick the colony for assay or miniprep. We used a PCR
machine, heat block (up to 95 °C) fitting 2 mL Eppendorf
tubes, water bath (42 °C) for transformation, magnetic
plate Ambion AM10050 (Thermo), 96-well U-bottom
Falcon plate, Falcon 351177 (Thermo) Eppendorf tubes,
magnetic beads Ampliclean (Nimagen), dH2O, 70%
EtOH, Biolegio BASIC linkers BBT-18100 (Biolegio),
BASIC parts in storage plasmids (200 ng/μL), NEB BsaI-
HF v2 enzyme (R3733), 20 U/μL; includes CutSmart
buffer R3733 (NEB), Promega T4 ligase (M1801) 1−3
U/μL; includes Promega T4 buffer M1801 (Promega),
chemically competent cells (DH5alpha, 1 × 109 CFU/μg
pUC19); includes SOC media C2987I (NEB).

Pooled Transformation. Instead of single RBS at a single
location, we use three RBS while maintaining a relative
proportion of RBS (relative to volume). The promoters, RBS,
and genes were added to the transformation mix. The order of
the linkers in the BASIC assembly allows the fixed ordering of
the three genes (crtE, crtB, crtI), hence, the six different pools
containing six different gene order combinations.

Cloning and Cultivation.DH5α (New England Biolabs) E.
coli was used for cloning with a standard approach. E. coli cells
were grown in Luria Broth (LB) medium supplemented with 25
μg/mL kanamycin (Kan). DH5α E. coli starter cells were grown
at 37 °C. Cell cultures for lycopene production were grown at 28
°C (optimum growth temperature for lycopene production).

Extraction and Measurement of Lycopene. The 24 h
growth plate has its OD600 measured on a plate reader
(Clariostar). Fifty microliters from the 1000 μL total volume
is added to 150 μL of LB in a new, flat-bottom plate; it is mixed
thoroughly and then tested. The final OD value that the plate
reader gives us is multiplied by 4 to compensate for this dilution.
The remaining culture is spun at 4000 rpm for 15 min, at room
temperature, until pellets appear. The supernatant is removed by
turning the plate upside-down onto paper towels. The pellets are
resuspended in 500 μL of DMSO, using a robot (OT-2) or a
multichannel pipette. The plates are then incubated at 37 °C for
30 min at 900 rpm on a benchtop incubator, to extract the
lycopene, while covered in aluminum foil to limit exposure to
light. The plates are then spun down to generate pellets (15 min
at 4000 rpm). Two hundred microliters of the lycopene-
containing DMSO was moved to a flat-bottom plate to measure
the OD at 471 nm (Clariostar).

Sequence Analysis and Part-Matching. To analyze the
Sanger sequences and identify the best candidate parts of the
constructs, we used the cMatch software. This allowed us to
automate our workflow and was sorely needed to procedurally
match against the 810 possible in silico constructs.
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We sequenced with three distinct reverse primers starting at
1/3 in each of the three genes (crtB, crtI, and crtE) (Figure 10).
The three subsequences obtained are approximately 800 base-
pair long, which is long enough to let us determine the upstream
parts. The multi-input variant CM_2 of the cMatch algorithm
was used.
Yield Calculation.Cell growth (E. coliDH5α) was followed

bymeasuring the optical density at 600 nm and correlated to cell
dry weight (CDW) with a ratio of CDW/OD = 0.36.
Ratio of cell dry weight (g/L)/OD600.
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Jiménez, A.; Contreras-Esquivel, J. C.; Aguilar, C. N. Lycopene:
Progress in Microbial Production. Trends Food Sci. Technol. 2016, 56,
142−148.
(14) Ciriminna, R.; Fidalgo, A.; Meneguzzo, F.; Ilharco, L. M.;
Pagliaro, M. Lycopene: Emerging Production Methods and Applica-
tions of a Valued Carotenoid. ACS Sustainable Chem. Eng. 2016, 4,
643−650.
(15)Wang, C.; Zhao, S.; Shao, X.; Park, J.-B.; Jeong, S.-H.; Park, H.-J.;
Kwak, W.-J.; Wei, G.; Kim, S.-W. Challenges and Tackles in Metabolic
Engineering forMicrobial Production of Carotenoids.Microb. Cell Fact.
2019, 18, No. 55.
(16) Kim, M. J.; Noh, M. H.; Woo, S.; Lim, H. G.; Jung, G. Y.
Enhanced Lycopene Production in Escherichia coli by Expression of
Two MEP Pathway Enzymes from Vibrio Sp. Dhg. Catalysts 2019, 9,
No. 1003.
(17) Jung, J.; Lim, J. H.; Kim, S. Y.; Im, D.-K.; Seok, J. Y.; Lee, S.-J. V.;
Oh, M.-K.; Jung, G. Y. Precise Precursor Rebalancing for Isoprenoids
Production by Fine Control of GapA Expression in Escherichia coli.
Metab. Eng. 2016, 38, 401−408.
(18) Yen, H.-W.; Palanisamy, G.; Su, G.-C. The Influences of
Supplemental Vegetable Oils on the Growth and β-Carotene
Accumulation of Oleaginous Yeast-Rhodotorula glutinis. Biotechnol.
Bioprocess Eng. 2019, 24, 522−528.
(19) Sevgili, A.; Erkmen, O. Improved Lycopene Production from
Different Substrates by Mated Fermentation of Blakeslea trispora. Foods
2019, 8, No. 120.
(20)Ma, T.; Shi, B.; Ye, Z.; Li, X.; Liu, M.; Chen, Y.; Xia, J.; Nielsen, J.;
Deng, Z.; Liu, T. Lipid Engineering Combined with Systematic
Metabolic Engineering of Saccharomyces cerevisiae for High-Yield
Production of Lycopene. Metab. Eng. 2019, 52, 134−142.
(21) Yamano, S.; Ishii, T.; Nakagawa, M.; Ikenaga, H.; Misawa, N.
Metabolic Engineering for Production of Beta-Carotene and Lycopene
in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 1994, 58, 1112−
1114.
(22)Hartz, P.; Milhim,M.; Trenkamp, S.; Bernhardt, R.; Hannemann,
F. Characterization and Engineering of a Carotenoid Biosynthesis
Operon from Bacillus megaterium. Metab. Eng. 2018, 49, 47−58.
(23) Schwartz, C.; Frogue, K.; Misa, J.; Wheeldon, I. Host and
Pathway Engineering for Enhanced Lycopene Biosynthesis in Yarrowia
lipolytica. Front. Microbiol. 2017, 8, No. 2233.
(24) Gallego-Jara, J.; de Diego, T.; del Real, Á.; Écija-Conesa, A.;
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