
Original Article
Departme
(Y.L., B.U.N
Surgery, New
gery, Rush U
B.F.), U.S.A

The autho
funding: K.K
B.U.N. repor
B.F. reports g
from Smith a
the submitted
article online

Yining Lu
Received F
Address co

Center, 1611
research@ru

� 2021 P
North Ameri
(http://creati

2666-061X
https://doi
Artificial Intelligence Predicts Cost After Ambulatory
Anterior Cruciate Ligament Reconstruction
Yining Lu, M.D., Kyle Kunze, M.D., Matthew R. Cohn, M.D., Ophelie Lavoie-Gagne, M.D.,
Evan Polce, B.S., Benedict U. Nwachukwu, M.D., M.B.A., and Brian Forsythe, M.D.
Purpose: To develop and internally validate a machine-learning algorithm to reliably predict cost after anterior cruciate
ligament reconstruction (ACLR). Methods: A retrospective review of the New York State Ambulatory Surgery and
Services database was performed to identify patients who underwent elective ACLR from 2015 to 2016. Features included
in initial models consisted of patient characteristics (age, sex, insurance status, income, medical comorbidities as classified
by the Clinical Classifications Software diagnosis code) as well as intraoperative variables (type of anesthesia and
procedure-specific factors). Models were generated to predict total charges using 4 algorithms: random forest, extreme
gradient boost, elastic net penalized regression, and support vector machines with radial kernels. Training was performed
with 10-fold cross-validation followed by internal validation via 0.632 bootstrapping. Model discriminative performance
was assessed by area under the receiver operating characteristic curve, calibration, and the Brier score. Decision curve
analysis was performed to demonstrate the net benefit of using the final model in practice. Results: In total, 7,311 pa-
tients undergoing ambulatory ACLR were included. The random forest model demonstrated the best performance
assessed via internal validation (area under the curve ¼ 0.85), calibration, and the Brier score (0.208). Cost incurred was
influenced by anesthesia type, operating room time, and number of chronic comorbidities. Decision curve analysis
revealed a net benefit for use of the random forest model and the model was integrated into a web-based open-access
application. Conclusions: The random forest model predicted cost after ambulatory ACLR using a large, statewide
database with good performance. The top variables found to predict increased charges were general anesthesia, operating
room time, meniscal repair, self-pay insurance, patient neighborhood characteristics, and number of chronic conditions.
Level of Evidence: III, retrospective cohort study.
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overall morbidity. Despite this consistency, patients
have inherently variable risks for experiencing post-
operative complications, readmission, and reoperation,
which can translate to variabilities in total cost of the
encounter episode. Focus on value-based health care
necessitates methods to risk-stratify patients during
preoperative evaluation to allow appropriate preoper-
ative counseling, minimize the incidence of adverse
events, and both minimize cost through changing
modifiable risk factors as well as optimally allocate re-
sources to high-risk cases. Previously identified risk
factors for complications and readmissions in patients
undergoing ACLR include age,1,2 number and type of
medical comorbidities,2,3 operative time,4 type of
anesthesia,5 body mass index,5,6 and race.5 However,
economic analyses focused on the cost drivers of
ambulatory ACLR is sparse, and the present study seeks
to add to this body of evidence through the application
of machine learning algorithms.
The development of a predictive model to accurately

and rapidly quantify risk and excessive cost use after
ACLR would be valuable for stakeholders and health
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care institutions alike.7 Bundled payments have
become more common in various orthopaedic sub-
specialties, yet these payment models often do not ac-
count for patient-specific cost drivers and
reimbursement may not accurately reflect the
complexity of patients or cases. To this end, the appli-
cation of artificial intelligence is an approach well-
suited to establish a cost-predictive model, as it can
identify how demographic and procedure-related risk
factors can translate into excessive cost prior to deciding
to perform ACLR.8 Specifically, machine learning can
be applied to and “learn” from complex datasets that
contain this information to optimize predictive ability
and identify which patients may be at risk for adverse
events. Traditional statistics, such as regression models,
are fixed constructs based on predefined relationships
that are susceptible to collinearity and often fail to
appropriately handle complex relationships and data-
sets with many inputs. In contrast, machine learning
algorithms are capable of learning from these relation-
ships and becoming more accurate when presented
with additional data by refining the decisions made to
come to a specific prediction.9 Although machine
learning has been successfully applied in orthopaedics
to predict costs based on risk factors in total hip and
knee arthroplasty,10-12 total shoulder arthroplasty,13

and spinal fusion,14 it has not yet been applied to
guide cost and resource use predictions after ACLR.
The ability to create a customized risk prediction

model for cost use after ACLR would enable the future
development of risk-adjusted, patient-specific payment
models as well as inform preoperative prediction of the
most impactful postoperative outcomes and metrics.
The purpose of the current study was to develop and
internally validate a machine learning algorithm to
reliably predict cost after ACLR. The authors hypothe-
sized that the best performing algorithm would accu-
rately predict total charges following ACLR and allow
for the development of a customized prediction tool to
inform patient-centered decision-making.

Methods

Guidelines
The present analysis was performed adherent to The

Transparent Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis guidelines
and the Guidelines for Developing and Reporting Ma-
chine Learning Models in Biomedical Research.15,16

Data Source
After institutional review board exemption, The New

York State Ambulatory Surgery and Services Database
(NYSASD) was queried for patients undergoing ACLR
using the Current Procedural Terminology code 29888
for the years 2015 and2016. The NYSASD is a database
developed by the Healthcare Cost and Utilization Proj-
ect (HCUP) that documents data from both ambulatory
surgery centers as well as outpatient services at
hospital-owned facilities.17 Patients undergoing revi-
sion ACLR as abstracted using International Classification
of Diseases, 9th and 10th Revision diagnosis codes for
mechanical complication due to graft failure (996.52/
T84.490S), concomitant ligamentous procedures,
cartilage restoration, or osteotomies, were excluded.

Variables and Outcome
Patient characteristics documented by the database

and included in feature selection included both de-
mographic and clinical variables. Feature selection for
model input is critical as poorly chosen features can
mislead the model predictions and irrelevant features
can increase the variance of model prediction due to
increased noise. The selection process involved both an
automated recursive feature elimination process per-
formed by the standardized modeling workflow to
exclude irrelevant features, as well as post-hoc assess-
ment of the selected features by the senior authors, and
additional features were added or removed based on
their clinical relevance. Demographic variables
included: age, sex, race/ethnicity, insurance status, the
quartile of annual income earned for the patient’s zip
code within that state, and community characteristics.
Clinical variables included: number of medical comor-
bidities, quarter of discharge, time spent in the oper-
ating room (OR time), anesthesia type (for patients who
were administered multiple anesthesia, this was hier-
archically determined in the NYSASD database as
general, regional, other, and local), Clinical Classifica-
tions Software diagnosis code, and concomitant pro-
cedures. Variables related to patient income level and
surgery location were included as well. The full list of
variables considered for feature selection is provided in
Table 1.
The primary outcome of interest was total charges.

Total charges were adjusted for inflation by converting
all costs to 2015 US dollars using the medical care-
specific consumer price index provided by the Bureau
of Labor Statistics, which adjusts for inflation specific to
medical care commodities and medical care services.
Inflation-adjusted charges were then normalized to z-
scores equal to one standard deviation above and below
the mean charge, and continuous charges were binned
into three categories: low, equal to one standard devi-
ation below the mean cost, and high, greater than one
standard deviation above the mean cost, and average,
within one standard deviation of the mean cost. The
decision boundaries for inflation-adjusted cost were
<$1,660.57, between $1,660.57 and $16,707.9, and
�$16,707.9.



Table 1. Baseline Characteristics of the Study Population,
n ¼ 7,311

Variable n (%), Median (IQR)

Demographics and clinical history
Age 31 (24-41)
Sex
Female 2,808 (38.4)
Male 4,503 (61.6)

Race
White 4,368 (59.7)
Black 604 (8.3)
Hispanic 616 (8.4)
Asian or Pacific Islander 317 (4.3)
Native American 34 (0.5)
Other 1,372 (18.8)

Hispanic
Not Hispanic 6,691 (91.5)
Hispanic, White 186 (2.5)
Hispanic, Black 41 (0.6)
Hispanic, other race 393 (5.4)

Insurance status
Medicare 46 (0.6)
Medicaid 954 (13.0)
Private insurance 5,094 (69.7)
Self-pay 424 (5.8)
No charge 4 (0.1)
Other 789 (10.8)

Discharge quarter
1 1,896 (25.9)
2 1,948 (26.6)
3 1,668 (22.8)
4 1,799 (24.6)

Number of chronic conditions 1 (0-1)
Operative characteristics

Anesthesia
MAC/IV sedation 642 (8.8)
Local anesthesia 335 (4.6)
General anesthesia 4,695 (64.2)
Regional anesthesia 1,367 (18.7)

OR time 118 (89-150)
Concomitant procedures
Meniscal repair 299 (4.1)
Menisectomy 1,349 (18.5)
Microfracture 90 (1.2)
Synovectomy 71 (1.0)
Graft from distance 15 (0.2)
Plica excision 50 (0.7)

Community characteristics
Median household income state

quartile
1 1,257 (17.2)
2 1,613 (22.1)
3 1,908 (26.1)
4 2,533 (34.6)

Median household income for patient
ZIP code

1 1,257 (17.2)
2 1,613 (22.1)
3 1,908 (26.1)
4 2,533 (34.6)

Patient location: CBSA
Non-CBSA 148 (2.0)
Micropolitan statistical area 354 (4.8)
Metropolitan statistical area 6,809 (93.1)

(continued)

Table 1. Continued

Variable n (%), Median (IQR)

Total charges
High 845 (11.6)
Average 6,278 (85.9)
Low 188 (2.6)

CBSA, core-based statistical area; IQR, interquartile range; IV,
intravenous; MAC, monitored anesthesia care; OR, operating room.
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Missing Data and Feature Selection
If a variable was considered important and missing in

more than 30% of the study population, complete case
analysis was performed after exclusion of incomplete
cases. However, features with missing data were
imputed to reduce bias and improve statistical power
where possible.18 Multiple imputation is a popular
method for handling missing data. In this approach,
missing value in the dataset is replaced with an imputed
value based on a statistical estimation; this process is
repeated randomly resulting in multiple “completed”
datasets, each consisting of observed and imputed
values. These are combined using a simple formulae
known as Rubin’s rule to give final estimates of target
variables.19

The missForest multiple imputation method was used
to impute remaining variables with less than 30%
missing data.20-22 Variables were assumed to be
missing-at-random based on epidemiologic conven-
tion,23,24 although multiple imputation is equipped to
handle both missing completely at random and missing
not at random data.25

Following imputation for missing data, feature selec-
tion was performed using recursive feature elimination
using a random forest algorithm. Recursive feature
elimination has been demonstrated to effectively select
an optimal number of input variables with low collin-
earity within high dimensional data.26,27

Modeling
Following selection, modeling was performed using

the selected features with each of the following candi-
date machine learning algorithms: 2 tree-based models:
random forest and extreme gradient boosted machine
(XGBoost); support vector machines (SVM) with radial
kernel; and elastic net penalized regression. Candidate
models were chosen to represent a diverse spectrum of
modeling techniques, and these algorithms have been
shown to develop robust predictive models for various
orthopedic conditions.6 Specifically, random forest and
XGBoost are derived from the family of decision-tree
based models, which have the advantages of
improved flexibility and reduced bias over generalized
linear models; however secondary to the same flexi-
bility is an inherent tendency for random forest to
overfit to the training data, with resultant increases in
variance. Boosting is a separate ensemble technique



Fig 1. Simplified graphic demonstrating the basic decision-
tree: from the root node (an example patient), the algo-
rithm takes the case through several branching points based
on the feature space until a leaf node is reached, where the
patient falls into a cohort that cannot be further split, and the
predicted probability and label are provided accordingly. (OR,
operating room.)
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that combines multiple weak classifiers to improve both
model bias and variance. A simplified sample decision
tree is provided in Figure 1. A dictionary of frequently
encountered terms and concepts in machine learning is
provided in Appendix Table 1, available at www.
arthroscopyjournal.org.18-22,28-36

Models were trained and internally validated via
0.632 bootstrapping with 1,000 resampled datasets. In
brief, model evaluation consists of reiterative partitions
of the complete dataset into train and test sets. For each
combination of train and test set, the model is trained
on the train set using 10-fold cross validation repeated 3
times. The performance of this model is then evaluated
on the respective test set, and no data points from the
training set was included in the test set. This sequence
of steps is then repeated for 999 more data partitions.
The model is thus trained and tested on all datapoints
available and evaluation metrics are summarized with
standard distributions of values. Bootstrapping has been
found to optimize evaluation of both model bias and
variance as well as improve overall performance
compared with internal validation through splitting the
data into training and holdout sets.28 The optimal
model was chosen based on area under the receiver
operating characteristics curve (AUROC). Models were
compared by discrimination, calibration, and Brier
score values.
Discriminative power was assessed via the AUROC.

Calibration of the model’s predicted probabilities as a
function of observed frequencies within the test popu-
lation are summarized in a calibration plot. An ideal
model is a straight line with intercept 0 and slope of 1
(i.e., perfect concordance of model predictions to
observed frequencies within the retrospective data).
Based on the works of Hosmer and Lemeshow, an
AUROC of 0.70 to 0.80 was considered acceptable and
an AUROC of 0.80 to 0.90 was considered excellent.29

Finally, the mean squared difference between pre-
dicted probabilities of models and observed outcomes,
known as the Brier score, was calculated for each
candidate model. The Brier score of candidate algorithm
is then assessed by comparison to the Brier score of the
null model, which is a model that assigns a class prob-
ability equal to the sample prevalence of the outcome
for every prediction.
Decision curve analysis was used to determine the

benefit of implementing the predictive algorithm in
practice. The curve plots net benefit against the pre-
dicted probabilities of each outcome and provides the
costebenefit ratio for every value of the predicted
probability. These ratios provide useful guidance for
individualized decision-making and accounts for vari-
ability in clinician and patients thresholds for what is
considered high-risk. In addition, decision curves for
the default strategies of changing management for no
patients or all patients are plotted for comparison
purposes. To further highlight the utility of the final
machine learning model over traditionally reported
logistic regression, decisionecurve analysis also was
performed comparing a learned multivariate logistic
regression model using the same parameters and
inputs.
Both global and local model interpretability and ex-

planations were provided. The global model variable
importance plot demonstrates variable importance
normalized against the input considered most contrib-
utory to the model predictive power. Local explanations
for model behavior were provided for transparency into
each individual output using local-interpretable model-
agnostic explanations. The explanation algorithm gen-
erates optimized fits based on an established distance
measure for the predicted probabilities of each outcome
label based on the values of both categorical and
continuous input, which can be visualized.30,31

http://www.arthroscopyjournal.org
http://www.arthroscopyjournal.org


Fig 2. (A) Variable importance plot of the random forest for patients with predicted charges <$1,660.57 and (B) those with
predicted charges >$1,6707.9. The variable importance plot demonstrates a global ranking of variables that were the most
contributory to improved model performance, importance is relative and provided as a dimensionless quantity. (IV, intravenous
care; MAC, monitored anesthesia care; OR, operating room.)
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Digital Application
The final model is incorporated into a web-based

digital application to illustrate possible future model
integration into clinical practice. It should be noted
that this digital application remains exclusively for
research and educational purposes until rigorous
external validation is conducted. In the digital appli-
cation, preoperative clinical data are entered to
generate outcome predictions with accompanying ex-
planations. All data analysis was performed in R 4.0.2
using RStudio, version 1.2.5001 (RStudio, Boston,
MA).

Results

Variable Breakdown
A total of 7,311 patients undergoing ALCR between

2015 and 2016 were included in the study. Demographic
characteristics of the cohort are as follows: the median
age was 31 (interquartile range [IQR] 24-41) years and
2808 (38.4%) patients were female. Variables with
missing data considered for modeling are as follows:
anesthesia type (1,004, 13.7%), discharge quarter
(10, 0.14%), sex (2, 0.03%), OR time (5, 0.07%),
median household income state quartile (76, 1.04%),
number of chronic comorbidities (1,695, 23.18%), His-
panic ethnicity (580, 7.93%), insurance status (5,
0.07%), median household income for patient zip code
(76, 1.04%), and core-based statistical area (18, 0.25%).
The full breakdown of variables available for feature
selection are provided in Table 1. The median number of
chronic comorbidities based on Clinical Classifications
Software definitions was 1 (IQR 0-1). Median charges
incurred were $6,830.7 (IQR $4,525.7-$1,1814.1).
Following discretization, there were 845 (11.6%) pa-
tients with total charges>1 standard deviation above the
median, 188 (2.6%) with total charges <1 standard
deviation below the median, and 6,278 (85.9%) within
one standard deviation of the median cost.

Recursive Feature Elimination
Following recursive feature elimination with the

random forest algorithm, the following variables were
important contributors to increased costs: usen of
regional and general anesthesia, concomitant menis-
cectomy or meniscal repair, increased OR time,
self-pay, micropolitan residence, increased zip code
median income, and increased number of chronic



Table 2. Model Performances on Internal Validation via 0.632 Bootstrap

Metric Accuracy AUROC Multinomial Brier Score

Elastic net 0.8614 (0.8613-0.8616) 0.799 (0.798-0.801) 0.224 (0.223-0.225)
Random forest 0.8783 (0.8782-0.8784) 0.848 (0.847-0.849) 0.208 (0.207-0.209)
XGBoost 0.8742 (0.8741-0.8742) 0.849 (0.847-0.850) 0.208 (0.207-0.209)
SVM 0.8688 (0.8687-0.8689) 0.783 (0.782-0.783) 0.231 (0.230-0.232)

AUROC, area under receiver operator curve SVM, support vector machines; XGBoost, extreme gradient boosted machine.
Null Brier: 1.27
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conditions. Full plots of global importance of the input
variables used for training are provided in Figure 2.

Model Performance
Following model tuning, the candidate model perfor-

mances on internal validation were compared. Accuracy
ranged from 0.861 (elastic net) to 0.878 (random forest)
and discrimination as measured by AUROC ranged from
0.783 (SVM) to 0.849 (XGBoost) (Table 2). The multi-
nomial Brier score ranged from 0.208 (XGBoost and
random forest) to 0.231 (SVM) (Table 2). The null model
Brier score was 1.27. Overall, the random forest
demonstrated the best performance on discrimination,
accuracy, and overall performance (Table 2). All models
were appropriately calibrated, and the calibration line for
the random forest algorithm had an intercept of e0.056
(95% confidence interval e0.059 to 0.052) and a slope
of 1.068 (95% confidence interval 1.064-1.072) (Fig 3).

Decision Curve Analysis
Decision curve analysis were used to compare the net

benefit derived from random forest algorithm against
Fig 3. (A) Calibration and (B) discrimination as illustrated by
(AUROC) between low-cost and high-cost patients of the random
intercept of 0 and a slope of 1.
the default practices of changing management for all
patients or no patients. A decision curve also was
plotted for a trained multivariate logistic regression
model trained using the same parameters and inputs for
comparison to traditional methods used in the ortho-
paedic literature. The random forest model trained on
the complete feature set demonstrated greater net
benefit compared to all 3 alternatives (Fig 4).

Explanations
An example of a patient-level explanation accompa-

nying predicted probability of the outcome of interest
generated by the digital application is provided in
Figure 5. This patient was assigned a probability of
0.967 for incurring cost within 1 standard deviation of
the mean charges of the cohort. Features that supported
this prediction included regional anesthesia, 0 chronic
conditions, OR time >105 minutes, and private insur-
ance. Features that did not support this prediction
included zip code median income within the first state
quartile, no concurrent meniscectomy or meniscal
repair, age <28 years, and zip code median income.
the area under the receiver operating characteristics curve
forest algorithm. The ideal calibration curve should have an



Fig 4. Decision curve analysis of comparing the complete
model with model predictions using only OR time. The
downsloping line marked by “all” plots the net benefit from
the default strategy of changing management for all patients,
while the horizontal line marked “none” represents the
strategy of changing management for none of the patients
(net benefit is zero at all thresholds). The “all” line slopes
down because at a threshold of zero, false positives are given
no weight relative to true positives; as the threshold increases,
false positives gain increased weight relative to true positives
and the net benefit for the default strategy of changing
management for all patients decreases. (OR, operating room.)
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The final model is incorporated into a web-based
digital application accessible on desktops, tablets, and
smartphones, and can be found at https://sportsmed.
shinyapps.io/ACLR_cost/. Default values are provided
as placeholders in the interface and the model requires
complete cases to generate predictions and
explanations.

Discussion
The principle finding of the current study was that the

best machine-learning algorithm developed and inter-
nally validated in a large population of primary ACLR
patients predicted cost and resource use with excellent
performance. The most important features determined
to influence postoperative cost and resource utilization
after ambulatory ACLR included (1) type of anesthesia
used, specifically general anesthesia, (2) OR time, and
(3) total number of medical comorbidities. The possible
integration of this algorithm into the clinical workflow to
predict total charges, pending rigorous prospective
external validation using geographically or temporally
distinct cohorts, was demonstrated using an open access
application. However, as noted, the application should
not be deployed to patients until the performance of
these algorithms is confirmed, and this application in its
current form remains only for demonstration and
education.
The model identified variables predictive of increased

charges following ACLR, including general anesthesia,
increased OR time, increased medical comorbidities,
self-pay or private insurance, concomitant procedures,
top and bottom quartile of income, and micropolitan
residence. General anesthesia has been associated with
a greater anesthetic cost in spine and hand surgery
when compared with regional anesthesia, likely due to
increased room time allotted for induction.37,38 In
addition, the increased number of comorbidities is a
modifiable risk factor for increased postoperative
charges. Isolated ACLR under regional anesthesia is the
procedure incurring minimal cost.
The current study developed and internally validated 4

unique machine-learning algorithms on 7,311 patients
who underwent ACLR, the best of which was the
random forest algorithm. This algorithm has a c-statistic
of 0.85, calibration intercept of e0.056, calibration slope
of 1.068, and Brier score of 0.208. These values corre-
spond to good discrimination, excellent calibration, and
excellent performance for predicting cost use. Previous
machine-learning studies in orthopaedics have devel-
oped algorithms with similar performance. Karnuta
et al.13 used artificial neural networks to predict inpa-
tient charges for total shoulder arthroplasty and reported
that the c-statistics of their models ranged between 0.75
and 0.89; however, this group did not evaluate their
algorithms with calibration and Brier score, which are
important metrics for demonstrating the precision, esti-
mations, and overall performance of algorithm pre-
dictions. Navarro et al.11 applied machine learning to a
large cohort of total knee arthroplasty patients from a
national database and found that a Bayesian model
incorporating age, race, sex, and comorbidities had
acceptable performance with c-statistics that ranged be-
tween 0.738 and 0.782. The quantitative metrics
describing the performance of the algorithm in the cur-
rent study are comparable to those predicting cost after
other orthopaedic procedures and contribute to its val-
idity as a patient risk stratification model for future use.
Value-based care is dependent on risk-adjustment

and appropriate resource allocation for patients un-
dergoing elective procedures with varying risk pro-
files.39 The economic risk inherent in these models
encourages surgeons to risk-stratify patients to optimize
metrics considered in reimbursement. Minimizing
excessive cost associated with an episode of care, such
as that incurred as a function of unplanned read-
missions or procedure-related complications, rewards
surgeons who devote effort to doing so.7 Therefore, it is

https://sportsmed.shinyapps.io/ACLR_cost/
https://sportsmed.shinyapps.io/ACLR_cost/


Fig 5. Example of individual patient-level explanation for random forest algorithm predictions. This patient had a predicted
probability of 96.7% of incurring cost within one standard deviation of the median cost, and features that supported this pre-
diction included the use of regional anesthesia, no chronic conditions, and OR time <106. (OR, operating room.)
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essential that predictive modeling used in this context is
dynamic and able to capture the nuances of individual
patient’s medical context, currently a limitation to
traditional models that rely on conforming to pre-
determined mathematical relationships. The current
study incorporated patient-specific data and used local
explanations to demonstrate the potential clinical utility
of machine learning. Specifically, our models explored
age, sex, type of admission, insurance status, procedural
factors, and number of chronic comorbidities, all of
which may influence value-based outcomes. If inte-
grated into clinical workflow, predictive models such as
the one developed in the present study can inform
preoperative planning and produce improvements in
outcomes and cost-savings. These efforts will be
important considerations for reimbursement arbitration
of preauthorization with insurance firms and adjusted
payment models for episodes of care.
We cannot currently recommend the use of the

clinical decision-making tool developed as an open-
source application; however, it is important to
demonstrate the power and potential clinical impact
that machine learning can confer in the current health
care environment. External validation of these algo-
rithms is imperative before the introduction of this
predictive model into clinical practice. Despite this,
transforming patient-specific risk factors for customized
prediction into an open-source interface capable of
being used in office-based settings holds numerous
benefits. The use of these tools will allow for providers
to graphically depict individualized predictions and
explanations to patients in real time. These applications
may also continue to improve and become more ac-
curate with additional data, further strengthening their
performance and value.

Limitations
This study is not without limitations. The current

machine learning algorithm was developed on a single,
large cohort of ambulatory ACLR patients. Although
robust about sample size, it represents a single cohort of
patients and may be influenced by both selection and
algorithm bias. Although the current study demon-
strated good predictive performance and
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responsiveness, the predictive ability may improve with
additional data, which included specific breakdown of
anesthesia for patients who received multiple types.
Another limitation of the current study is the inherent
black box phenomenon of machine learning, which
does not currently allow for quantitative labels of the
predictive strength of each variable in the model.
However, by using local agnostic model explanation
methodology, we can demonstrate the relative strength
of how each variable contributes to a patient’s overall
risk, as demonstrated by the open-source application. In
addition, the database consisted solely of patients un-
dergoing ACLR in an ambulatory setting in the state of
New York, which may limit generalizability of identified
cost-drivers to other practice settings. Although the vast
majority of ACLRs are now performed as outpatient
procedures, the costs associated with ACLRs that
require postoperative admission are not reflected in the
current study’s findings. External validation of this
model will provide further data regarding the general-
izability of the presently developed algorithm. Lastly,
although a variety of patient and procedure-related
factors were included in the machine learning algo-
rithms, certain nuances in other factors such as
personnel, facilities, implants, and graft type, were not
available to be incorporated. Pending a robust external
validation effort where these limitations are addressed,
this algorithm could effectively help predict patient
charges after ACLR and optimize resource allocation
based on preoperative demographics and comorbidities.
Conclusions
The random forest model predicted cost after ambu-

latory ACLR using a large, statewide database with
good performance. The top variables found to predict
increased charges were general anesthesia, OR time,
meniscal repair, self-pay insurance, patient neighbor-
hood characteristics, and number of chronic conditions.
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Appendix

Appendix 1. Detailed Machine-Learning Modeling
Workflow

Missing Data
Features with missing data were imputed using the

missForest multiple imputation method to reduce bias
and improve statistical robustness.18 If a variable was
considered important and missing in more than 30% of
the study population, complete case analysis was per-
formed after exclusion of incomplete cases. The miss
Forest multiple imputation method was used to impute
remaining variables with less than 30% missing
data,20-22 variables were assumed to be missing-at-
random based on epidemiological convention.23,24

Modeling
Following imputation formissing data, highly collinear

variables (defined as Spearman’s correlation coefficients
>0.5 or those considered clinically confounding) were
identified and excluded. Notably, we did not explicitly
excludeoutcomevariables of onemodel as input features
in othermodels, therefore, recurrencewas considered as
an input feature in the model for progression to surgery,
and whether patients underwent surgical treatment was
considered an input feature in the model for develop-
ment of symptomatic osteoarthritis.
The following 5 algorithms were developed on the

training data set: (1) Support vector machines, (2)
elastic net penalized logistic regression, (3) random
forest, (4) neural network, and (5) extreme gradient
boosting. These algorithms have been shown to
develop robust predictive models for various ortho-
pedic conditions.32 Each model was trained and vali-
dated via 0.632 bootstrapping with 1,000 resampled
datasets, also known as Monte Carlo cross-validation.
In brief, model evaluation consists of reiterative par-
titions of the complete dataset into train and test sets.
For each combination of train and test set, the model is
trained on the train set using 10-fold cross validation
repeated 3 times.33 The performance of this model is
Net benefit ¼ True positives� Cost : Benefit Ratio ðFalse PositivesÞ
Total number of Patients
then evaluated on the respective test set, and no data
points from the training set was included in the test
set. This sequence of steps is then repeated for 999
more data partitions. The model is thus trained and
tested on all datapoints available and evaluation met-
rics summarized with standard distributions of values.
Bootstrapping has been found to optimize both model
bias and variance and improve overall performance
compared to internal validation through splitting the
data into a partition of training and holdout sets.28 In
addition, a gradient-boosted ensemble model of the 5
candidate models was constructed and trained, simi-
larly through 0.623 bootstrapping. Advantages of
ensemble modeling include decreasing variance and
bias as well as improving predictions, whereas disad-
vantages include increased memory requirements and
reduced speed of implementation.34

Model Assessment
Model performance for each algorithm was assessed

for (1) discrimination by comparing area under the
receiver operating curve, with >0.80 defined as excel-
lent concordance based on the works of Hosmer and
Lemeshow29; (2) calibration by calibration curve plots,
intercept, and slope; (3) decision curve analysis; and (4)
Brier score, which is the mean squared difference be-
tween predicted probabilities of models and observed
outcomes. The Brier score for each algorithm was
compared with the null Brier score, which is calculated
by assigning each patient a probability equivalent to the
population prevalence of the predicted outcome.
Decision curve analysis was used to compare the

benefit of implementing the best-performing algorithm
to the logistic regression in practice.35 The curve plots net
benefit against the predicted probabilities of each
outcome and provide the costebenefit ratio for every
value of the predicted probability. These ratios provide
useful guidance for individualized decision-making and
accounts for variability in clinician and patients thresh-
olds for what is considered high-risk. In addition, deci-
sion curve for the default strategies of changing
management for no patients or all patients are plotted for
comparison purposes. Equations for the calculation of
the cost-benefit ratio and net benefit are as follows:

Cost : Benefit Ratio ¼ risk threshold probability

1� risk threshold probabilty
Both global and local model interpretability and expla-
nations were provided. The global model variable
importance plot demonstrates variable importance
normalized to the input considered most contributory to
the model predictive power. Local explanations for
model behavior were provided for transparency into
each individual output using local-interpretable model-



e2044 Y. LU ET AL.
agnostic explanations.30,31 The explanation algorithm
generates optimized fits based on an established distance
measure for the predicted probabilities of each outcome
label based on the values of both categorical and
continuous input, which can be plotted for
visualization.30,31



Appendix Table 1. Definition of Machine Learning Concepts and Methods Used

Term Definition

Multiple imputation A popular method for handling missing data, which is often a source of bias and error in model output. In
this approach, missing value in the dataset is replaced with an imputed value based on a statistical
estimation; this process is repeated randomly resulting in multiple “completed” datasets, each consisting
of observed and imputed values. These are combined utilizing a simple formulae known as Rubin’s rule
to give final estimates of target variables.19

Recursive feature
elimination

A feature selection algorithm that searches for an optimal subset of features by fitting a given machine
learning algorithm (random forest and naïve Bayes in our case) to the predicted outcome, ranking the
features by importance, and removing the least important features, this is done repeatedly, in a
“recursive” manner until a specified number of features remain or a threshold value of a designated
performance metric has been reached. The features can then be entered as inputs into the candidate
models for prediction of the desired outcome.36

0.632 Bootstrapping The method for training an algorithm based on the input features selected from recursive feature
elimination. Briefly, model evaluation consists of reiterative partitions of the complete dataset into train
and test sets. For each combination of train and test set, the model is trained on the train set using 10-
fold cross validation repeated 3 times. The performance of this model is then evaluated on the respective
test set, and no data points from the training set was included in the test set. This sequence of steps is
then repeated for 999 more data partitions.33 The model is thus trained and tested on all datapoints
available and evaluation metrics summarized with standard distributions of values.33 Bootstrapping has
been found to optimize both model bias and variance and improve overall performance compared to
internal validation through splitting the data into training and holdout sets

Extreme gradient boosting Algorithm of choice among stochastic gradient boosting machines, a family in which multiple weak
classifiers (a classifier that predicts marginally better than random) are combined (in a process known as
boosting) to produce an ensemble classifier with a superior generalized misclassification error rate.36

Random forest Algorithm of choice among tree-based algorithms, an ensemble of independent trees, each generating
predictions for a new sample chosen from the training data, and whose predictions are averaged to give
the forest’s prediction. The ensembling process is distinct in principle from gradient boosting.36

Neural network A nonlinear regression technique based on one or more hidden layers consisting of linear combinations of
some or all predictor variables, through which the outcome is modeled, these hidden layers are not
estimated in a hierarchical fashion. The structure of the network mimic neurons in a brain.36

Elastic-net penalized
logistic regression

A penalized linear regression based on a function to minimize the squared errors of the outputs, belongs to
the family of penalized linear models including ridge regression and the lasso.36

Support vector machines A supervised learning algorithm that performs classification problems by representation of each data point
as a point in abstract space and defines a plane known as a hyperplane that separates the points into
distinct binary classes, with maximal margin. Hyperplanes can be linear or nonlinear, as we have
implemented in the presented analysis, using a circular kernel.36

Area under the receiver
operating characteristic
curve

A common metric to model performance, utilizing the receiver operating characteristics curve, which plots
calculated sensitivity and specificity given the class probability of an event occurring (instead of using a
50:50 probability). The area under the ROC curve classically ranges from 0.5 to 1, with 0.5 being a model
that is no better than random and 1 being a model that is completely accurate in assigning class labels.36

Calibration The ability of a model to output probability estimates that reflect the true event rate in repeat sampling
from the population. An ideal model is a straight line with intercept 0 and slope of 1 (i.e., perfect
concordance of model predictions to observed frequencies within the data).
A model can correctly assign a label, as reflected by the area under the receiver operating characteristic,
yet it can output class probabilities of a binary outcome that is dramatically different from its true event
rate in the population, such a model is not well calibrated.36

Brier’s Score The mean squared difference between predicted probabilities of models and observed outcomes in the
testing data. The Brier score can generally range from 0 for a perfect model to 0.25 for a noninformative
model.36

Decision curve analysis A measure of clinical utility whereby a clinical “net benefit” for one or more prediction models or
diagnostic tests is calculated in comparison to default strategies of treating all or no patients. This value is
calculated based on a set threshold, defined as the minimum probability of disease at which further
intervention would be warranted. The decision curve is constructed by plotting the ranges of threshold
values against the net benefit yielded by the model at each value; as such, a model curve that is farther
from the bottom left corner yields more net benefit than one that is closer.35
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