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Active surveillance of rare infectious diseases requires diagnostic tests to have high

specificity, otherwise the false positive results can outnumber the true cases detected,

leading to low positive predictive values. Where a positive result can have economic

consequences, such as the cull of a bovine Tuberculosis (bTB) positive herd, establishing

a high specificity becomes particularly important. When evaluating new diagnostic

tests against a “gold standard” reference test with assumed perfect sensitivity and

specificity, calculation of sample sizes are commonly done using a normal approximation

to the binomial distribution, although this approach can be misleading. As the expected

specificity of the evaluated diagnostic test nears 100%, the errors arising from this

approximation are appreciable. Alternatively, it is straightforward to calculate the sample

size by using more appropriate confidence intervals, while precisely quantifying the

effect of sampling variability using the binomial distribution. However, regardless of the

approach, if specificity is high the sample size required becomes large, and the gold

standard may be prohibitively costly. An alternative to a gold standard test is to use at

least two imperfect, conditionally independent tests, and to analyse the results using a

variant of the approach initially proposed by Hui and Walter. We show how this method

performs for tests with near-perfect specificity; in particular we show that the sample

size required to deliver useful bounds on the precision becomes very large for both

approaches. We illustrate these concepts using simulation studies carried out to support

the design of a trial of a bTB vaccine and a diagnostic that is able to “Differentiate Infected

and Vaccinated Animals” (DIVA). Both test characteristics and the efficacy of the bTB

vaccine will influence the sample size required for the study. We propose an improved

methodology using a two stage approach to evaluating diagnostic tests in low disease

prevalence populations. By combining an initial gold standard pilot study with a larger

study analyzed using a Hui–Walter approach, the sample size required for each study

can be reduced and the precision of the specificity estimate improved, since information

from both studies is combined.
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1. INTRODUCTION

Diagnostic testing plays a crucial role in the surveillance and

detection of infectious diseases. In its simplest form, we take

a sample from an individual, and use our test, for example
an antibody test, to say whether the individual is infected or

not. As all tests are imperfect, knowing the behavior of the
diagnostic tests used for surveillance is fundamental in order to
evaluate collected surveillance data; of particular importance are
the reliability and error rates of the tests used.

Classically, diagnostic tests have been treated as having a
binary response, producing either a positive or a negative result.
The diagnostic test gives a result that can be classified as “positive”
if the individual is infected, and a result that can be classified
as “negative” if the individual is not infected. Denote by D+

(D−) an infected (non-infected) individual, and t+ (t−) a positive
(negative) test result. The probability that a test of an infected
animal produces a positive result is commonly referred to as the
sensitivity of the test, Se = P(t+|D+), and the probability that
a test of a non-infected animal produces a negative result, Sp =

P(t−|D−), is commonly referred to as the specificity of the test.
This terminology was first introduced in 1961 by Thorner and
Remein (1) in a US Department of Health publication. Together,
sensitivity and specificity fully describe the expected behavior of a
binary test, when used in a population and on an infection where
both sensitivity and specificity can be assumed to be the same for
all individuals.

In order to estimate the specificity of a test, the ideal situation
is to test a population that is known to be free from disease,
and produce statistical estimates and confidence intervals of the
specificity from the number of negative test results relative to
the number of individuals in the population. Similarly, in order
to evaluate the sensitivity of a test, the ideal situation is to test
a population where all individuals are known to be diseased,
and estimate the sensitivity from the proportion of positive test
results. However, such an ideal situation is rare, as it requires
use of either a perfect test to pre-screen the individuals, or a
controlled infection study. It is also problematic that, in the latter
situation, results may not be representative of the test responses
likely to be seen in field use.

A somewhat more realistic approach is to test a population
with unknown prevalence with two tests; one reference test where
the sensitivity and specificity is already known, and another test
that is being evaluated. In such a situation, it is possible to
estimate the unknown sensitivity and specificity of the new test.
However, this creates a “Catch-22” situation, as the properties of
the reference test will have needed to have been evaluated at some
point in the past.

A statistical method for estimating the properties of two
diagnostic tests at once was pioneered by Hui and Walter (2). In
this seminal paper, they showed that it is possible to estimate the
unknown sensitivity and specificity of two different diagnostic
tests simultaneously, if both tests are used on all individuals in
two populations with different, potentially unknown, prevalences
of infection. The approach used in their paper is a variant
of “Latent Class Analysis,” a widely used approach in modern
statistical science (3).

In the UK and elsewhere, bovine tuberculosis (bTB) is of
political, public health and economic interest (4). Eradication
using a test-and-cull policy made good progress during the
1960s, 70s, and the early 1980s. However, certain areas of
England and Wales still have ongoing issues with high levels of
infection in cattle herds (5, 6). One possible response to this
situation would be to vaccinate cattle against bTB, a strategy
first suggested in the 1940s (7). However, in order subsequently
to demonstrate freedom from disease it would be necessary to
develop and validate a diagnostic test able to Distinguish Infected
and Vaccinated Animals (DIVA). Such a DIVA test has been
developed at the UK Animal and Plant Health Agency (APHA)
(8) using two independent panels of antigens.We assume that the
results from these two panels will be conditionally independent.
This test has not been fully evaluated in terms of its sensitivity
and specificity. These properties are important in determining
whether or not the use of a test is viable in practice. In order for
this test to be cost effective in use in the UK situation, the work of
Conlan et al. (9) indicates that the specificity needs to be as high
as 99.85%.

Here, we develop the latent class approach in a situation
where a vaccine can be expected to interfere with diagnostic
test performance. The assumptions are that two populations
with different prevalences of disease are available, that each
population is divided into one known vaccinated and one
known unvaccinated subpopulation, and two diagnostic tests
are used on all four sub-populations. We allow sensitivity and
specificity to vary for vaccinated and unvaccinated individuals.
It is demonstrated that it is possible to extend the latent class
framework to provide an estimate of the unknown vaccine
efficacy in addition to the unknown parameters (sensitivity and
specificity) for both tests, and the prevalences of disease in the
populations. The new model framework is applied to a trial of a
DIVA test for bTB, being used to estimate the effect of study size
on estimates of test sensitivity and specificity.

2. METHODS

2.1. Comparison of Methods to Calculate
the Sample Size for Gold-Standard
Diagnostic Test Evaluation
If there exists a test that has a one-to-one relationship with reality,
i.e., if the test results indicate that an individual is positive, then
that animal is truly infected, and conversely that if the results
indicate that the individual is negative then it truly is uninfected,
then that test is referred to as a “gold standard” test.

Determining test sensitivity and specificity in the presence of
a gold standard test is relatively simple. Using the gold standard
test, identify a group of positive animals and a group of negative
animals. The proportion of the positive animals that test positive
is then our estimate of the sensitivity, the proportion of negative
animals that test negative is the estimate of specificity. If the event
that an animal is tested can be thought of as a random sample
from the population of all possible animals with the same disease
status (either negative or positive), and that we can assume that
across each population all animals have the same probability of
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being tested as positive, then the number of test positives from
a sample of animals will be distributed as a binomial random
variable.

Formal assessment of test properties can be formulated as an
assessment of whether the confidence intervals of the sensitivity
and specificity contain values which users would regard as
unacceptable. Given assumptions about the true sensitivity
and specificity, in turn, such assessments can be quantified
as questions related to the width of the estimated confidence
interval. Where estimators are consistent, the width of the
confidence interval will reduce as the sample size increases, and
studies can be powered so as to give rise to estimates with the
required precision. In practice, different approaches can be taken
to the calculation of the confidence interval around a binomial
proportion. Provided the sample size is sufficiently large, it
is common to assume that the proportion is distributed as a
Gaussian random variable with mean p̂ and variance p̂(1− p̂)/n,
where p̂ = y/n, the ratio of the number of successes y, to the total
number of trials n, and to use the Normal approximation to the
binomial to construct a 95% confidence interval (CI). However,
whilst this approximation works well when p̂ is around 0.5, it
will be poor when p̂ is close to zero or one. Alternative methods
exist to estimate confidence intervals in situations where the
Normal approximation is not valid. For example, in a Bayesian
framework we can examine the posterior of the appropriate beta
distribution to provide estimates of median, mean and mode
for the proportion, along with credibility intervals. However,
a straightforward approach to implement, with conservative
coverage properties, is the Clopper–Pearson “exact” method
described in Collett (10). If we denote the lower and upper limits
of the 100(1 − α)% CI as pl and pu, then these will be consistent
with the following equalities:

y
∑

j=0

(

n

j

)

p
j
u(1− pu)

n−j =
α

2

n
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(

n
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n−j =
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2
,

which can be solved to give:

pl(y, n) =
y

y+ (n− y+ 1)F2(n−y+1),2y(α/2)

pu(y, n) =
y+ 1

y+ 1+ (n− y)/F2(y+1),2(n−y)(α/2)
,

where Fa,b(p) is the upper (100p)% point of the F distribution
with a, b degrees of freedom.

The approach taken to calculate sample sizes should be
consistent with the approach which it is anticipated will be used
to calculate confidence intervals. A commonly used approach is
presented in Thrusfield (11), where the equation for the CI based
on the normal approximation is inverted to provide an estimate
of the n required to achieve a precision of ±ψ%. We will refer
to this as the “Approximate” method. This approach neglects
the sampling variability intrinsic to all experiments or studies,

assuming that the observed sensitivity or specificity will exactly
match the true (assumed) value p. In making this assumption,
this approach is guaranteed to underestimate the sample sizes
required to achieve any specified precision. It is straightforward
to develop an approach to sample size calculation which makes
use of an exact confidence interval, and which also allows for
sampling error. For any given n (number of animals) we identify
the set of possible observed values

Y = {y : pu − pl < 2ψ} ∩ {y : p ∈ (pu, pl)},

i.e., the set of outcomes for which, on average, the estimated
confidence interval will have a precision no worse than ±ψ%,
and will contain the assumed true value. Calculating

P(Success; n) =
∑

y∈Y

(

n

y

)

py(1− p)n−y,

and repeating for increasing values of n, we seek to identify the
smallest value of n for which P(Success; n) ≥ a specified quantity,
which we will set equal to 80%. This is the probability of “success”
in observing a sufficiently precise confidence interval. We will
refer to this as the “Exact” method.

2.2. An Adaption of the Hui–Walter
Paradigm for DIVA Tests
If we have two diagnostic tests where the probability of a positive
result for one test carried out on a positive animal is independent
of the probability of the animal being positive on the second
test, and both probabilities depend only on the sensitivity of the
relevant test, then by using the laws of independent probabilities
the probability that a positive animal is observed as positive
to both, test 1 only, test 2 only or neither test is Se1 × Se2,
Se1×(1−Se2), (1−Se1)×Se2 and (1−Se1)×(1−Se2), respectively.

Within a single population we can then infer the probability
that an animal of unknown status has one of the four possible
test outcomes if we use the population prevalence. This allows us
to define a set of equations for the probability of the four possible
outcomes as follows:

Pr(++ |pop1) = Se1 × Se2 × p1 + (1− Sp1)× (1− Sp2)

× (1− p1)

Pr(+− |pop1) = Se1 × (1− Se2)× p1 + (1− Sp1)× Sp2

× (1− p1)

Pr(−+ |pop1) = (1− Se1)× Se2 × p1 + Sp1 × (1− Sp2)

× (1− p1)

Pr(−− |pop1) = (1− Se1)× (1− Se2)× p1 + Sp1 × Sp2

× (1− p1).

In these equations, Pr(++|pop1) is the probability that both tests
are positive for an animal in population 1, Se1 is the sensitivity of
test 1, Sp1 is the specificity of test 1, p1 is the proportion of animals
in population 1 that are truly positive, and other parameters can
be defined by analogy. Hence, the numbers positive to both tests,
positive to the first only, to the second test only and positive
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to neither test will follow a multinomial distribution with these
probabilities. Given that we know the total numbers of animals
tested within the population, the test result observations from
each population provide us with three degrees of freedom for
estimation.

If we have a second, independent population we can construct
similar probabilities for population 2. With these quantities
we can infer estimates for all sensitivities, specificities and
prevalences (six unknowns in total). In order to ensure that
the system is identifiable, that is that a unique solution to the
equations is possible, it is necessary to ensure that the prevalence
in the two populations is different, i.e., have a high prevalence and
a low prevalence population.

We have extended this approach, originally described by
Hui and Walter (2), to account for vaccination. Each test now
has two associated sensitivities and two specificities: those for
vaccinated animals and those for unvaccinated. In order to
solve the new equations, and to be able to infer estimates
for the entire set of four sensitivities and four specificities we
require four populations, giving rise to 12 independent equations.
These can be produced by analogy, by taking any three of
the equations above and substituting pop2, pop3, or pop4 for
pop1, and Se3, Se4, Sp3, or Sp4 for Se1, Se2, Sp1, and Sp2
appropriately. This is simplified since two of the populations are
now vaccinated, and two unvaccinated, and this status is known.
If the prevalences in the multiple underlying populations are
sufficiently different, then we can calculate estimates of all four
sensitivities, four specificities, and four prevalences. Via a slight
re-parameterization and by making an additional assumption
of equal vaccine efficacy across the underlying populations, we
can replace the need for four prevalence parameters with two
prevalence parameters and a single value for the vaccine efficacy.
We set p1 = e × p2 and p3 = e × p4, where p1 is the
prevalence in the vaccinated, high prevalence population, p2 the
prevalence in the unvaccinated, high prevalence population, and
e the reduction in prevalence due to vaccination: which we define
as the vaccine efficacy. The prevalences p3 and p4 are defined
similarly in the low prevalence population. This approach has
the advantage of allowing a simple estimate of vaccine efficacy
also to be estimated. However, it should be noted that although
this estimate has epidemiological interpretation it is neither the
focus of this method, nor is it the usual value taken as the vaccine
efficacy.

2.3. Data Simulation and Analysis
Data were simulated in R (12) and Bayesian-Markov Chain
Monte Carlo (MCMC) analyses were performed in JAGS (13).
Parameter values are given in Table 1. In some analyses, which
we refer to as latent class analyses, a relatively small number of
animals are tested by both the gold standard and DIVA tests,
i.e., the true animal status is known. In analyses that we refer to
as combined analyses a larger number of animals are tested by
both tests. The results from this part of the simulation are used to
provide priors to the analysis in the absence of the gold standard
test, i.e., the majority of animals.

For each simulation, data for each combined test result in
each population are simulated from a multinomial distribution

TABLE 1 | Table of the various parameters, and the values used in the simulation

model.

Parameter Values used

Number of simulations per scenario 1,000

Total number of animals sampled 10,000–100,000 in steps of

10,000

Ratio of animals in four prevalence-vaccine groups 1:1:1:1

Prevalence in low prevalence population 0.05

Prevalence in high prevalence population 0.20

Sensitivity of both tests in all population 0.75

Specificity of both tests in all populations 0.999 or 0.995

Vaccine efficacy in all populations 0.6

Number of positive animals identified using a gold

standard test

30 or 300

Number of negative animals identified using a gold

standard test

100 or 1,000

Where more than one value is given all possible combinations with all other parameter

values were simulated.

with probabilities as specified in section 2.2 above. The resulting
pseudo-data are saved to a file and passed to JAGS along with
a description of the likelihood in the JAGS language which uses
the same equations to infer parameters from the simulated data.
We use minimally informative, uniform priors for all parameters,
except that the results of the simulated gold standard comparison
are used to produce beta distributions for the test sensitivities and
specificities. That is, if the simulation of 1,000 negative animals
results in y positive tests from the DIVA test, then the prior used
for the test specificity would be a beta(100-y+1, y+1) distribution.
Following burn-in on five chains, each was sampled for 1,000
iterations which were combined to produce a 5,000 iteration
posterior sample.

In this application we are not particularly interested in the
estimates for prevalence or vaccine efficacy, but rather in the
sensitivity and specificity of the two tests. For these we construct
95% CIs by selecting the 2.5th and 97.5th percentiles, that is, the
values ranked 125th and 4,875th of the 5,000 iterations used to
define the posterior distribution.

If two populations with different prevalences are not available,
then it is possible to use the standard Hui–Walter model,
and consider vaccinated animals as a separate population to
unvaccinated animals, with a lower prevalence. However, in such
an analysis it is necessary to assume that the sensitivity and
specificity are the same for vaccinated and unvaccinated animals,
which may not be a reasonable assumption in practice.

Although no formal definition of power can be formulated
within a Bayesian framework, we can extend the framework
already presented for the exact method. In this application, we
are particularly interested in the test specificity. In our case we
assume that although both tests are used in the test evaluation,
an outcome where only one is confirmed as having a sufficiently
high specificity will be satisfactory. We want any study to be able
to determine that the specificity of a single test is>0.9985, as that
is the minimum value predicted by Conlan et al. (9) as being
financially viable in practice. We therefore define power as the
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proportion of simulated data sets for a given set of parameters
for which the 2.5th percentile of the posterior distribution for the
specificity for at least one of the tests is at least 0.9985.

2.4. Application to bTB DIVA Test
Evaluation
For bTB there is no true gold standard test. It is generally accepted
that post-mortem identification of lesions typical of infection,
and subsequent identification of the organism, is proof that an
animal is infected. However, the converse cannot be said to be
true: early in infection lesions may be small or non-existent, and
even late in infection lesions may be small and few in number
in some individuals. Hence, genuinely infected animals may be
misclassified (14). In addition, although positive animals are truly
positive, they do not represent the whole population of positive
animals; there will be a sub-population of positive animals with
either lesions too small to find, or no lesions at all. Using a
latent class approach allows us to determine test sensitivity and
specificity that are relevant to the whole population, not just those
that are identified as positive or negative by a good but imperfect
test.

As described in the previous section, in the absence of a gold
standard, we propose to make use of a two-stage approach. In
the first stage a small number of animals are selected for testing
with the almost perfect test, and the DIVA test. Thereafter we use
a latent class approach on animals from two groups: one group
being composed of animals selected as being very likely to be
uninfected with bTB, the other group being composed of animals
that are very likely to have bTB. The selection process for these
animals can be thought of as implicitly defining a specificity and
sensitivity:

1. A group of putative negative animals. These will be sampled
from an area recognized as bTB free. They will have been
declared single intradermal comparative tuberculin test (SICTT)
negative within the previous 12 months, and they will come
from a farm with no animals bought in since that previous
test. This selection process for negative animals itself has a
specificity of well over 99%. For example, if we consider Scotland,
between 2008 and 2013, the percentage of tested farms that
have had movement restrictions put in place is consistently at
or below 2%1,2. We can use this figure as an estimate of the
probability that we might inadvertently select animals from a
farm undergoing a breakdown. Note that this probability is likely
to be an overestimate, since the 2% relates to herds that have not
undergone testing during the previous 4 years, whereas we would
select animals from farms tested in the previous 12 months.
Pooling over farms that experienced a breakdown in bTB status
between 2002 and 2008, 1.2% of animals were infected with
bTB [59 out of 4,958 animals2]. By combining the probability
of selecting a herd undergoing a breakdown with the probability
of selecting a positive animal from a breakdown-herd, it follows

1bovinetb-scotland-12nov14.xls; 2014. Available online at: https://www.gov.uk/

government/uploads/system/uploads/attachment_data/file/372959/bovinetb-

scotland-12nov14.xls
2Risk-based Surveillance for Tuberculosis in Cattle (bTB) UGW/003/10. (2011).

Available online at: http://www.gov.scot/resource/doc/351730/0118086.pdf

that buying animals randomly from a number of previously-
bTB-free herds might be expected to result ∼0.02% of animals
being bTB-positive i.e., classing them as negative on the basis
of the herd history has an implicit specificity of 99.98%. This is
based on sampling a large number of farms, each contributing
a small number of animals, resulting in an estimate which
will not be overly affected by overdispersion arising from the
specific situations on the contributing farms or which needs to
be adjusted for the associations we might expect to see between
disease status and herd size or farm-specific management factors.
In practice, further post mortem examination would be used to
demonstrate a lack of lesions in these animals, increasing this
notional specificity further. Further constraints could be applied
to increase the notional specificity of the putatively negative
animals if it was thought appropriate (e.g., sourcing only from
closed herds).

2. A group of definitively positive animals. These would be
SICTT positive, and subsequent to testing with the DIVA test
would be subjected to post mortem examination. Only the results
for those animals with typical lesions identified on post mortem
and subsequent identification of the causal organism would be
retained for calculating the sensitivity. This will ensure that the
sensitivity is only calculated using animals that are very likely
to have had bTB, and the implicit “gold standard” is assumed
therefore to be close to 100%.

3. RESULTS

3.1. Comparison of Calculated Sample
Sizes
If we assume that we have a gold standard test then Tables 2, 3
give the numbers of samples needed to determine the sensitivity
or specificity of a test to a given precision at 80% power, using
both the “Approximate” and “Exact” methods.

Given our uncertainty about the true sensitivity of the test,
there is actually little or no scientifically or logistically relevant
difference in the two sets of sample size figures for estimating
sensitivity. However, because the assumed values of the specificity
are very close to 100%, there are appreciable differences in the
estimates arising from the two methods. In this situation, we
would recommend use of the exact method.

Evidence from APHA suggests that the DIVA test can have a
cutoff set that results in a specificity of 0.999 and a sensitivity of
0.733 (8). From Table 2 we can see that if the sensitivity of the

TABLE 2 | Table of the numbers of samples needed to determine sensitivity to

specified precisions with 95% confidence and 80% power in the presence of a

gold standard test.

Assumed

sensitivity (%)

Precision

(%)

Number required

(approx. method)

Number required

(exact method)

70 ±5 323 353

70 ±1 8,067 8,230

75 ±5 289 320

75 ±1 7,203 7,382
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proposed DIVA test is ∼75% then use of 300 positive animals
will probably allow us to say that the true sensitivity lies between
70 and 80%. From Table 2, if the true specificity is 99.9% then
we would require about 1,000 samples to determine that the
specificity lies between 99.4 and 100% with a 95% confidence.
If we are required to demonstrate cost effectiveness in the UK
situation then the previously mentioned threshold of 99.85%
applies (9). To demonstrate this using the equations given for the
exact method above, we can calculate that we would need at least
20,000 samples. Note that these samples must be independent: it
is not appropriate to test multiple samples from a single animal,
as these are potentially highly correlated, unless separated widely
in time.

3.2. Results From No-Gold-Standard
Analysis
In the absence of a gold standard test, the latent class analysis is
essential. If we have two populations, of equal size, but dissimilar
prevalences, then the precision to which we can determine the
test sensitivity for varying total population size is detailed in
Figure 1 and for specificity in Figure 2. As can be seen, with

TABLE 3 | Table of the numbers of samples needed to determine specificity to

specified precisions with 95% confidence and 80% power in the presence of a

gold standard test.

Assumed

specificity (%)

Precision

(%)

Number required

(approx. method)

Number required

(exact method)

99.5 ±0.5 765 1,226

99.5 ±0.2 4,778 5,974

99.85 ±0.5 231 696

99.85 ±0.2 1,439 2,508

50,000 samples we expect to be able to determine a test with
sensitivity of 70% to a precision of about ±5% and a test with
specificity of 99.9% with precision of about±0.4%.

3.3. Combined Approach
Although not a true gold standard, post mortem identification
of lesions with subsequent identification of the causal agent has
100% specificity. If we assume that it represents a perfect test we
can use the results from the post mortem examination to inform
our priors for the latent class analysis. These results, assuming a
test with sensitivity of 70% and specificity of 99.9% are detailed in
Figure 3 for the sensitivity and Figure 4 for the specificity.

These figures show the median and 95% credible interval for
the posterior distribution, and present the distribution of the
median or upper and lower limits of the 95% CI across the 1,000
data sample simulations/analyses.

The plots produced from the simulated analyses summarize
two important aspects of the effect of increasing sample size.
Looking at the distance between the upper and lower limits of
the confidence interval, when comparing median to median, first
quartile to third quartile, these decrease with increased sample
size. This result demonstrates that the larger sample size does
tend to reduce the size of the resulting confidence interval for the
given sensitivity. Also, looking at the width of the box plots for
all the upper limits and all the lower limits for different sample
sizes, it is notable that the box plot width tends to shrink with
larger samples. This result demonstrates that the uncertainty in
the values taken by the confidence limits will also tend to reduce
(i.e., results are likely to be more consistent). Hence, the extra
information in the combined analysis both decreases the range of
the confidence interval somewhat, and decreases the uncertainty
in the observed values of the confidence limits. However, in a
study with 300 positive animals and 1,000 negative animals the
benefit of a combined analysis would be small. It is likely that in

FIGURE 1 | The effect of total sample size on the estimates of the upper and lower 95% confidence limit for a latent class analysis of sensitivity, true value 0.70. The

box and whisker plots denote the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets. Clear box and

whisker plots represent the upper confidence limit, gray the lower.

Frontiers in Veterinary Science | www.frontiersin.org 6 August 2018 | Volume 5 | Article 192

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Rydevik et al. bTB DIVA Test Evaluation

FIGURE 2 | The effect of total sample size on the estimates of the upper and lower 95% confidence limit for a Hui–Walter latent class analysis of specificity, true value

0.999. The box and whisker plots denote the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets.

Clear box and whisker plots represent the upper confidence limit, gray the lower. The red line represents a specificity of 0.9985: the limit for economic equivalence to

the present situation, according to the modeling from Conlan et al. (9). See text for details.

FIGURE 3 | The effect of total sample size on the estimates of the upper and lower 95% confidence limit for a combined analysis of sensitivity, true value 0.70. The

box and whisker plots denote the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets. Clear box and

whisker plots represent the upper confidence limit, gray the lower.

any trial some animals, both positive and negative, will be subject
to post mortem examination and bacterial isolation. Inclusion
of these individuals’ true status would improve the estimates
from the combined analysis. However, given that the number of
such animals is likely to be unknown a priori, their effect is not
included in these calculations.

From Figures 2, 4 it is clear that even with 50,000 samples we
would not be able to say with 95% certainty that the specificity
is above the 0.9985 limit based on the work of Conlan et al. (9).
The results for the lower limit of the 95% CI for these examples
is summarized in Table 4. In the combined analysis the precision

is greater than the analysis using the latent class method alone,
as evidenced by the lower limit of the 95% CI being closer at
all quantiles to the simulation value of 0.999. In addition, the
uncertainty in the estimate of the lower limit of the 95% CI is
lower when using the combined approach rather than the latent
class alone, as evidenced by the decrease in it’s 90% range. As the
sample size increases these effects decrease because the posterior
estimate becomes dominated by the new data, rather than the
priors derived from the gold standard results.

These calculations are made on the basis of assuming a true
specificity of 0.999, the figure suggested as the true value by
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FIGURE 4 | The effect of total sample size on the estimates of the upper and lower 95% confidence limit for a combined analysis of specificity, true value 0.999. The

box and whisker plots denote the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets. Clear box and

whisker plots represent the upper confidence limit, gray the lower. The red line represents a specificity of 0.9985: the limit for economic equivalence to the present

situation, according to the modeling from Conlan et al. (9).

TABLE 4 | Table of the 90%CI for the lower 95% credible limit for the test

specificity when using the latent class analysis alone, and when using the

combined method outlined in the text, true value 0.999.

Sample size Latent class Combined method

1,000 0.9886–0.9945 0.9924–0.9966

2,000 0.9915–0.9958 0.9938–0.9971

3,000 0.9927–0.9965 0.9944–0.9974

4,000 0.9934–0.9968 0.9946–0.9976

5,000 0.9938–0.9971 0.9951–0.9977

6,000 0.9941–0.9972 0.9953–0.9978

7,000 0.9945–0.9973 0.9954–0.9979

8,000 0.9949–0.9974 0.9956–0.9980

9,000 0.9951–0.9975 0.9957–0.9980

10,000 0.9953–0.9977 0.9959–0.9980

The combined method gives greater precision: on average it is nearer the true value. There

is also less uncertainty in the estimate of the lower limit of credible interval, since the range

in the table is smaller.

APHA (8). If we assume the true value to be the slightly higher
value of 0.9995 then the results are presented in Figure 5 show
that even then we have only a small chance of saying with 95%
certainty that the real value is indeed above the critical threshold
of 0.9985.

However, is this a reasonable approach? Based on their
simulationmodel of bTB in the UK, Conlan et al. (9) state that the
true value for the DIVA specificity has to be at or above 0.9985 for
there to be no associated increase in the number of culled animals
arising from the use of the DIVA test. If the true specificity was in
fact 0.9985 then, based on the model results, this test would meet
the criterion for introduction. However, a statistical analysis of
the data produced by such a test is likely not to be able to support

a claim, since randomness in the results and the subsequent
uncertainty in the estimates derived from statistical analysis of
the results are likely to give rise to a 95% CI that includes values
less than the target value. Such an outcome will lead to us being
unable to say with reasonable certainty that the true value is
not <0.9985%. A more useful approach is to demonstrate non-
inferiority (15), information about which, in the current context,
can be thought of as being summarized by the distribution of
estimates of the lower credibility interval point. It is implicit in
this approach that the true value of the specificity will be greater
than the target. Hence, in Figure 6, we present the distribution
of the median estimates for the specificity where the true value is
0.999. With 50,000 samples we can say that over 50% of the time
we would expect a median in excess of 0.998, and from Figure 5

a lower 95% CI limit>0.9965.

4. DISCUSSION

The sensitivity and specificity of a test are arguably the most
important measures of the properties and utility of a diagnostic
test. However, when these values are quoted it is rare for
the precision of the estimates also to be presented. We have
demonstrated here that establishing a reasonable precision,
particularly when the sensitivity or specificity is high, requires a
large sample size, and hence appreciable effort and cost.

The sample size required to estimate sensitivity and specificity
to a specific precision is smaller when a gold standard test is
available, since the greater knowledge of the properties of the
populations gives rise to parameter estimates with lower levels of
uncertainty. In the absence of a gold standard, the true status of
an individual is unknown and so a latent class analysis is required
to obtain estimates of sensitivity and specificity. A combined
approach, with a pilot study using a gold standard followed
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FIGURE 5 | The effect of total sample size on the estimates of the upper and lower 95% confidence limit for a combined analysis of specificity, true value 0.9995. The

box and whisker plots denote the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets. Clear box and

whisker plots represent the upper confidence limit, gray the lower. The red line represents a specificity of 0.9985: the limit for economic equivalence to the present

situation, according to the modeling from Conlan et al. (9).

FIGURE 6 | The effect of total sample size on the estimates of the median for a combined analysis of sensitivity, true value 0.999. The box and whisker plots denote

the smallest, first quartile, median, third quartile, and maximum values obtained by analysing 1,000 simulated data sets.

by a no-gold standard Hui–Walter type study can improve the
precision of the latent class analysis by using information derived
from the pilot study, even if we do not consider the “gold
standard” to be perfect.

The latent class approach presented here depends on
conditional independence of the two tests. That is, if we knew
the true status of an individual then the result of one of the tests
depends only on the test sensitivity or specificity, and the result
of the other test would give us no extra information to predict
this result. In practice, this is rarely the case. However, methods
exist to account for this [see, for example (16)]. These methods
require the use of more than two populations, since they fit extra
parameters to account for the dependence of tests. They also

increase the uncertainty in the results further for a given sample
size.

The Hui–Walter approach, when extended to incorporate
vaccination, has the advantage that we do not need to sample
a particular subset of individuals from the population: we do
not need to identify animals as positive or negative. Hence, the
results of such an analysis are directly relevant to the population
from which the samples for the latent class analysis are drawn.
Thus, in our case we do not have to rely on observations derived
specifically from (for example) “Scottish animals” (i.e., those
from a disease-free area) or “animals with post mortem signs.”
This relaxation of assumptions is desirable, since such animals
may not be typical of negative and positive animals respectively.
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An additional benefit of using the combined Hui–Walter
approach is that an estimate for the efficacy of the vaccine in
addition to the properties of the diagnostic tests is available. This
is particularly relevant for situations such as the introduction
of new bTB vaccines, which may have been evaluated in trials,
but where the real-world efficacy is still largely unknown.
While the resulting efficacy estimates from the Hui–Walter
equations are not identical to those from a study designed for
efficacy evaluation, simulations indicate that they would still be
able to quantify the effect of vaccination on a population to
within ±10 percentage-units. Thus we estimate the overall effect
of vaccination at the population level, rather than the usual
definition of efficacy which refers to the effect on the individual.
Our estimate, therefore includes any “herd immunity” effect that
may be present. These results are not presented here, where we
concentrate on the estimates of sensitivity and specificity, but are
available from the corresponding author.

In general we recommend making an initial assessment of
sensitivity and specificity using a small number of known positive
animals and negative animals, all vaccinated and all tested with
the DIVA test prior to post mortem inspection and causal agent
identification. This would facilitate an initial analysis to define the
sensitivity and specificity with reasonable precision, as specified
in section 2.1, confirming that the properties of the diagnostic
test were such that it was not inappropriate for the vaccine trial
to proceed. Thereafter we recommend employing vaccine trial
animals to further increase precision. This would facilitate an
analysis to not only makemore precise estimates of the sensitivity
and specificity (reducing the uncertainty in trial results relating
to cost effectiveness, and providing more precise estimates of the
properties of the DIVA test), but also to infer an estimate of the
efficacy of the vaccine, as defined by the relative decrease in the
prevalence of infection in vaccinated as opposed to unvaccinated
animals. Since Bayesian analysis does not require us to await
all the results being obtained prior to performing the analysis,
this approach could be used to perform interim analyses for the
estimates of the DIVA test sensitivity and specificity at regular
intervals, perhaps annually. This in turn would allow the trial
to be stopped early if the evidence suggested that the required
efficacy, sensitivity and specificity were unlikely to be reached.

If the vaccine trial population can be divided into two groups
with appreciably different disease prevalences, then the combined
Hui–Walter method can be used, providing valuable information
about the properties of the DIVA test in the vaccinated and
unvaccinated populations. If this is not the case, we would be
forced to assume that the sensitivity and specificity are the same
for both vaccinated and non-vaccinated animals and employ

the standard latent class analysis. If this is necessary, and the

sensitivities and specificities of the test in the two populations
are indeed similar, then with around 40,000 samples we would
expect similar results to the values presented here for 80,000
samples, since there would be only half the number of parameters
to estimate in the model. If the sensitivities and specificities
were not similar, however, the apparent gain in power would be
spurious since, by assuming that they are the same in each group
the resulting single set of estimates would be biased in opposite
directions within the vaccinated and non-vaccinated groups. It is
preferable to design any such study on the assumption that we
can and will estimate the sensitivities and specificities separately,
unless we are sufficiently confident that they are similar across the
vaccinated and unvaccinated populations that we do not wish to
provide evidence to regulatory agencies about the properties of
the test specific to each of the two populations.

Both gold standard and Hui–Walter approaches are valuable
and important tools in analysing the properties of diagnostic
tests, with their applicability depending on the properties of the
available data and any other constraints which might arise in
a given situation. However, we believe that the results in this
paper have shown that where possible, combining these different
approaches makes it possible to utilize some of the advantages of
each, and hence enhance the overall analysis.
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