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Abstract

Background: The genetic and immunological factors that contribute to differences in susceptibility and
progression between sub-types of inflammatory and autoimmune diseases continue to be elucidated. Inflammatory
bowel disease and juvenile idiopathic arthritis are both clinically heterogeneous and known to be due in part to
abnormal regulation of gene activity in diverse immune cell types. Comparative genomic analysis of these
conditions is expected to reveal differences in underlying genetic mechanisms of disease.

Methods: We performed RNA-Seq on whole blood samples from 202 patients with oligoarticular, polyarticular, or
systemic juvenile idiopathic arthritis, or with Crohn’s disease or ulcerative colitis, as well as healthy controls, to
characterize differences in gene expression. Gene ontology analysis combined with Blood Transcript Module and
Blood Informative Transcript analysis was used to infer immunological differences. Comparative expression
quantitative trait locus (eQTL) analysis was used to quantify disease-specific regulation of transcript abundance.

Results: A pattern of differentially expressed genes and pathways reveals a gradient of disease spanning from
healthy controls to oligoarticular, polyarticular, and systemic juvenile idiopathic arthritis (JIA); Crohn’s disease; and
ulcerative colitis. Transcriptional risk scores also provide good discrimination of controls, JIA, and IBD. Most eQTL are
found to have similar effects across disease sub-types, but we also identify disease-specific eQTL at loci associated
with disease by GWAS.

Conclusion: JIA and IBD are characterized by divergent peripheral blood transcriptomes, the genetic regulation of
which displays limited disease specificity, implying that disease-specific genetic influences are largely independent
of, or downstream of, eQTL effects.
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Background
While genomic analyses have clearly established a high
degree of shared genetic susceptibility across auto-
immune and inflammatory disorders, the reasons for
disease-specific effects of particular loci are yet to be
understood [1]. Likely explanations range from the

technical, such as variable statistical power across stud-
ies, to the biological, including restriction of effects to
relevant cell types for each condition, and interactions
between genotypes and either the environment or gen-
etic background. Since the majority of genome-wide
association study (GWAS) associations are likely regula-
tory, attention has focused on mapping genetic effects
on gene expression and/or epigenetic marks, namely dis-
covery of expression quantitative trait locus (eQTL) and
their methylation counterparts, mQTL [2]. With a few
exceptions, most studies attempting to relate GWAS to
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functional genomics have utilized large public eQTL and
epigenetic datasets of peripheral blood-derived profiles
of healthy volunteers. These implicitly assume equiva-
lence of eQTL across health and disease, despite recent
findings that eQTL can be modified by ex vivo treat-
ments which mimic perturbations corresponding to dis-
ease states [3, 4]. In order to evaluate the ratio of
common to disease-specific effects in inflammatory
autoimmune disease, here we describe side-by-side com-
parative eQTL analysis of juvenile idiopathic arthritis
(JIA) and inflammatory bowel disease (IBD), also com-
paring the transcriptomes among major sub-types within
both JIA and IBD.
IBD has been extensively studied using a variety of

genomic approaches, but despite several early publica-
tions, JIA has been less well characterized [5–8]. JIA is
the most common rheumatic disease of childhood, with
an estimated prevalence of approximately 1.2 individuals
per 1000 in the USA [9]. It comprises multiple clinically
and genetically distinct forms of arthritis with onset
prior to age 16. Although all forms of JIA are character-
ized by persistent swelling of the joints, the disease is
further classified into sub-types based on clinical presen-
tation [10]. Oligoarticular JIA affects four or fewer joints
and is the most common and typically the mildest form
of JIA [10, 11]. Polyarticular JIA involves five or more
joints and is intermediate in severity. Both oligoarticular
and polyarticular JIA disproportionately affect females.
Systemic JIA (sJIA) is distinct from other JIA sub-types,
displaying unique symptoms and no bias towards fe-
males [10, 12]. Diagnosis is based on presentation of
arthritis accompanied by spiking fever, rash, and lymph-
adenopathy. Approximately 10% of sJIA patients are also
diagnosed with life-threatening macrophage activation
syndrome, and about 50% experience a persistent course
of disease and are unable to achieve remission [12, 13].
The categorization of sub-types based primarily on clin-

ical criteria reflects uncertainty about the biological factors
that contribute to the heterogeneity of the disease. The im-
mune system is thought to play a critical role in the patho-
genesis of JIA. Levels of immune-related cells like
lymphocytes, monocytes, and neutrophils are differentially
elevated between sub-types [14], as is also seen in other
autoimmune and autoinflammatory diseases such as
rheumatoid arthritis (RA) and inflammatory bowel disease
[15]. Evidence of T cell activation has been described in oli-
goarticular and polyarticular patients, suggesting the im-
portance of adaptive immunity in these sub-types [11, 16],
but there is considerable heterogeneity in immune profiles
that masks differences between levels of severity [17, 18],
with age-of-onset also an important factor influencing gene
expression [19]. In contrast, sJIA is thought to be more
characterized by activation of innate immunity and upreg-
ulated monocytes, macrophages, and neutrophils [12, 20].

Extensive genome-wide association studies have been
performed across autoimmune classes and are conveni-
ently summarized on the ImmunoBase website, which as
of February 2018 lists 23 validated loci for JIA, 81 for
RA, 102 for ulcerative colitis (UC), and 122 for Crohn’s
disease (CD) [21]. Previous studies have demonstrated
familial aggregation of JIA, supporting the idea that gen-
etics plays a role in susceptibility [22] as well as sub-type
development. Studies of genetic variants within the
major histocompatibility complex region have uncovered
associations between various human leukocyte antigen
(HLA) polymorphisms and sub-types of JIA [23, 24].
HLA-independent loci such as PTPN22 and STAT4 have
also been repeatedly found in genome-wide association
studies to be associated with oligoarticular and
RF-negative polyarticular JIA at genome-wide signifi-
cance levels [25–28], while polymorphisms in interleu-
kins 1 and 10 were early on identified as occurring at
higher frequencies in sJIA patients [29, 30]. The most re-
cent international GWAS of 982 children with sJIA con-
cluded that the systemic form of JIA engages more
inflammatory than autoimmune-related genes [31], con-
sistent with clinical observations of the course of
disease.
Diverse autoimmune conditions certainly are attrib-

utable in part to intrinsic aspects of the focal tissue
and in part to gene activity in the immune system,
some of which should be detectable in peripheral
blood samples. It is thus surprising that side-by-side
comparisons of immune gene expression across dis-
ease sub-types have not been reported. Transcrip-
tomic studies of disease are for practical reasons
orders of magnitude smaller than GWAS, typically in-
volving fewer than 200 patients, but these are never-
theless sufficient to identify eQTL given the relatively
large effect of regulatory polymorphisms on local
gene expression. Numerous blood- and tissue-specific
susceptibility loci and eQTL have previously been dis-
covered [32–34]. It is likely that sJIA in particular
shares associated risk polymorphisms with IBD given
the auto-inflammatory component of both diseases.
For instance, a mutation in LACC1 that was initially
associated with Crohn’s disease was later found also
to be associated with sJIA [35, 36]. Thus, IBD is an
attractive candidate for comparison with JIA to eluci-
date the mechanisms behind each of the sub-types.
Here we contrast healthy controls; patients with oli-
goarticular, polyarticular, or systemic JIA; and patients
with two forms of IBD, CD, or UC. As well as evalu-
ating overall transcriptome differences among
sub-types, we evaluate the disease specificity of whole
blood eQTL effects in order to infer what fraction of
risk can be attributed to differences in genetic regula-
tion of gene expression.
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Methods
Cohorts
In total, there were 190 patients and 12 controls. Proto-
cols including signed consent of all participants and/or
assent of parents in the case of minors were approved
by the IRBs of Emory University and Georgia Institute of
Technology. All patient cohorts were comprised of indi-
viduals of European (n = 141) or African (n = 49) ances-
try from the USA. The cohorts are further divided into
IBD and JIA subgroups. Within the IBD subgroup, 60
individuals were CD patients while 15 were UC patients.
The average age of disease onset for CD and UC patients
was approximately 14 years, with ages of onset ranging
from less than 1 to 26 years. The JIA subgroup was
comprised of 43 oligoarticular, 46 polyarticular, and 26
systemic JIA patients. The average age of disease onset
for JIA patients was 8 years, with onset ages ranging
from 0.7 to 17 years.

RNA-Seq processing and differential gene expression
analysis
RNA was isolated from whole blood, and RNA-Seq was
used to determine profiles of gene expression. The
paired-end 100 bp reads were mapped to human gen-
ome hg19 using TopHat2 [37] with default parameters,
with 90.4% success rate. The aligned reads were con-
verted into number of reads per gene using SAMtools
and HTSeq with the default union mode [38, 39]. The
raw counts were then processed by trimmed mean of
M-values normalization via the edgeR R package into
normalized counts [40]. To further normalize and re-
move batch effects from gene expression data, surrogate
variable analysis (SVA) combined with supervised
normalization was used [41]. First, FPKM was calculated
and all genes with greater than 10 individuals with
greater than six read counts and FPKM > 0.1 were ex-
tracted. Expression of the sex-specific genes RPS4Y1,
EIF1AY, DDX3Y, KDM5D, and XIST was used to verify
the gender of each individual. The SVA R package [41]
was used to identify 15 latent confounding factors, and
these were statistically removed without compromising
known disease variables using the supervised
normalization procedure in the SNM R package [42].
Pairwise comparisons between control, CD, UC, oligoar-
ticular JIA, polyarticular JIA, and systemic JIA were per-
formed to quantify the extent of differential expression.
Using edgeR’s generalized linear model likelihood ratio
test function, the log fold change and
Benjamini-Hochberg adjusted p value were obtained for
all genes within each contrast [40].
Gene ontology analysis was performed using the

GOseq R package, which incorporates RNA-Seq read
length biases into its testing [43]. Genes with an
edgeR-calculated FDR of < 0.01 were considered to be

differentially expressed and input into the GOseq soft-
ware. Genes were distinguished by positive and negative
log fold change to classify upregulation in specific
sub-types. Only pathways within the biological processes
and molecular function gene ontology branches were
called.
Analysis of established immune-related gene sets was

performed using BIT (Blood Informative Transcript) and
BTM (Blood Transcript Module) gene expression [44, 45].
The BITs are highly co-regulated genes which define seven
axes of blood immune activity that are highly conserved
across whole blood gene expression datasets. Standard
PCA analysis including multiple PC captures most of the
variance also described by the BIT, but it does so in a
study-specific manner in which the actual PC have little
biological meaning. By contrast, the BIT axes, as originally
characterized by Preininger et al. [44], capture compo-
nents of variation that are consistently observed across all
peripheral blood gene expression studies, for the most
part independent of platform. We simply take PC1 for the
representative genes for each axis and note that this typic-
ally explains upwards of 70% of variance of those tran-
scripts, so it is highly representative of overall gene
expression in the axis. Whereas in previous work [44] we
labelled nine axes BIT axis 1 through 9, subsequent ana-
lyses and comparison with BTMs has led to affirmation of
the immunological functions captured by six of the axes,
which we here rename reflecting these functions as axis T
(T cell-related, formerly 1), axis B (B cell-related, formerly
3), axis N (neutrophil-related, formerly 5), axis R (reticulo-
cyte-related, formerly 2), axis I (interferon-responsive,
formerly 7), and axis G (general cellular biosynthesis,
formerly 4). axis 6 remains of uncertain function, while
axes 8 and 9 are dropped since they are derivative and less
consistent. Finally, a newly identified axis C captures nu-
merous cell cycle-related aspects of gene activity. Each of
these axes clusters with a subset of the 247 BTMs identi-
fied by Li et al. in their machine-learning meta-analysis of
30,000 peripheral blood gene expression samples from
over 500 studies [45], and these relationships were visual-
ized by hierarchical cluster analysis performed using
Ward’s method in SAS/JMP Genomics [46].

SNP data processing and eQTL analysis
The Affymetrix Axiom BioBank and Illumina Immuno-
chip arrays were used to perform genotyping, at Akesogen
Inc. (Norcross, GA). Quality control was performed using
PLINK, with parameters set to remove non-biallelic vari-
ants, SNPs not in Hardy-Weinberg equilibrium at P <
10−3, minor allele frequency < 1%, and rate of missing data
across individuals > 5% [47].
The Affymetrix Axiom BioBank array, which has a

coverage of 800 k SNPs, was utilized to genotype the
115 JIA samples and 27 IBD samples. The Immunochip,
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which includes a high density of genotypes at loci con-
taining markers known to be associated with various
autoimmune and inflammatory diseases, including CD
and UC, was used to genotype the remaining IBD sam-
ples. Following QC, imputation was performed using the
SHAPEIT and IMPUTE2 software in order to merge the
datasets [48, 49]. However, due to the nature of the
Immunochip, imputation failed to generate reliable re-
sults for sites outside of the densely genotyped regions.
Consequently, the eQTL analysis was initially performed
independently on the JIA and IBD datasets, and then,
overlapping loci significant in either study were pooled
for the interaction testing. For JIA, following QC, we an-
alyzed 109 individuals with 5,522,769 variants. For IBD,
the available Affymetrix samples were merged with the
remaining 27 IBD samples from the Immunochip data-
set by selecting overlapping SNPs, which following QC
resulted in 54 individuals with 58,788 variants in the
vicinity of the 186 immune-related loci, plus the HLA
complex, included on the Immunochip. In summary, 27
IBD samples were genotyped on the Affymetrix array,
while 27 were typed on the Immunochip, and the
remaining 21 IBD samples had expression but not geno-
type data.
Using the genes from the SVA and SNM adjusted ex-

pression data and the separate compiled variants from
JIA and IBD, a list of genes and SNPs within 250 kb up-
stream and downstream of the stop and start coordi-
nates of the gene was generated. eQTL mapping was
performed using the linear mixed modelling method in
GEMMA [50], which generated a final file of 16,913,152
SNP-gene pairs for JIA samples and 338,005 SNP-gene
pairs for IBD samples. Since there are on average close
to five candidate genes per SNP, between the two dis-
eases, 263,575 SNP-gene pairs were shared that were an-
alyzed jointly. A common p value threshold of p < 0.0001
corresponding to an empirical FDR < 5% was chosen,
yielding 814 SNP-gene univariate associations. Condi-
tional analysis was underpowered to detect secondary
signals consistently, so we simply retained the peak
eSNP associations defining 142 eGenes. Since low minor
allele frequencies can drive spurious eQTL signatures if
the minor homozygotes have outlier gene expression, we
checked for an overall relationship between MAF and
eQTL significance. None was observed, implying that
rare variants are not driving the results in general, but
we also examined each of the loci with significant inter-
action effects manually, identifying a small number of
false positives. A notable example is IL10, which had an
anomalously high disease-by-interaction (p~10−7) driven
by a large effect size in IBD (beta = 2.7) that turns out to
be due to a single outlier, removal of which abrogates
any eQTL effect at the locus (also consistent with the
blood eQTL browser report [51]).

The eQTL×disease interaction effect which evaluates
whether the genotype contribution is the same in JIA and
IBD was modeled by combining the imputed rsID geno-
types for the lead SNP in either disease into a joint linear
model with gene expression as a function of genotype, dis-
ease, and genotype-by-disease interaction, assuming the
residuals are normally distributed with a mean of zero. A
caveat to this analysis is that the lead SNP (i.e., the one
with the smallest p value) is not necessarily the causal
variant, and secondary SNPs in one or other condition
may skew the single-site evaluations. Post hoc analyses re-
vealed that secondary eQTLs are evident at three loci re-
ported (PAM, SLC22A5, and GBAP1).

Adjustments for medication and disease duration
Because the JIA patients in our study were not recruited
from a single cohort, therapeutic interventions and dur-
ation of disease vary between individuals. Environmental
factors include exposure to medications and impact gene
expression profiles [52]. In addition, it has previously
been shown that gene expression networks are altered
over the first 6 months of therapy for JIA patients [53].
To characterize the effects of these covariates, our JIA
patients were classified by three non-exclusive categories
of medication: known treatment with DMARDs, bio-
logics, and steroids at the time of sample collection, as
well as three categories of disease duration prior to sam-
pling: less than 180 days, 180–360 days, and greater than
360 days. Nearly all IBD patients were sampled at diag-
nosis, so this stratification was only necessary for JIA pa-
tients. Medication and time variables were then modeled
and removed using SNM, resulting in an adjusted gene
expression dataset [42]. The previously described BIT
axis analysis was performed again using this adjusted
dataset and compared with results from the unadjusted
dataset (Additional file 1: Figure S1A). Additional file 1:
Figure S1B shows the correlation between unadjusted
gene expression and category of disease duration. In
addition, the JIA eQTL study was rerun using the ad-
justed expression dataset. The correlation of betas from
the unadjusted and adjusted analyses is depicted in
Additional file 1: Figure S2.
Furthermore, we were able to replicate the major

trends in gene expression observed in our dataset in a
published Affymetrix microarray study of samples from
the various subsets of JIA [54]. They studied PBMC gene
expression for 29 controls, 30 oligoarticular, 49 polyarti-
cular, and 18 systemic JIA patients all obtained prior to
initiation of therapy [54]. As shown in Additional file 1:
Figure S3, axes R, B, N, I, and C give very similar results
whereas the T cell signature which is mildly reduced in
more severe JIA in our data does not differentiate their
sample types. Additionally, axis G reverses the sign of ef-
fect, as it does upon adjustment for medication usage,
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reinforcing the conclusion that general cellular meta-
bolic processes are affected by medication. By contrast,
Hu et al. [55] report effects of anti-TNF biologic therapy
specifically on certain neutrophil-related pathways, a re-
sult not recapitulated in our data, likely due to differ-
ences in experimental design.

Colocalization and transcriptional risk score (TRS) analysis
Colocalization analysis was performed using JIA and
IBD eQTL data and prior IBD, rheumatoid arthritis, and
JIA GWAS study data. The coloc R package uses a
Bayesian model to determine posterior probabilities for
five hypotheses on whether a shared causal variant is
present for two traits [56]. The analysis considered all
SNPs associated with IBD (n = 232), RA (n = 101), or JIA
(n = 28) as discovered by GWAS, where n = 198, 57, 21
and n = 198, 83, 20 were present in SNP-gene eQTL
datasets for IBD and JIA, respectively.
Cross-comparisons between both of the eQTL datasets
and each of the GWAS studies’ reported loci was per-
formed, following which select SNP-gene pairs with high
probabilities of hypothesis 3 (same locus but different
eQTL and GWAS peaks) and 4 (same causal variant
driving the signal at the eQTL and GWAS peaks) were
plotted using LocusZoom [57] to visualize the region
surrounding the variants.
Two independent transcriptional risk scores (TRS)

were generated using GWAS results for IBD [58] and
RA [59] as a proxy for JIA (since the JIA pool of variants
is currently too small). As previously described, TRS
sums the z-scores of gene expression polarized by the
direction of effect of the eQTL relative to the GWAS
risk allele [60]. Thus, if the risk genotype is associated
with decreased expression, we invert the z-score in the
summation such that positive TRS represents elevated
risk. We only used genotypes that are validated as both
eQTL and GWAS by H4 in the coloc analysis, taking
the eQTL list from the blood eQTL browser since it has
much higher power than the small disease samples.
Thirty-nine and 23 genes were included in the IBD and RA
TRS, respectively, as listed in Additional file 2: Table S1.
ANOVA was performed between groups to establish
whether the TRS can be used to predict disease from blood
gene expression.

Results
Heterogeneity of gene expression within and among
disease sub-types
In order to contrast the nature of differential gene ex-
pression between three sub-types of JIA and two
sub-types of IBD as well as relative to healthy controls,
we conducted whole blood gene expression profiling on
a combined sample of 202 children with disease onset
between the ages of 0.7 and 17. The sample included 43

cases of oligoarticular JIA, 46 of polyarticular JIA, 26 of
systemic JIA, 60 of Crohn’s disease, and 15 of ulcerative
colitis. RNA-Seq analysis was performed with a median
of 19.6 million paired-end 100 bp reads per sample.
After normalization and quality control as described in
the “Methods” section, a total of 11,614 genes remained
for analysis.
Previous microarray-based gene expression profiling of

JIA has established significant mean differences among
disease sub-types, as well as heterogeneity within
sub-types [6–9]. A heat map of two-way hierarchical
clustering of all genes in all individuals reveals six major
clusters of individuals (rows in Fig. 1a) who share
co-regulation of at least nine sets of genes (columns).
For example, the top cluster labeled in dark blue consists
of individuals with generally high innate immunity gene
expression and low lymphocyte gene expression,
whereas the bottom two clusters labeled in pale blue
and green have the opposite profile, though with differ-
ences in T cell-related expression. Individuals in each of
the six health and disease categories are dispersed
throughout the matrix but with highly significant ten-
dencies for enrichment of specific expression clusters in
each sub-type, as shown in Fig. 1b. Eighty percent of the
healthy controls are in the pale green cluster, which ac-
counts for just one quarter of the oligo-JIA sub-type and
less than 15% of each of the others. The two IBD
sub-types are more likely to be in the dark blue cluster,
as are sJIA cases, consistent with these being more in-
flammatory conditions, but in each case, the majority of
individuals from each disease sub-type are dispersed
throughout the other clusters. JIA in general has high
membership in the red cluster, while there is an appar-
ent gradient with oligo-JIA more control-like and sJIA
more IBD-like. As with other autoimmune diseases, al-
though there are certainly disease-related trends, the
overall blood gene expression pattern is dominated by
heterogeneity without ambiguous separation by disease
type. Figure 1c shows that 9.5% of the gene expression
captured by the first five principal components is among
disease categories and another 7.3% among the
sub-types within JIA and IBD, with a small component
also attributable to age-of-onset less than 6.

Functional characterization of the gradient of differential
expression
Contrasts of significant differential expression performed
between healthy controls and sub-types of JIA as well as
combined IBD and sub-types of JIA confirm the gradient
of differential expression between disease groups of dif-
ferent severities. Additional file 2: Table S2 lists the sig-
nificantly differentially expressed genes at the 5%
Benjamini-Hochberg false discovery rate, for each com-
parison of two disease groups from the six under
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consideration. In the comparison between healthy con-
trols and oligoarticular JIA, 82 genes were significantly
upregulated in healthy controls, and 7 were upregulated
in oligoarticular JIA. These numbers are lower than the
136 and 36 differentially expressed genes found in the
contrasts between healthy controls and polyarticular JIA,
and the 216 and 547 upregulated genes found between
healthy controls and sJIA. A similar graded pattern of dif-
ferentiation was found in comparisons of IBD and JIA.
The fewest differentially expressed genes were found in
the contrast between IBD and sJIA, with 73 upregulated
genes in IBD and 170 upregulated genes in systemic JIA.
Between IBD and polyarticular JIA, 934 upregulated IBD
genes and 767 upregulated polyarticular genes were dis-
covered, while the biggest differentiation was observed be-
tween IBD and oligoarticular JIA, where 2038 upregulated
IBD genes and 1751 upregulated oligoarticular genes were
discovered. These patterns of differential expression also
confirm that of the three JIA sub-types, systemic JIA is the
most similar to IBD.
The biological meaning of these differentially

expressed genes was investigated through gene ontology
and modular analysis. Contrasts between healthy con-
trols and JIA subtypes implied a variety of classes of dif-
ferential pathway regulation. Overall, all subtypes of JIA
showed downregulation of transmembrane signaling and

G-protein-coupled receptor activity. However, oligoarti-
cular JIA showed primarily upregulation of protein and
phospholipid metabolic processes while polyarticular JIA
showed upregulation in secretion, exocytosis, and gran-
ulocyte activation, as well as neutrophil activation. Sys-
temic JIA showed an even more strongly significant
upregulation of immune pathways, notably general im-
mune response and myeloid activation. In contrast, for
the comparisons between IBD and JIA subtypes, all JIA
subtypes showed upregulation of nucleic acid processes
compared with IBD. Both oligoarticular and polyarticu-
lar JIA showed strongly significant downregulation of
myeloid, neutrophil, and leukocyte activity compared
with IBD, whereas sJIA showed downregulation of gen-
eral metabolic processes albeit at a much lower signifi-
cance level.

Clustering by BTMs and BITs further reveals enriched
immune pathways
Decades of blood gene expression analysis have
highlighted the existence of modules of co-expressed
genes that reflect a combination of joint regulation
within cell types and variable abundance of the major
leukocyte classes [61]. Seven highly conserved axes of
blood variation [44] are composed of genes broadly cap-
turing immune activity related to T and B cells,

Fig. 1 Heterogeneity of gene expression within and among disease sub-types. a Two-way hierarchical clustering using Ward’s method of
standardized normal (z-scores) of transcript abundance of 11,614 genes (columns) in 202 individuals (rows). Six clusters identified to the right
group individuals with similar profiles with respect to at least nine clusters of co-expressed genes. Letter beneath the heat map highlight BIT
corresponding to genes enriched in reticulocytes (R), neutrophils (N), B cells (B), T cells (T), or for the interferon response (I). b Proportion of
individuals of each disease sub-type represented in each of the six clusters of individual. For example, 45% of the UC samples are in the dark blue
cluster, 30% in the red, 20% in the green, and 5% in the pale green, with none in the brown or light blue. c Principal variance component
analysis shows the weighted average contribution of disease, sub-type within disease, or age-of-onset before 6 to the first five PC (67%) of the
total gene expression variance, with the remainder residual variance unexplained, including individual differences
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reticulocytes and neutrophils, interferon response, gen-
eral biosynthesis, and the cell cycle. Figure 2 shows clear
trend expression along these axes correlating with dis-
ease sub-type, each panel indicating the level of activa-
tion in each immune component in, from left to right,
healthy control, oligoarticular JIA, polyarticular JIA, sys-
temic JIA, Crohn’s disease, and ulcerative colitis. Axis T,
representing T cell expression, and axis B, representing
B cell expression, show a trend of decreasing PC1 values
correlating with severity of disease, suggesting downreg-
ulation of adaptive immunity in systemic JIA, CD, and
UC. In contrast, axis R, representing reticulocytes, and
axis N, representing neutrophils, show trends of increas-
ing PC1 values with disease severity that indicates up-
regulation of the innate immune system in systemic JIA,
CD, and UC. Axis I represents interferon-responsive
gene expression and has a more parabolic trend, being
elevated in polyarticular and systemic JIA and Crohn’s
disease, but not ulcerative colitis, reflecting the inter-
feron response’s dual roles in both adaptive and innate
immunity. Axes G and C represent general and cell cycle
expression, and show trends of higher PC1 values in in-
flammatory bowel disease and systemic JIA. Despite
sample sizes of around 30 patients in each group,
ANOVA indicates that the differences are significant in
each case.
These disease-specific trends are confirmed by hier-

archical clustering of 247 Blood Transcript Modules
(BTMs) [45] in Fig. 3, tabulated in Additional file 2:
Table S3, further supporting the gradient of disrupted
gene expression based on disease severity. Healthy con-
trols and oligoarticular JIA show largely similar expres-
sion, except for apparent elevation of NK cell gene
expression in controls. IBD most resembles sJIA, al-
though with some key differences. Myeloid gene expres-
sion tends to be elevated in IBD and lymphoid gene
expression suppressed, with JIA intermediate. In
addition, ulcerative colitis appears to have a specific def-
icit in NK cell-biased gene expression, sJIA has a unique
signature including inositol metabolism, and JIA in gen-
eral shows reduced mitochondrial gene activity.

Transcriptional risk scores differentiate healthy controls,
JIA, and IBD
We recently proposed the notion of a transcriptional risk
score (TRS), which is analogous to a cumulative burden
of genotypic risk, but evaluates cumulative burden of
risk due to elevated or suppressed gene expression rele-
vant to disease [60, 62]. By just focusing on genes with
shared eQTL and GWAS associations, the analysis is re-
stricted to genes most likely to have a causal role in
pathology, whether because the risk allele directly pro-
motes disease or fails to provide sufficient protection. A
TRS based on eQTL detected in blood but with gene

expression measured in ileum was highly predictive of
Crohn’s disease progression, whereas a corresponding
genetic risk score was not. Figure 4 shows similarly that
the 39-gene IBD TRS measured in peripheral blood pro-
vides significant discrimination of cases and controls
(difference in standard deviation units of TRS; Δs.d. =
1.10, p = 0.0003); notably, sJIA is elevated to the same
degree as both CD and UC. By contrast, oligoarticular
JIA and polyarticular JIA have intermediate TRS that are
nevertheless significantly greater than healthy controls
(Δs.d. = 1.04, p = 0.0031). For comparison, a TRS based
on genes that are likely to be causal in driving the signal
at 23 genome-wide significant associations for RA does
not discriminate between healthy controls and IBD as a
group (Δs.d. = 0.11, p = 0.63) but does trend toward dis-
crimination of JIA as a category (Δs.d. = 0.42, p = 0.09).
This RA TRS is mostly enhanced in sJIA (Δs.d. = 0.86, p
= 0.008 relative to healthy controls), suggesting that it is
capturing the effects of inflammatory gene contributions
to this most severe form of JIA.

Evaluation of disease specificity of eQTL
We next addressed the degree of sharing of the local
genetic control of gene expression in the two classes of
disease (namely JIA and IBD) by performing compara-
tive eQTL analysis. Whole genome genotypes were
ascertained on the Immunochip (CD and UC samples)
or the Affymetrix Axiom Biobank array (see the
“Methods” section). As far as possible, SNPs were im-
puted onto the 1000 Genomes reference, allowing
cross-comparison of the disease subsets, noting that this
was not possible for loci not included on the Immuno-
chip. Since genotypes were generated on different plat-
forms, the eQTL assessment was first performed
independently for the two broad disease classes, after
which significant effects were evaluated jointly. Here we
only consider genes located within the vicinity of the
Immunochip loci.
For JIA, 107 independent eSNPs were identified within

500 kb of a transcript at an FDR of 5% (approximate p <
10−4), and for IBD, which had a smaller sample size, 52
independent eSNPs were identified. These are listed in
Additional file 2: Table S4. Twelve of the loci overlap be-
tween the two diseases, but failure to detect an eQTL in
one condition does not necessarily imply absence of the
effect, since the small sample size results in relatively low
power. Overall, the correlation in effect sizes is high, ~ 0.7
(p = 5 × 10−20 in JIA; p = 2 × 10−8 in IBD), which is remark-
able given the small sample sizes, and strongly implies that
most eQTL effects in whole blood are consistent across
the diseases. Nevertheless, the plots in Fig. 5 depicting the
estimated eQTL effect sizes in IBD relative to JIA provide
some support for disease-biased effects in so far as the
eQTL discovered in JIA (red points, panel a) tend to have
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Fig. 2 (See legend on next page.)
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larger effects on JIA (beta values) than those observed in
IBD and hence lie between the diagonal and the x-axis.
Conversely, the eQTL discovered in IBD (blue points,
panel b) tend to have larger effects on IBD than those ob-
served in JIA and hence lie between the diagonal and the
y-axis. This result is biased by winner’s curse, the tendency
to over-estimate effect sizes upon discovery, so we also
evaluated all associations jointly in order to also identify
interaction effects. At an FDR of 10%, 34 of the 147
independent eQTL, highlighted in panel , show nom-
inally significant interaction effects (p < 0.02), implying
different effect sizes in the two broad classes of dis-
ease. Example box plots of genotypic effects on tran-
script abundance across the two disease classes are
provided in Additional file 1: Figure S4. These
genotype-by-disease interaction effects remain signifi-
cant after accounting for ancestry (see Additional file 1:
Figure S5).
As expected, many of the detected eQTLs affect ex-

pression of genes in the vicinity of established GWAS
hits for autoimmune disease. Table 1 lists 25 lead eSNPs
that regulate expression in cis of 22 target genes that are
listed on ImmunoBase as potential causal genes for IBD
or arthritis (JIA or RA). Half of these associations are
with IBD only, but this bias may simply reflect increased
power of the IBD GWAS to date. Several of the SNPs
show evidence of disease-specific or disease-biased

effects. Naively, we might expect the eQTL to be seen
only in the disease(s) for which the association with dis-
ease is seen, as this would be consistent with
allele-specific expression driving pathology. Three cases
(ARPC2, CPTP for IBD, and the secondary eQTL in
PAM for JIA) fit the expected pattern, but three others
have the counter-intuitive relationship where the eQTL
is observed in one disease but the established GWAS as-
sociation is with the opposite disease (PRDX6 and
ADAM1A for RA, the secondary eQTL in GBAP1 for
CD). Three more cases (SLC22A5, CD226, and RNA-
SET2) have possibly disease-biased eQTL effects where
the eQTL is absent from or much less in one disease, al-
though the interaction effect is only significant in one of
these cases. Despite the small sample, there is not an in-
tuitive pattern to the relationship between disease-biased
regulation of gene expression and association with
disease.
One reason for divergent effect sizes may be that dif-

ferent causal variants in variable degrees of linkage dis-
equilibrium could be responsible for the differential
expression in the two disease sub-types. To investigate
this, we performed colocalization analysis using coloc
[56] to visualize the locus-wide SNP effects across all
loci reported in IBD, RA, and JIA GWAS and present in
our SNP-gene datasets for IBD or JIA and compared
these with the distribution of GWAS summary statistics.

(See figure on previous page.)
Fig. 2 Axes of variation across disease sub-types. Axes of variation defined by the first PC of the Blood Informative Transcripts (BIT) highlight
variation in types of immune activity across disease sub-types. Each individual data point represents PC1 score for 10 BIT for the indicated axis,
with box and whisker plots showing the median and interquartile range as well as 95% confidence intervals for the sub-types. Indicated p values
are from one-way ANOVA contrasting the six sub-types of sample

Fig. 3 Blood Transcript Modules. Hierarchical clustering of blood transcription modules across disease sub-types. The heat map shows the mean
PC1 scores for 247 BTM identified in [45], as well seven BIT axes. Note how the BTM form ~ 10 clusters, seven of which co-cluster with
one orthogonally determined axis. See Additional file 2: Table S3 for a complete listing of BTM scores in each disease sub-type
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Fig. 4 Transcriptional risk scores associate with disease status. a IBD-TRS scores within disease sub-types for 39 genes associated with IBD in [58].
Gene expression values for each selected gene were transformed into z-scores, polarized relative to risk according to whether the eQTL activity of
the risk allele discovered by GWAS increases or decreases transcript abundance, and summed to generate the TRS as in [60]. b New RA-TRS
based on 23 genes associated with RA by GWAS [59]

Fig. 5 Comparison of peripheral blood eQTL effects between JIA and IBD. Effect sizes of peak eSNPs by disease. a Correlation of beta effect sizes
between IBD and JIA for the 107 peak independent eSNPs discovered in the JIA sample. b Correlation of beta effect sizes between IBD and JIA
for the 52 top eSNPs identified in JIA. c Thirty-four eSNPs with a significant interaction effect between disease and genotype when evaluated
jointly. d Overlay of all eSNPs
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Coloc assigns a posterior probability that the same SNP
is responsible for both an eQTL effect and the disease
association (H4) or that different SNPs are responsible
for the two effects (H3). Since the power of this mode of
analysis is limited when sample sizes are small, we iden-
tified cases from either disease with relatively strong H3
or H4 posterior probabilities and plotted representative
examples in Fig. 6. The full results are summarized in
Additional file 2: Table S5.
Figure 6a shows results for association of rs12946510

with IBD from GWAS (bottom panel) and the eQTL
profiles for the JIA (top panel) and IBD (middle panel)
gene expression. Although coloc calls both cases as H4,
the correspondence of SNP profiles in high LD with the
lead SNP is more notable in JIA. The light blue SNPs
suggest a second, independent, eQTL which does not
produce a GWAS signal. Hence, the gene expression dif-
ference may be mediated by two different SNPs, possibly
with different effect sizes in the two diseases, only one
of which appears to contribute strongly to disease risk.
Figure 6b shows a clear H3 case in JIA where the eQTL

effect on expression of PAM appears to be mediated by
a cluster of variants to the left of the lead GWAS cluster.
Figure 6c shows a classical H4 where the fine mapping
supports a single causal locus for both the gene expres-
sion and disease, although the precise identity of the
causal variant is impossible to ascertain from the statis-
tical data alone owing to the extensive block of variants
in high LD.

Discussion
Disease-specific associations with autoimmune disease
There are multiple technical reasons why GWAS may fail
to detect associations that are shared across multiple auto-
immune diseases. These include differences in sample size
and clinical heterogeneity, and with respect to eQTL ana-
lysis, differences in expression profiling platform, statis-
tical methodology, and effects of pharmacological
interventions could all obscure associations. However, it is
also clear that the genetic correlation across diseases is
significantly less than one, establishing the expectation
that some effects must be disease-specific [63]. The most

Table 1 GWAS eQTL

Gene rsID IBD β IBD p val JIA β JIA p val IBD-GWAS ATH-GWAS Interact p

ARPC2 rs13429408 0.82 6.60E−05 0.18 0.22 CD, UC – 0.01

CPTP rs11809901 − 1.08 9.80E−05 − 0.12 0.69 CD, UC – 0.04

PAM rs2431321 1.04 3.80E−09 1.15 2.10E−23 – RA 0.48

PAM rs32677 0.21 0.3 0.94 5.30E−15 – RA 9.60E−05

C5 rs1468673 0.39 0.02 0.74 3.10E−07 – RA 0.34

PRDX6 rs4279882 1.84 3.80E−05 0.36 0.05 – RA 0.001

ADAM1A rs11066027 1.22 2.40E−05 0.61 5.30E−03 – JIA, RA 0.09

RNASET2 rs385863 − 0.68 1.30E−04 − 1.05 1.40E−14 CD, UC RA 0.3

GSDMB rs11078926 − 0.51 5.90E−03 − 0.56 9.90E−07 CD, UC RA 0.87

SLC22A5 rs11739135 0.09 0.6 − 0.8 9.80E−10 CD, UC JIA 4.00E−05

SLC22A5 rs11950562 − 0.53 8.00E−04 − 0.86 6.10E−14 CD, UC JIA 0.07

ORMDL3 rs1565923 1.11 8.80E−07 0.47 6.20E−04 CD, UC RA 0.01

ICAM4 rs3093029 1.22 4.80E−04 1.3 2.90E−08 CD, UC JIA 0.69

RMI2 rs11644184 − 0.58 7.60E−04 − 0.7 3.00E−07 CD, UC JIA 0.54

PLTP rs7275164 − 0.56 2.10E−04 − 0.71 7.00E−07 CD, UC RA 0.58

CD226 rs12969613 0.63 2.20E−07 0.18 0.15 CD, UC RA 0.11

NOD2 rs1981760 1.28 2.70E−08 1.05 2.30E−16 CD – 0.23

GBAP1 rs914615 0.6 3.20E−04 0.8 7.80E−10 CD – 0.62

GBAP1 rs3814319 0.16 0.33 0.7 1.20E−06 CD – 0.05

KSR1 rs2945378 − 0.48 6.20E−03 − 0.6 4.40E−07 CD – 0.52

SULT1A1 rs7191548 − 0.49 6.50E−03 − 0.61 5.30E−07 CD, UC – 0.93

PNKD rs13430006 0.34 0.14 0.57 6.80E−07 CD, UC – 0.41

NLRP2 rs12975582 0.56 0.01 0.8 1.20E−06 CD, UC – 0.43

SLC11A1 rs78846874 − 0.35 0.36 − 0.83 3.90E−06 CD, UC – 0.22

LGALS9 rs1984547 − 0.88 2.40E−05 − 0.55 4.10E−05 CD, UC – 0.16
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Fig. 6 Colocalization of eQTL and GWAS signatures. LocusZoom plots show the univariate SNP-wise association statistics for each genotyped SNP
either with the abundance of the indicated trasncript (eQTL effects) or from the GWAS for IBD or RA. Color coding indicates the r2 measure of linkage
disequilibrium of each SNP with the relevant peak GWAS SNP. a rs12946510 is most likely a shared causal variant for ORMDL3 gene expression in both
IBD and JIA, as well as in the IBD GWAS. However, a likely secondary signal in the light blue region is not associated with IBD. b rs2561477 is the peak
causal variant in RA but clearly does not colocalize with the peak eQTL for JIA. c rs3740415 is most likely a shared causal variant for expression of
TMEM180 and in the IBD GWAS despite an extensive LD block at the locus (though it does not meet the strict GWAS threshold)
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appropriate framework for detecting such effects is evalu-
ation of the significance of genotype-by-disease interaction
terms, which motivated the current study.
The core result of the comparative eQTL component of

this study is that the majority of genetic influences on
transcript abundance measured in whole blood are con-
sistent across IBD and JIA. A major caveat to this conclu-
sion is that immune cell sub-type specific effects will often
go undetected in both whole blood and PBMC studies
[14, 18]. It is though important to note that while neutro-
phils, lymphocytes, macrophages, and monocytes certainly
do have unique and disease-relevant eQTL, comparative
studies also confirm that over three quarters of eQTL are
shared by the majority of immune cells [64, 65].
Just as importantly, equivalence of genetic influences

on gene expression does not necessarily mean equiva-
lence of genetic influences on disease susceptibility.
Among the shared eQTL, some numbers are still likely
to be specific to CD, UC, JIA, or other conditions by
virtue of other influences. These may include
disease-specific contributions of the critical cell type, en-
vironmental differences (for example, microbial infection
of the gut may elevate or suppress expression of the
gene to a degree that renders the eQTL meaningful or
irrelevant), or interactions with the genetic background
(for example, elevated expression of a gene may only
matter in the context of other genetic risk factors). Al-
though there is little evidence that two-locus
genotype-by-genotype interactions contribute meaning-
fully to heritability [66], renewed interest in influences of
overall genetic risk on the impact of specific genotypes
makes sense given the context of gene expression
heterogeneity [67].
Our analyses do provide evidence that as many as 20%

of eQTL effects in peripheral blood may at least show
disease-specific biases. Such differences in effect sizes
are likely to trace to differences in the expression of
transcription factors and epigenetic modifications be-
tween diseases and/or to differences in the relative abun-
dance of contributing cell types. Methods exist for
deconvoluting effects of cell-type abundance [68], but
they are low resolution and in our opinion unreliable
when applied to sample sizes of the order of 100;
next-generation studies incorporating single-cell
RNA-Seq will be much more informative.
The relationship between disease-specific eQTL and

GWAS association at the same locus is less straightfor-
ward than might be expected under the assumption that
the effect of a polymorphism on disease is mediated
through its effect on transcription of the associated gene.
It is not immediately clear why an eQTL may only be
detected in one disease while the GWAS association is
in another disease, yet multiple instances are found in
our data. This observation adds to a growing body of

data questioning whether detected eQTL effects explain
causal associations. Two fine mapping studies of IBD
published in 2017 [69, 70] both found less than 30%
identity between mapped eQTL and GWAS causal inter-
vals, one suggesting that there is more significant over-
lap with methylation QTL and both arguing that the
relevant effects may be specific to particular cell types or
activation conditions, including immune activity at the
sight of the pathology. Additionally, we described a
meaningful number of “incoherent” associations, where
mean differential expression between cases and controls
is in the opposite direction to that predicted by the ef-
fect of the risk allele on gene expression [60]. Such re-
sults highlight the need for a combination of fine
structure mapping of causal variants and detailed mech-
anistic studies of immune cell-type contributions if we
are to fully understand how segregating polymorphisms
contribute to disease susceptibility and progression.

Disease- and sub-type-specific gene expression
Numerous other studies have described gene expression
profiles in a variety of inflammatory autoimmune dis-
eases, but we are aware of just a single side-by-side com-
parison of two or more diseases on the same platform
[65]. Straightforward cluster analysis shows that both
IBD and JIA subjects tend to differ from healthy con-
trols, but they have overall transcriptome profiles that
may belong to a half dozen types. Blood Transcript Mod-
ule and BIT axis analyses, both based on comprehensive
analysis of existing whole blood gene expression datasets,
confirm that these types broadly reflect differences in gene
activity in the major immune sub-types, partly reflecting
cell abundance, but also innate states of activity of biosyn-
thetic, cell cycle, and cytokine signaling. Immunoprofiling
by flow cytometry has established that individuals have
baseline profiles, or omic personalities [71], to which they
return after immunological perturbation but which are
also influenced by such environmental factors as
child-rearing [72]. Sub-type-specific blood gene expres-
sion should be seen in light of this immunological elasti-
city, as the heterogeneity among subjects may be more
meaningful for disease risk than individual eQTL effects.
Juvenile idiopathic arthritis is the most prevalent child-

hood rheumatic disease, encompassing multiple physic-
ally, immunologically, and genetically different sub-types
of disease. Although diagnosis and classification is based
upon largely clinical criteria, the genetic complexity of JIA
has been well documented [27, 28]. While the oligoarticu-
lar and polyarticular sub-types demonstrate activation of
adaptive immunity, systemic JIA appears to be mediated
more heavily through innate immunity, and profiles of im-
mune cell activity between sub-types differ [73–75]. These
findings at the gene expression level are consistent with
emerging GWAS results suggesting that systemic JIA is
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etiologically a quite different disease. It is particularly
noteworthy that both of the transcriptional risk scores we
document show that systemic JIA is divergent from the ar-
ticular forms, being close to the IBD profiles for the
IBD-TRS, and uniquely elevated for the RA-TRS.
In this study, we performed cross-sub-type and disease

comparisons of gene expression and eQTLs to
characterize the similarities and differences between the
forms of JIA. Differential gene expression analysis re-
vealed a gradient of order among the JIA sub-types and
IBD, from healthy controls, to oligoarticular, polyarticular,
and systemic JIA, to Crohn’s disease and ulcerative colitis.
Numbers of differentially expressed genes, gene ontology
pathway types, and significance levels agree with this pat-
tern of ordering. Consistent with previous research, oli-
goarticular and polyarticular JIA exhibits a trend of
activated T cell gene expression relative to systemic JIA
[17–20, 23]. As a group, JIA also demonstrates increased
expression of B cell-related genes. There is also an ordered
increase in neutrophil gene expression from oligoarticular
to systemic JIA, which concurs with systemic JIA being
closely tied with innate immunity. In addition, the eleva-
tion of oligoarticular and polyarticular JIA over controls
points to involvement of neutrophils in these sub-types as
well, which has been previously suggested [5]. Taken as a
whole, these findings suggest that JIA sub-types are medi-
ated through a complex relationship between adaptive and
innate immunity, and neither disease can be fully charac-
terized by simply one or the other.

Limitations
This study has three major limitations. Firstly, since the
subjects were not a part of any single-cohort study, they
were treated with different medications or had samples
taken at later time points after diagnosis. The sample size,
though larger than many published studies, is still too
small to partition the effects of plausible technical covari-
ates or of environmental mediators of gene expression
such as those described by Favé et al. and Idaghdour et al.
[52, 76]. The results of the covariate-adjustment analyses
presented in Additional file 1: Figures S1 and S2 suggest
that the effects on our dataset are minimal compared with
the consistent effect of disease subtype, but therapeutic ef-
fects should still be considered in interpretations of our
findings. Secondly, whole blood samples were utilized to
measure gene expression. Because whole blood is com-
posed of multiple cell types, there will inherently be some
mixture and dilution of gene signatures. Although it is
well established that whole blood expression profiles are
capable of illuminating aspects of autoimmune pathology,
immune cell sub-type analyses will have higher resolution
[18]. Single-cell RNA-Seq has great potential both to trace
general features of peripheral blood gene expression to
specific cell types and to foster accurate eQTL analysis

at the sub-type level. Thirdly, we describe just a
cross-sectional snap shot of the transcriptome of each
subject, whereas longitudinal profiling has the promise of
correlating personalized transcriptional shifts to clinical
response [77].

Conclusions
Gene expression and genotyping data can help to
categorize sub-types of JIA and IBD beyond just clinical
features. The gradient of gene expression from healthy
controls to oligoarticular, polyarticular, and systemic JIA to
IBD reflects a complex interplay between adaptive and in-
nate immunity responsible for differentiation between JIA
sub-types. Individuals have sub-type-specific probabilities
of having one of a small number of global gene expression
profiles. Since the majority of eQTL appear to have similar
effect sizes across disease sub-types, disease-specific eQTL
effects only explain a small fraction of disease-specific gen-
etic influences on disease. Considerably more fine map-
ping and functional analysis will be required before
personalized therapeutic interventions for patients with
distinct forms of JIA or IBD become commonplace.
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