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A segregating population of 136 recombinant inbred lines derived from a cross between the durum wheat cv. “Simeto” and
the T. dicoccum accession “Molise Colli” was grown in soil and evaluated for a number of shoot and root morphological
traits. A total of 17 quantitative trait loci (QTL) were identified for shoot dry weight, number of culms, and plant height
and for root dry weight, volume, length, surface area, and number of forks and tips, on chromosomes 1B, 2A, 3A, 4B, 5B,
6A, 6B, and 7B. LODs were 2.1 to 21.6, with percent of explained phenotypic variability between 0.07 and 52. Three QTL
were mapped to chromosome 4B, one of which corresponds to the Rht-BI locus and has a large impact on both shoot
and root traits (LOD 21.6). Other QTL that have specific effects on root morphological traits were also identified.
Moreover, meta-QTL analysis was performed to compare the QTL identified in the “Simeto” x “Molise Colli” segregating
population with those described in previous studies in wheat, with three novel QTL defined. Due to the complexity of
phenotyping for root traits, further studies will be helpful to validate these regions as targets for breeding programs for

optimization of root function for field performance.

1. Introduction

The root system architecture defines the shape and spatial
arrangements of the root structure within the soil [1]. A
number of factors contribute to the definition of the mor-
phology of the root system, such as the angle and rate of root
growth, and the diameters of the individual roots. The devel-
opment of the root structure depends on interactions
between the genetic features of a plant and the environment
in which the roots grow (i.e., soil type and composition, water
and nutrient availability, and microorganism profile). The
main challenge in studying root traits is the need for robust
and high-throughput methods for phenotypic evaluation

that can provide a proxy for field performance, because the
measurement of root traits under open field conditions
can be very difficult. This is particularly the case for
genetic studies that require analysis of large sets of samples.
For this reason, various hydroponic culture techniques have
been adopted, together with experimental systems with soil-
based growth substrates that can offer better tools to predict
plant behavior under field conditions, for example [2-5].
Once young seedlings have been grown in the laboratory or
in glasshouses with various methods [6, 7], scanner-based
image analysis can make root analysis less time consuming.
Therefore, although there is the limitation of the early
growth stage of the plants analyzed, this represents a


https://doi.org/10.1155/2017/6876393

decisive tool, as it allows the evaluation of large sets of
genotypes, as in the case of segregating populations or
association-mapping panels.

Many studies have been carried out to dissect out the
genetic basis of root system architectures. For cereals, quan-
titative trait loci (QTL) for root traits have been mapped in
rice (Oryza sativa L.) [8-14], maize (Zea mays L.) [15-17],
sorghum [18], and bread and durum wheat [4, 5, 19-37].
Linkage mapping has largely been used to map QTL for root
traits in biparental populations, although recently, associa-
tion mapping with germplasm collections has also been used
in durum wheat [35, 37]. Altogether, these studies have
shown relatively complex genetic control for root traits and
strong environmental effects, with only a few examples of
QTL that can individually explain up to 30% of the pheno-
typic variation in rice [38, 39] and maize [40] and up to
50% in wheat [4]. In most cases, root traits are regulated by
a suite of small-effect loci [41]. Uptake of water and nutrients,
anchorage in the soil, and interactions with microorganisms
are among the main functions of the root structure, and these
are responsible for crop performance, in terms of yield and
quality. Indeed, some studies have shown overlap of QTL
for root features with QTL for traits related to productivity
[35, 37, 42-45]. Moreover, despite the complexity of the
genetic control of root traits, there are some examples in
which marker-assisted selection for root QTL has been suc-
cessfully exploited to improve the root-system architecture
and yield in rice [45, 46] and maize [40, 47].

Grain yield in wheat has been greatly improved over the
last century, with the introduction of semidwarf wheat culti-
vars that are characterized by higher harvest index compared
to taller genotypes [48]. Many studies have focused on the
relationships between above-ground biomass and root
growth; nevertheless, controversial results have been
reported. In general, recent studies have indicated the
absence of a clear correlation between shoot and root growth
in wheat, with shoot and root traits reported to be controlled
by different sets of genetic loci [21, 49-51]. Different conclu-
sions have been reported in other studies. Miralles et al. [52]
indicated that spring wheat plants with dwarfing genes are
characterized by reduced plant height but increased root
length and dry weight. More recently, Kabir et al. [36] ana-
lyzed two bread-wheat segregating populations and defined
a negative correlation between root traits and plant height
in both of the populations. On the contrary, Subira et al.
[53] indicated that the Rht-BI1b dwarfing allele is effective in
reducing both aerial and root biomass in durum wheat.

In the present study, a durum wheat (Triticum turgidum
L. var. durum) population of 136 recombinant inbred lines
(RILs) was grown in soil under controlled conditions to
identify the chromosome regions that are involved in the
control of their root and shoot architecture.

2. Materials and Methods

2.1. Genetic Materials. The RIL population of 136 F6 lines
that was used in the present study was developed from a cross
between the Italian durum wheat cv. “Simeto” (Capeiti/
Valnova) and a cultivar of T. dicoccum known as “Molise Colli”
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that was selected within the framework of a local population
of T. dicoccum (from the Regional Agency for Development
and Innovation of Agriculture of the Molise Region (Agenzia
Regionale per lo Sviluppo e I'Innovazione dell’Agricoltura
della Regione Molise)).

2.2. Plant Growth and Soil Sampling. The RIL population and
the parents were grown in plastic cylinders containing a soil
mixture (soil: sand, 50:50; v/v). Before the pot experiments,
soil with a history of exposure to annual cereal species was
collected (in July 2013) from the experimental farming sta-
tion of the Cereal Research Centre in Foggia (Italy; 41°28'
N, 15°34' E; 76m a.s.l.). The samples were collected from
the upper 30cm of the soil profile and air dried for 1
week. They were then thoroughly mixed, passed through
a 2mm sieve (to remove gravel fragments), cleaned of
plant debris, and stored in a cold room (4°C) until further
use. This soil was an unsterilized loam soil (USDA classifica-
tion system) with the following characteristics: 21% clay, 43%
silt, 36% sand, pH 8 (in H,0), 15 mg/kg available phospho-
rous (Olsen method), 800 mg/kg exchangeable potassium
(NH,Ac), and 21g/kg organic matter (Walkey-Black
method). Silica sand with a grain size that ranged from
0.4mm to 0.1 mm was used. The soil mixture is hereinafter
referred to as “soil.”

Before sowing the seeds, they were surface sterilized by
soaking them in 2% sodium hypochlorite for 5 min and then
rinsed several times with distilled water. The seeds were put
into Petri dishes with one sheet of filter paper (Whatman
number 1) that was moistened with 5mL distilled water,
and these were kept in a dark incubator at a constant temper-
ature of 20°C for 48 h. Three germinated wheat seeds (roots,
<1 cm) of each genotype were seeded into each of the plastic
pots (diameter, 7 cm; height, 26 cm) that contained 1.3kg
soil, and then 40kg/ha NH,NO, (26% elemental nitrogen)
was applied. The pots were lined with a filter paper
(Whatman 3MM) to avoid soil loss. Immediately after
sowing, 200 mL deionized water was added to each pot. To
maintain the soil moisture, the seedlings were regularly
watered at 3-day intervals to 70% of field capacity. The pots
were placed in a growth chamber with a 16 h/8h light/dark
period at 20°C/16°C, with a light intensity of 1000 gmol
photons/m?*/s photosynthetically active radiation at the leaf
surface. The experiments were performed using a completely
randomized design, with four replicates.

After emergence, the seedlings were thinned to one plant
per pot. These plants were grown until they were at the 5th
leaf developmental stage (Zadoks growth scale 15; [54]).
When they reached this stage, the days after sowing, maxi-
mum shoot lengths (cm), and number of shoots were
recorded. The plants were collected by pulling them from
the soil in the pots, with all of the plant material manually
removed from the pot and the shoots and roots washed with
deionized water. The roots were stored at 4°C in 75% ethanol,
to preserve the tissue until all of the analyses had been done.
After the analysis, the aerial parts of the samples and the
roots were oven dried for 72h at 70°C and finally weighed,
to obtain the shoot dry weight (mg/plant) and root dry
weight (mg/plant).
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2.3. Scanner-Based Image Analysis. The root measurements
were performed using the Win-RHIZO system (version
4.0b; Regent Instruments Inc., Quebec, Canada), which is
an interactive scanner-based image analysis system for
scanning, digitizing, and analyzing of root samples. A
Windows-based PC, with a Pentium (R) D CPU and
992 MB RAM, and a scanner (Perfection V700/V750 2.80A;
Epson) set to a scanning resolution of 200 dots per inch
(dpi: 118.11 dots per cm) were used. The scanner had two
light sources, one located above, on the scanner cover, and
the other below, incorporated in the main body of the scan-
ner. The root samples were placed in a plexiglass tray
(20cm x 30 cm) with a 4mm to 5mm deep layer of water.
They were adjusted to help untangle the roots and to mini-
mize root overlap. Several morphological traits of the roots
were recorded using the root analysis software, as length
(cm), surface area (cm?), mean diameter (mm), volume
(cm?®), and number of tips, forks, and crossings. All of these
parameters were measured individually, and for length, sur-
face area, volume, and tips, the roots were then classified into
10 different classes based on their diameters: class 1, 0.0-
0.5mm; class 2, 0.5-1.0mm; class 3, 1.0-1.5mm; class 4,
1.5-2.0mmy; class 5, 2.0-2.5mm; class 6, 2.5-3.0 mm; class
7, 3.0-3.5 mm; class 8, 3.5-4.0 mm; class 9, 4.0-4.5 mm; and
class 10, >4.5 mm.

2.4. Statistical Analysis. The means, standard deviations,
coeflicients of variation, and ranges of each measured mor-
phological trait were separately calculated for each genotype.
The data were also analyzed using ANOVA, and the homo-
geneity of the phenotypic variance between the replications
was verified, with the means separated by Fischer’s protected
least-significant difference at P < 0.05 for all of the traits, to
test the differences across the RILs and the two parents
(i.e., “Molise Colli” and “Simeto”). The heritability (H) was
estimated for each trait, as in

H=2 (1)

where 0y? and 0% are the between-line variance (as an
estimate of the genotypic variance) and the total variance
(as an estimate of the phenotypic variance), respectively, as
estimated from the mean squares of the analysis of variance.

To obtain a general comprehensive characterization of
the samples, the root traits were subjected to principal com-
ponent analysis (PCA) based on correlations, followed by
factor analysis. To overcome differences in size during
recording, the data for the different traits were standardized
to a mean of zero and variance of one [55]. The components
that represented the original variables (traits) were also
extracted. Only those with eigenvalues > 3.0 were considered
as having a major contribution to the total variation [56]. The
first and second principal component axis scores were
plotted to aid the visualization of the genotype differences.
All of the statistical analyses were performed using the JMP
software (version 8.0; SAS Institute Inc.).

Genome-wide QTL searches were conducted on the
“Simeto” x “Molise Colli” linkage map that was described

by Russo et al. [57]. Briefly, the map covers all of the 14
chromosomes of the durum wheat genome with 9040
markers on 2879.3 cM. The “Simeto” x “Molise Colli” segre-
gating population (SMC) was also genotyped with the
markers BF-MR1 and BF-WRI, to infer the presence of the
alleles Rht-B1b and Rht-Bla, respectively [58]. The inclusive
composite interval mapping method [59] was used for the
QTL mapping, with the QGene 4.0 software [60]. The
scanning interval of 2cM between markers and putative
QTL with a window size of 10cM were used to detect
QTL. The marker cofactors for background control were
set by single marker regression and simple interval analysis,
with a maximum of five controlling markers. Putative QTL
were defined as two or more linked markers that were associ-
ated with a trait at a log,, odds ratio (LOD) > 3. Suggestive
QTL at the subthreshold of 2.0<LOD<3.0 are reported
for further investigations [61]. For the main QTL effects,
the positive and negative signs of the estimates indicated
that “Simeto” and “Molise Colli,” respectively, contributed
toward higher value alleles for the traits. The proportion
of phenotypic variance explained by a single QTL was
determined by the square of the partial correlation coeflicient
(R?). Finally, the 95% confidence intervals of the QTL were
estimated using the approach of Darvasi and Soller [62], as
given in
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Confidence interval = —
N xR

(2)

where N is the population size and R? is the proportion of the
phenotypic variance explained by the QTL.

2.5. Meta-QTL Analysis. Twelve previously published studies
were identified that reported QTL for root traits (see Supple-
mentary Table S1 available online at https://doi.org/10.1155/
2017/6876393). An integrated map of the A and B genomes
was constructed using the wheat map developed with a 90K
single-nucleotide polymorphism (SNP) array [63] on which
a durum-wheat linkage map was projected, based on the
SNP and simple sequence repeat (SSR) markers (“Cic-
cio” x “Svevo”) by Colasuonno et al. [64], together with the
SMC genetic map. The map obtained was used as the refer-
ence map for merging another wheat consensus map that
included diversity array technology (DArT) and PCR-based
markers, as described in Marone et al. [65, 66]. The chromo-
somal regions that contained QTL for root traits retrieved in
the literature were also integrated. All of the calculations for
both the creation of the integrated map and the QTL projec-
tions were performed with the Biomercator software v.4. For
n individual QTL, the Biomercator software tests the most
likely assumption between 1, 2, 3, 4, and n QTL. The Akaike
information criterion (AIC) was considered to select the
best QTL model that indicated the number of meta (M)
QTL. The model with the lowest AIC was considered the
best fit. When the n model was the most likely model,
the meta-analysis was performed again, choosing a subset
of the QTL. The MQTL were obtained from the midpoint
positions of the overlapping QTL.
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TaBLE 1: Details of all of the traits for which a QTL was identified in the present study.
Trait Unit Abbreviation
Crossing number — C
Shoot number per plant — Shoots
Plant height cm PH
Shoot dry weight g SDW
Root dry weight g RDW
Length cm L
Length, diameter class 0.0 <d <0.5mm cm L1
Length, diameter class 0.5 <d < 1.0 mm cm L2
Length, diameter class 1.0 <d <1.5mm cm L3
Length, diameter class 1.5<d <2.0 mm cm L4
Length, diameter class 2.0 <d <2.5mm cm L5
Length, diameter class 2.5 <d <3.0 mm cm L6
Length, diameter class 4.0 <d <4.5mm cm L9
Surface area cm? SA
Surface area, diameter class 0.0 <d <0.5mm cm? SA1
Surface area, diameter class 0.5<d < 1.0 mm cm? SA2
Surface area, diameter class 1.0<d <1.5mm cm? SA3
Surface area, diameter class 1.5<d <2.0 mm cm? SA4
Surface area, diameter class 2.0 <d <2.5mm cm? SA5
Surface area, diameter class 2.5 <d <3.0 mm cm? SA6
Surface area, diameter class 4.0 <d <4.5 mm cm? SA9
Volume cm’ \Y%
Volume, diameter class 0.0 <d <0.5 mm cm’® Vi1
Volume, diameter class 0.5<d < 1.0 mm cm® V2
Volume, diameter class 1.0<d <1.5mm cm® V3
Volume, diameter class 1.5 <d <2.0 mm cm® V4
Volume, diameter class 2.0 <d <2.5mm cm’ V5
Volume, diameter class 2.5 <d < 3.0 mm cm’® V6
Volume, diameter class 4.0 <d <4.5mm cm® V9
Number of tips — T
Number of tips, diameter class 0.0 <d < 0.5 mm — T1
Number of tips, diameter class 0.5 <d < 1.0 mm — T2
Number of tips, diameter class 1.5 <d <2.0 mm — T4
Number of tips, diameter class 2.0 <d < 2.5 mm — T5
Number of tips, diameter class 2.5 <d <3.0 mm — T6
Number of tips, diameter class 3.0 <d <3.5 mm — T7

3. Results

3.1. Evaluation of the Phenotypic Data. The analysis of the
phenotypic data revealed that the two parents were clearly
different in terms of the size of the shoot. “Molise Colli”
was characterized by greater shoot height and dry weight,
compared to “Simeto.” This was expected, as “Molise Colli”
is derived from an accession of T. dicoccum, while “Simeto”
is a modern durum wheat variety. This difference in growth
between these two genotypes was also observed for the root
structure. There was a significant difference between these
parents for root dry weight (“Molise Colli,” 46.7 mg;
“Simeto,” 33.9 mg). These data indicated that “Molise Colli”

is characterized by superior growth with respect to “Simeto”
for both the aerial and root parts, even if the differences
observed for the root lengths, surface areas, diameters,
volumes, and numbers of tips were not significantly
different. For the segregating population, there was a large
range of variation for all of the examined traits, with sig-
nificant differences across the RILs (Table 2; Supplementary
Tables S2 and S3).

In the PCA, the first two principal components (PCs)
explained about 65% of the total variation among the 138
genotypes evaluated for 50 morphological root traits
(Figure 1). According to the factor loadings, PC1 was posi-
tively correlated with root volume, length, and surface area
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TaBLE 2: Phenotypic variations among the parental lines and RILs from the “Simeto” x “Molise Colli” population for the shoot and root traits.

Trait Units  “Molise Colli”  “Simeto” Mean Min. Max. Range +SD CV (%) H LSDy o5
DAS Days 23.30 22.80 24.70 19.80 34.00 14.30 2.70 11.00 0.35 4.22
PH cm 60.90 39.40 53.40 36.20 71.20 35.00 8.10 15.20 0.76 6.09
Shoots N 1.75 1.00 1.58 1.00 2.25 1.25 0.38 24.35 0.29 0.66
SDW mg 212.90 162.60 221.70 121.00 380.90 260.00 56.50 25.50 0.63 0.06
RDW mg 46.70 33.90 51.50 13.50 106.60 93.10 18.30 35.50 0.27 0.03
L cm 1317.20 1096.20 1355.00  377.20 2439.40 2062.10 395.40 29.20 0.35 616.70
SA cm? 135.40 108.10 128.20 33.90 234.00 200.20 40.30 31.40 0.47 52.30
D mm 0.33 0.31 0.30 0.23 0.38 0.15 0.03 9.10 0.08 0.07
F N 4546.25 3270.00 535222 994.00  12172.75  11178.75  2352.46 43.95 0.34  3747.18
\Y% cm? 1.12 0.86 0.99 0.25 222 1.96 0.36 36.50 0.45 0.48
T N 1860.30 1513.80 1990.10  679.00 3303.80 2624.80 597.50 30.00 0.35 929.20

Min.: minimum value; max.: maximum value; SD: standard deviation; CV: coefficient of variation; H: broad sense heritability; LSD: least significant difference;
DAS: days after sowing; PH: plant height; shoots: number of shoots per plant; SDW: shoot dry weight; RDW: root dry weight; L: length; SA: surface area;
D: diameter; F: number of forks; V: volume; T: number of tips.
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F1GURE 1: Principal component analysis score plot of the first two principal components of the parental lines and RILs from the durum wheat
“Simeto” x “Molise Colli” population for the root traits.

in the root-diameter classes from 0.5 mm to 3.0mm. PC2was ~ 0.5mm. In particular, “Molise Colli” showed higher values
negatively associated with the number of crossings and the  for all root traits in the root-diameter classes 0.0mm to
root length in the root-diameter classes from 0.0mm to  2.0mm, for which the most significant differences were



observed in terms of total variability, while “Simeto” was
phenotypically superior for root traits in the larger root-
diameter classes (Supplementary Table S2). These traits can
be considered as key characteristics for the estimation of
the genetic diversity in a durum wheat population. Due
to the high phenotypic variation, the scatter diagram showed
wide dispersion along both of the PC axes and evident and
significant groups of genotypes with different root architec-
tures (Figure 1).

Moreover, correlation analysis was carried out consider-
ing the root traits evaluated in the present study and the traits
related to seed size and morphology that were previously
analyzed [57]. In particular, the means over 2 years of
field evaluation were considered, and the most significant
correlations were between 1000-kernel weight and seed area
on the one hand and a number of root traits on the other
(Supplementary Table S4).

3.2. QTL Mapping for Root Traits in the Durum Wheat
“Simeto” x “Molise Colli” RIL Population. The linkage map
used for the QTL analysis included SSR and SNP markers
for a total of 9040 markers that covered 2879.3cM [57].
A total of 61 QTL covering 17 chromosomal regions were
identified in the present study, which were located on
chromosomes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B (Table 3).
Some of these QTL controlled the above-ground biomass
(e.g., number of shoots, plant height, and shoot dry weight),
and for all of these, the “Molise Colli” allele effect was
positive, as indicated by the negative sign of the additive
effects. The analysis with the markers BF-MR1 and BEF-
MR2 allowed “Simeto” to be assigned by the RAt-BIb
allele, while “Molise Colli” was characterized by the Rht-
Bla allele. The scoring of the markers across the segregat-
ing population led to locate this locus on the SMC genetic
map (Figure 2). The region on chromosome 4B that corre-
sponds to the Rht-BI region was of particular interest; this
controlled plant height, shoot dry weight, and a number of
root morphological traits, most of which were in the smallest
root-diameter classes. The LODs were very high for the shoot
traits (12.1-21.6), with the explained variability between 52%
for plant height and 34% for shoot dry weight. For the root
traits controlled by this QTL, the LODs were between
3.1 for root volume class 3 and 7.4 for root surface area.
The observed variability explained by this QTL was from
10% to 22%. The highest R* values were observed for root
surface area and volume in root-diameter class 1. All of
the root traits explained by this QTL were in root-
diameter classes 1, 2, and 3, except for root volume and
surface area, which were in class 6. As well as this region
on chromosome 4B, other QTL involved in the control of
shoot traits were identified: QTL6 for the number of shoots
per plant and number of root tips in root-diameter class 2
was located on chromosome 2A and explained 17% of
the observed variability, with a LOD of 5.4. The allele of
“Molise Colli” was effective in increasing the trait. The
same allelic effect was found for QTL7 on chromosome
3A and QTL13 on chromosome 6A, which controlled
plant height (QTL7) and plant height and leaf dry weight
(QTL13). The LODs were between 3.4 and 5.2 for these
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QTL, which explained from 11% to 17% of the observed
phenotypic variability.

All of the other QTL identified in the present study were
specifically involved in the control of root traits. In some
cases, these QTL controlled only a single trait, as for chromo-
some region 5 on chromosome 2A for root volume and chro-
mosome region 2 on chromosome 1B for the number of root
tips in root-diameter class 2. For the allelic effects, the effect
of the “Molise Colli” allele was positive for QTL2, and the
effect of the “Simeto” allele was positive for a QTL identified
in chromosome region 5. Most of the QTL identified in the
present study showed effects on many different root traits,
but only for specific root-diameter classes. The QTL identi-
fied in chromosome regions 11, 14, and 15 on chromosomes
4B, 6A, and 6B, respectively, were involved in the control of
various root traits and, in particular, for root-diameter class
1. The QTL mapped to chromosome region 10 were also on
chromosome 4B, and as well as the number of forks, they
controlled the root lengths, volumes, and surface area as in
root-diameter class 2. A positive effect of the “Molise Colli”
allele was observed for all of these QTL. QTL in chromosome
region 16 on chromosome 6B explained 9% to 12% of the
observed phenotypic variability for root length, volume,
and surface area for root-diameter classes 4 to 6. In this case,
the values of these traits were increased by the allele of
“Simeto.” The same allelic effect was observed for QTL in
region 17 on chromosome 7B, which explained 11% of the
observed variability for length, surface area, and volume,
but only for root-diameter class 9.

3.3. Meta-QTL Analysis. A number of studies have reported
QTL for root traits in wheat based on reliable information,
such as R? confidence intervals, and common markers (see
Supplementary Table S1). To compare the QTL regions in
the SMC genetic map with those reported in the literature
and to identify the precise consensus QTL, MQTL analysis
was carried out. A very dense consensus map comprising
the A and B genomes was used for this meta-analysis. This
was composed of >40,000 markers and spanned a total map
length of 2791 cM. More details about the final consensus
map will be the aim of a future study, such as the number
of markers per chromosome and the mean marker distances.
Here, only the chromosomes involved with the QTL
identified in the SMC genetic map are reported, along
with the data on the MQTL (Figure 2).

The meta-analysis was launched on 100 QTL for a num-
ber of traits linked to the growth and morphology of the root
structure retrieved from the literature and the 17 QTL
regions identified in the present study, which resulted in 34
MQTL. The MQTL merged from two to eight individual
QTL. The MQTL are reported in Table 4, along with the
AICs, confidence intervals, flanking markers, and number
of initial QTL involved. Twenty-nine out of the initial 100
QTL remained as singletons, their numbers per chromosome
ranged from 1 (3A, 5B, 7B) to 2 (1B), and some of these were
found only in the SMC (Figure 2, Table 4). The 95%
confidence intervals of the MQTL varied from 0.5cM to
30.5 cM, with a mean of 5.6 cM. The MQTL were on chromo-
somes 1B, 2A, 3A, 4B, 5B, 6A, 6B, and 7B. All of the MQTL
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TaBLE 3: QTL detected in the “Simeto” x “Molise Colli” RIL populations for the evaluated traits.
Chromosome region QTL Interval Position (cM) Peak marker Chr. Trait LOD R*> Add. eff
1 qF-1B 10.4 0 Excalibur_c71158_117 1B-1 F 3.6  0.12 697.21
qC1B 7.2 0 Excalibur_c71158_117 1B-1 C 53 0.17 428.62
2 qT2-1B.1 14.1 36 RACS875_c195_499 1B-1 T2 2.6 0.09 -1.21
3 qT2-1B.2 11.8 72 BS00110148_51 1B-1 T2 3.2 0.1 -1.26
4 qT4-1B.1 10.2 50 CAP11_c6406_104 1B-2 T4 3.7 0.12 0.06
5 qT2-2A.1 11.4 28 BS00067159_51 2A-1 \% 33  0.11 0.11
6 qShoots-2A.1 7.2 2 BS00062843_51 2A-3 Shoots 54 0.17 -0.14
7 qPH-3A.1 7.3 12 TA015264-0958 3A-2 PH 53 0.17 -2.49
8 qT2-3A.1 10.1 12 wsnp_BE426418A_Ta 2 1 3A-4 T2 3.7 012 -1.41
9 qV-4B.1 8.7 28 Tdurum_contig51688_681  4B-1 \% 44 0.14 -0.13
qL3-4B.1 11.6 28 Tdurum_contig51688_681  4B-1 L3 3.2 0.1 -2.59
qSA3-4B.1 11.8 28 Tdurum_contig51688_681  4B-1 SA3 3.2 0.1 -0.92
qSA6-4B.1 11.6 28 Tdurum_contig51688_681  4B-1 SA6 3.2 0.1 —0.08
qV3-4B.1 11.9 28 Tdurum_contig51688_681  4B-1 V3 3.1 0.1 -0.03
qV6-4B.1 11.8 28 Tdurum_contig51688_681  4B-1 Vo6 3.2 0.1 -0.01
qPH-4B.1 2.3 32 Tdurum_contig51688_681  4B-1 PH 21.6 0.52 -6.56
qSDW-4B.1 3.6 32 Tdurum_contig51688_681 4B-1 SDW 121 0.34 —-0.04
qRDW-4B.1 6.7 32 Tdurum_contig51688_681 4B-1 RDW 58 0.18 -0.01
qSA-4B.1 54 32 Tdurum_contig51688_681  4B-1 SA 74 022 -20.5
qT-4B.1 8.9 32 Tdurum_contig51688_681  4B-1 T 43 0.13 -234.13
qV1-4B.1 5.7 32 Tdurum_contig51688_681 4B-1 V1 69 021 -0.05
qT1-4B.1 8.9 32 Tdurum_contig51688_681  4B-1 T1 42 0.13  -2327
qL-4B.1 5.6 34 Tdurum_contig63153_343  4B-1 L 7.1 022 -200.86
qF-4B.1 7.1 34 Tdurum_contig63153_343  4B-1 F 55 0.17 -1064.59
qL1-4B.1 7.3 34 Tdurum_contig63153_343  4B-1 L1 53 0.17 -158.61
qSA1-4B.1 6.1 34 Tdurum_contig63153_343  4B-1 SA1 6.5 0.2 -9.58
qV2-4B.1 6.9 36 Tdurum_contig63153_343  4B-1 V2 56 0.17 -0.07
qC-4B.1 6.5 38 Tdurum_contig63153_343  4B-1 C 6 0.18 —478.32
qL2-4B.1 6.5 38 Tdurum_contig63153_343  4B-1 L2 6 0.18  -20.37
qSA2-4B.1 6.5 38 Tdurum_contig63153_343  4B-1 SA2 6 0.19 -4.05
10 qV2-4B.2 9.1 94 Tdurum_contig28920_296  4B-1 V2 42 0.13 -0.06
qL2-4B.2 17.1 96 Tdurum_contig4795_404 4B-1 L2 22 0.07 -29.3
qSA2-4B.2 16.6 96 Tdurum_contig4795_404 4B-1 SA2 22 0.07 -5.91
qF-4B.1 17.9 104 Tdurum_contig29112_483  4B-1 F 2.1 007 -532.67
11 qL-4B.2 9.7 122 Tdurum_contig56458_594  4B-1 L 39 012 -125.98
qSA-4B.2 7.8 122 Tdurum_contig56458_594  4B-1 SA 49 015 -14.14
qL1-4B.2 12.5 122 Tdurum_contig56458_594  4B-1 L1 3 0.1 -97.79
qSA1-4B.2 8.1 122 Tdurum_contig56458_594  4B-1 SA1 4.7  0.15 -7.07
qV1-4B.2 8 122 Tdurum_contig56458_594  4B-1 V1 48 0.15 -0.04
12 qT7-5B.1 12.2 24 Excalibur_c9969_98 5B-1 T7 3.1 0.1 —0.02
13 qPH-6A.1 11 0 TA001855-0472 6A-2 PH 34  0.11 -1.89
qSDW-6A.1 7.4 0 TA001855-0472 6A-2 SDW 52 0.16 —0.02
14 qT-6A.1 10.4 24 Excalibur_rep_c103232_355 6A-2 T 3.6 0.12 -180.92
qL1-6A.1 13.3 24 Excalibur_rep_c103232_355 6A-2 L1 2.8 0.09 -94.13
qSA1-6A.1 14.1 24 Excalibur_rep_c103232_355 6A-2  SAl 2.6 0.09 -5.03
qT1-6A.1 10.4 24 Excalibur_rep_c103232_355 6A-2 T1 3.6 0.12 -180.09
15 qT-6B.1 10.7 20 Excalibur_c28771_400 6B-2 T 3.5 011 -195.9
qT1-6B.1 10.7 20 Excalibur_c28771_400 6B-2 T1 3.5 011 —-194.99
16 qL4-6B.1 13.2 98 Kukri_c5168_162 6B-2 L4 2.8 0.09 0.55
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TaBLE 3: Continued.

Chromosome region QTL Interval Position (cM) Peak marker Chr. Trait LOD R*> Add. eff
qSA4-6B.1 13 98 Kukri_c5168_162 6B-2 SA4 2.8 0.09 0.29
qSA6-6B.1 13.3 98 Kukri_c5168_162 6B-2 SA6 2.8 0.09 0.07
qV4-6B.1 13 98 Kukri_c5168_162 6B-2 V4 29 0.09 0.01
qV6-6B.1 13.5 98 Kukri_c5168_162 6B-2 V6 2.8 0.09 0.01
qL5-6B.1 10.2 100 CAP7_c3697_87 6B-2 L5 3.7 0.12 0.23
qL6-6B.1 13.5 100 CAP7_c3697_87 6B-2 L6 2.8  0.09 0.08
qSA5-6B.1 10.2 100 CAP7_c3697_87 6B-2 SA5 3.7 0.12 0.15
qV5-6B.1 10.1 100 CAP7_c3697_87 6B-2 V5 3.7 0.12 0.01
17 qL9-7B.1 11.3 14 RAC875_c23521_589 7B-1 L9 33 011 0.01
qSA9-7B.1 11.3 14 RAC875_c23521_589 7B-1 SA9 33 011 0.01
qV9-7B.1 11.1 14 RAC875_¢23521_589 7B-1 V9 34 0.11 0.001

Chr.: chromosome; LOD: log, , odds ratio; Add. eff.: additive effects.

identified corresponded to chromosomal regions that are
involved in the control of a number of root traits. In some
cases, these resulted from individual QTL, each of which is
involved in the control of a different trait. As an example,
MQTL22 was mapped to chromosome 6A and merged three
individual QTL for root numbers, lateral roots, and root dry
weights. In the other cases, the MQTL merged two or more
QTL that explained the same trait, for example, MQTL23
on chromosome 6A merged two individual QTL for root
dry weight and one QTL for total root length, and one more
that explained root length, surface area, volume, and tip
number. Based on the molecular markers mapped to both
chromosomes 6A and 6B, a homoeologous relationship can
be established between MQTL26 (6A) and 30 (6B) and
between MQTL27 (6A) and 31 (6B). In particular, MQTL27
and MQTL31 are both involved in the control of root length.

Based on this MQTL analysis, three QTL identified in the
SMC in the present study did not correspond to previously
published QTL. Two QTL were mapped to chromosomes
3A and 5B and were related to the number of root tips,
although in different root-diameter classes. The third QTL,
on chromosome 7B, was involved in the control of root
length, surface area, and volume, although only in the largest
root-diameter class.

4. Discussion

A number of methods have been described for phenotypic
evaluation of root morphology under controlled conditions
for numerous samples, as required for genetic analyses (e.g.,
[2-5, 35]). In the present study, a method in which the plants
were grown in soil mixed with sand was used, to have more
reliable data. The use of this growth substrate and the growth
stage considered allowed us to carry out an evaluation of the
root system that is independent of the effect of seed weight.

For bread and durum wheat, linkage and association
mapping studies have both been carried out to identify chro-
mosome regions involved in the control of root traits. In
most studies, elite and old cultivars were used, and although
good phenotypic variability has been observed [31, 35, 37], it
can be useful to consider more genetically diverse genotypes

to search for novel haplotypes that control root architecture.
On this basis, a biparental population derived from a durum
wheat elite cultivar and a T. dicoccum accession represents a
valuable resource to identify novel loci of interest for root
traits. The parents of this SMC, “Simeto” and “Molise Colli,”
are very different in terms of plant morphology, for both the
aerial and below-ground organs, and this can provide indica-
tions of the relationships between plant height and the devel-
opment of the root system. Moreover, the two parents are
also different in terms of seed size and morphology, and in
a previous study, a genetic map with more than 9000 SNP
markers was used to identify QTL for seed morphology [57].
When evaluated at Zadoks stage 15, the two parents
were clearly different for plant height, shoot dry weight,
and root dry weight, whereby “Molise Colli” showed greater
growth with respect to “Simeto” for the whole plant. When
specific root traits were considered, in all cases, “Molise
Colli” had higher phenotypic expression compared to
“Simeto,” although this difference did not reach significance.
Significant differences were observed across the RIL popula-
tion, with large and transgressive variations for all of the
traits examined. This indicates that both genotypes have loci
that contribute to the development of the root structure.
The MQTL analysis was carried out to compare the
genetic positions of the QTL identified in the present study
with those of previously published QTL in wheat. An inte-
grated map that contained different types of molecular
markers was used to project the known QTL, which is of par-
ticular importance as the SMC genetic map which nearly
contains only SNPs from the Infinium 90K wheat assay.
Some of the QTL identified in the present study were seen
for chromosome regions in which a MQTL was present, as
for MQTLI1 (chromosome 1B), MQTL2 (chromosome 2A),
MQTL3 (chromosome 3A), MQTL9 (chromosome 6A),
MQTL11 and MQTL12 (chromosome 6B), and MQTLI13
(chromosome 7B). For MQTL2 and MQTL3, the QTL for
the number of shoots per plant and for plant height, respec-
tively, were coincident with the QTL previously reported for
root traits. Closely linked genes or a single locus with pleio-
tropic effects might be responsible for these different traits.
Considering the results of this MQTL analysis and the studies
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from literature are not indicated with the QTL name reported in the correspondent study but with a nomenclature in which the trait and the
reference are reported, as indicated in Table S1, for clarity. The same for the QTL identified in the present study, which are reported with the

acronym “SMC” (i.e., “Simeto” x “Molise Colli” population). The genetic position of the Rht-B1 locus on chromosome 4B is also reported.
Vertical lines on the right of the chromosomes indicate the confidence intervals, and horizontal lines indicate the peak marker positions,
where the length represents the percentage of variability explained by the QTL. The MQTL are in bold, while the single QTL are in gray.

The names of the QTL grouped in the same MQTL are in the same color.
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TaBLE 4: Characteristics of the MQTL (in bold) and single QTL (in italics) identified in the meta-analysis in the present study.

Position 1% MQTLisingle Number
Chr. MQTL/single QTL AIC (cM) initial QTL CI (cl%/l) Flanking markers of involved
CI (cM) QTL
TRL, TRV
1B (Maccaferri et al. 2016) 4.66 12.8 BS00071333_51-BS00023084_51a
FE,C (SMC) 24.7 16.7 Excalibur_c71158_117-BobWhite_c28295_256
MQTL1 3972 445 6.3 1.4 wPt-7529-Xgwm413
MQTL2 ' 62 11.3 4.8 P4133-170-RAC875_c4377_524 4
TRL, ARL
(Macca ferri et al. 2016) 68.2 1.5 wsnp_Hu_c30982_40765254-Xcfd59b
QArn.1 .
(Guo et al. 2012) 79.9 2.6 RFL_Contig4576_702-CAP8_c4697_108a
SL
(Maccaferri et al. 2016) 87.7 7 wPt-3579-Ku_c1932_1583
MTQL3 20.14 96.1 8 4.4 BS00072289_51-RFL_Contig2826_548 2
T4 (SMC) 111 7.8 BS00072791_51-wsnp_Ex_c27176_36393952
qDRR1 . :
(Hamada et al. 2012) 1394 1.6 Tdurum_contig29059_185-Xwmc728
2A MTQL4 7599 40.5 27.2 11.7 Tdurum_contig74742_224-wPt-5839 4
MTQL5 ’ 106.6 25.8 0.5 Xwmc455-Xgwm372
qTRSA (Bai and :
Hawkesford 2013) 114.6 44.8 Xgwm445-Xwmcl81
MTQL6 20.4 159.6 17.2 9.7 RACS875_c1789_253-Excalibur_c21501_237 2
TRD, PRD .
3A (Maccaferri et al. 2016) 13.6 1.5 CAP11_c7974_175a-Excalibur_c11079_101a
MTQL7 9.39 65.8 9.9 6.9 CAP8_c1702_71-RAC875_c10628_941
MTQLS 31.94 94.9 12.5 1.6 wPt-6891-Xwmc489¢c
MTQL9 ' 107.3 10.9 4.5 wsnp_Ex_c4923_8767234-Excalibur_c24402_471 2
QMrl.1 .
(Guo et al. 2012) 123 52 wsnp_Ex_cl 89473575749—Tdurumicont1g83657319
MTQL10 140.3 5.9 2.8 Excalibur_c3429_652b-wsnp_Ku_c10468_17301042a 2
MTQL11 52.31 147.8 7.4 2 Xwmc215a-KukBi_c6645_570
MTQLI12 156.5 11.3 39 Tdurum_contig55841_351a-Kukri_c2596_146 2
T2 (SMC) 168.5 54 Xgwm480-Xwmc206d
QTrn.ubo .
(Maccaferri et al. 2016) 192 25.7 BS00108976_51-Tdurum_contig51914_740
QTrd.ubo
4B (Maccaferri et al. 2016) 9 18.4 RAC875_c215_329b-tplb0050b23_546
MTQL13 e 48.1 16.1 2.6 Tdurum_contig93615_540-BS00081631_51
MTQL14 ' 554 12.5 7.7 Xwmc617a-BS00065688_51 2
LRL, TRL, RN
(Ren et al. 2012) 60.4 0.9 Xgwm368-wPt-5497
MTQL15 63.7 5.8 3.1 kukri_c8973_1986-Tdurum_contig42307_2647 2
MTQL16 2404 69.6 3.9 1.1 Tdurum_contig92997_676-BS00022177_51b 2
MTQL17 ' 73.2 7.2 1.2 BobWhite_c12067_311-Xgwm375 8
MTQL18 88.3 17.5 9.2 Tdurum_contig46788_529-BS00004727_51 2
5B MTQL19 11.44 3.9 16.2 9.6 tplb0060p09_735-wPt-0033 2
MTQL20 12.43 36.5 10.7 33 Xwmc274b-RAC875_c60836_741a 2
TRL, SLL, SLSA,
SLV (Bai and 535 3.8 Xbarc74-Xgwm213a
Hawkesford 2013)
MTQL21 9.94 123.8 13.7 9 Tdurum_contig29967_456-wPt-1482b 2
T7 (SMC) 202.8 13.6 BS00024829_51-Excalibur_c9969_98
6A MTQL22 96 24.9 27.7 11.2 BS00082191_51-Ex_c68796_2057

MTQL23 64.09 56.5 7.7 2.8 TAAV4117-BS00063990_51 4
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TaBLE 4: Continued.
. Mean . Number
Chr. MQTL/single QTL AIC P(()S;\t/}?n initial IC\Q/I"I(;LTé/ISEnl%/IS Flanking markers of involved
¢ CI(cM) ¢ QTL
MTQL24 62.5 7.7 2.9 Xpsr312b-RAC875_c64560_111a 2
MTQL25 69.8 7.1 5 Xwmc807-Xbarc113 2
wsnp_Ra_c12086_19452422-
LRL (Ren et al. 2012) 76.8 3.8 Tdurum_contig75814_655
MTQL26 97.1 11.2 7.9 CAP7_c9578_263-Tdurum_contig92441 354
MTQL27 74.71 114.2 16.2 7.6 Wsnp_Ex_C20457_29526403—BObWhite_c5872_589
MTQL28 125.1 12 4 Xpsr546a-wPt-9976 5
QRga.ubo
(Maccaferri et al. 2016) 132.9 11.3 BS00062776_51a-Xwmc621
QRdw.3 .
(Guo et al. 2012) 162.2 9.6 TA005679-0546b-Excalibur_c62474_82
6B LRN 23.9 15.2 wPt-4233-Tdurum_contig50121_249
(Maccaferri et al. 2016) ’ ’ - 3 -
qRN (Ren et al. 2012) 33.6 17.9 wPt-0259b-wPt-7489
qLRL (Ren et al. 2012) 59.9 18.2 XksuD17-wPt-0446
MTQL29 20.69 69.5 7.8 4.1 Xwmc265¢c-BS00067644_51 3
SL (Maccaferri et al. 2016) 78.3 0.7 kukri_c45250_289-wPt-0397
Excalibur_rep_c94584 98-
MTQL30 6.79 806 4 27 Tdurum_contigd7269_241 2
PRL, TRN
(Maccaferri et al. 2016) 93.7 12.2 Xdupw216-tplb0021a17_853
MTQL31 15.79 100.3 8.8 6 wsnp_Ex_c18632_27501724-BS00063595_51 2
gMRL (Ren et al. 2012) 118.2 8.7 RAC875_c¢3455_171_BobWhite_rep_c63427 478
MRL2, MRL3, PRE
7B (Ren et al. 2012) 18.4 11.5 Xgwm569-RAC875_c23521_589
L9, S9, SA9 (SMC) 33 14.1 BS00062990_51-Xwmc597f
MTQL32 27.69 73.7 13.5 8 Xpsr103-GENE-4888_150
MTQL33 ’ 93.3 43.3 30.5 TC69176-Excalibur_c33267_263
QMRL (Liu et al. 2013) 128.6 5.5 rPt-3887-IAAV9045
PRS, PRL .
(Maccaferri et al. 2016) 143.6 13.4 Excalibur_c12644_58b-wPt-0600
MTQL34 2549 1622 11.5 8 Xmag1933-Excalibur_rep_c110429_536 2

Chr.: chromosome; AIC: Akaike information criterion; CI: confidence interval; cM: centimorgan; SMC: “Simeto” x “Molise Colli” population.

previously published on association mapping for root traits in
durum wheat [35, 37], to the best of our knowledge, three QTL
represent novel loci for the control of root morphological
traits, and these are located on chromosomes 3A, 5B, and
7B (Figure 2). Two of these are involved in the control of
the number of tips, in different root-diameter classes
(chromosomes 3A and 5B). The QTL on the short arm of
chromosome 7B is of particular interest, whereby it is involved
in the control of root length, volume, and surface area, but
only for the largest root-diameter class. Similarly, in a previous
study, a QTL that controlled root length, volume, and surface
area only in a specific root-diameter class was identified in the
“Creso” x “Pedroso” segregating population [67]. This finding
indicates that specific loci can act in shaping the morphology
of the root apparatus only in particular growth phases.

QTL9 (on chromosome 4B) represents a strong QTL for
the control of root traits in the SMC, which explains root
volume, length, surface area, number of tips, plant height,

shoot dry weight, root dry weight, number of forks and cross-
ing number. This is of interest not only for the number of traits
but also for the high LOD and R? (Table 3). This is involved in
the control of both root and shoot traits, and the sign of the
additive effect is negative for all of these traits, which
indicates that the allele of “Molise Colli” increases the develop-
ment of both the shoot and root systems in this segregating
population. This region is coincident with that of the RhtBI
locus, which is the main locus involved in the control of plant
height in durum wheat. Indeed, this QTL explains 52% and
34% of the observed variability for plant height and shoot
dry weight, respectively, in the population in the present study.
Moreover, this QTL shows high R* also for the traits of the
root system, for root surface area (22%), surface area in root
class 1 (20%), and dry weight (18%). Although this QTL
appears not to be useful in any breeding programs for the
improvement of root growth, it clearly indicates a positive
correlation between plant height and root traits in this SMC.
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The relationships between plant height and root system
development are a controversial topic that has not been
completely defined at present. There have been diverse indi-
cations from a number of previous studies, which are proba-
bly due to the different conditions and growth stages in
which the root traits were evaluated and to the different Rht
alleles that were considered. Most recent studies have indi-
cated that different sets of genetic loci control shoot and root
growth [21, 49-51]. In some cases, there has been evidence of
negative correlations. Very recently, Kabir et al. [36] defined
a negative correlation between root traits and plant height in
two bread-wheat segregating populations. In both of these
populations, the plant height was mainly dependent on the
Rht-D1I locus on chromosome 4D, which appears to be sepa-
rate from the QTL for root traits that has been identified on
the same chromosome. The role of the Rht-B1I locus on chro-
mosome 4B was investigated by Bai et al. [31] who analyzed a
set of near introgression lines for a number of Rht loci/alleles
and showed clear effects of the Rht-Bic allele but not of the
Rht-B1b allele in the reduction of the development of the root
system, as well as that of the shoot. Bai et al. [31] also evalu-
ated an “Avalon” x “Cadenza” bread-wheat population and
reported on an important region on chromosome 4D (Rht-
D1I) that controls both shoot and root traits. In light of their
data, we can argue that not only the evaluation of root traits
but also of the Rht alleles and the genetic backgrounds of the
genotypes analyzed support these contrasting scenarios.

As well as this region on chromosome 4B, in the present
study, we identified QTL that were independent of loci for
plant height, and some of these explained around 17% of
the phenotypic variability observed. Recent studies have indi-
cated correlations between loci for root traits and those
involved in grain yield and other traits of agronomic impor-
tance. Cane et al. [35] used association mapping to identify
loci for root morphology in a panel of durum wheat cultivars,
and they showed that out of the 48 QTL detected for the root-
system architecture, 15 overlapped with QTL for agronomic
traits measured in the same panel for two or more environ-
ments. Bai et al. [31] reported coincidence between some
QTL for root morphology and seed characteristics, including
1000-grain weight. Indeed, seed size can have an impact on
early seedling root growth [68, 69]. Using linkage and associ-
ation mapping, Maccaferri et al. [37] identified clusters of
QTL with major effects on the morphology of the root system
in durum wheat. Here, the QTL mapped to chromosome
regions 10 and 11 identified in the SMC were included in
MQTL17 and MQTLI18, respectively, on the long arm of
chromosome 4B, in a region in which the root system archi-
tecture RSA_QTLcluster 12# was identified by Maccaferri
et al. [37]. Similarly, the SMC QTL14 that was mapped to
the long arm of chromosome 6A fell within the region of
RSA_QTLcluster_16#. Both of these regions are of interest,
as they are strongly associated with grain yield and 1000-
kernel weight, as reported by Maccaferri et al. [37], and there-
fore, they appear valuable for breeding purposes.

The SMC was previously used to investigate the genetic
basis of some traits related to seed morphology in durum
wheat [57]; therefore, it is possible to investigate eventual
correspondences between root and seed traits. First of all,
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correlation analysis was carried out considering the root
traits evaluated here and the traits related to seed size and
morphology that were previously analyzed [57]. The most
significant correlations here were between 1000-kernel
weight and seed area on the one hand and, number of root
traits on the other. As a confirmation of this, the region that
corresponds to MQTL1 (on chromosome 1B), in which the
SMC qT2-1B.2 is found, corresponds to the QTL for traits
related to seed length, perimeter, and roundness that were
identified by Russo et al. [57]. Another correspondence was
found between the QTL on chromosome region 9 (4B) for
plant height and various root traits and the QTL for 1000-
kernel weight, seed surface area, and seed width. Very inter-
estingly, the direction of the effect was the same for root and
seed morphology QTL: the SMC qT2-1B.2 and the QTL for
traits related to seed length, perimeter, and roundness that
were identified by Russo et al. [57] showed negative additive
effects, which indicates that the allele of “Molise Colli” is
effective in increasing both trait types. The same was
observed for the QTL on chromosome region 9 (4B) for plant
height and various root traits and the QTL for 1000-kernel
weight, seed surface area, and seed width.

5. Conclusions

In the present study, we carried out an analysis of the genetic
basis of morphological root traits in wheat. MQTL analysis
was used to compare the QTL identified in the SMC with
those described in previous studies in wheat, where three
QTL were novel. The use of a population derived from an
elite durum wheat cultivar and a cultivar of T. dicoccum
was useful for the exploitation of the larger variability with
respect to previous studies. There are controversial indica-
tions in the literature for the relationships between shoot
and root growth. As the Rht-Bla and Rht-BIb alleles are
segregated in the SMC, the present study allows us to con-
clude that in this specific case, this locus has an effect on
the promotion of growth of both aerial and below-ground
parts of the plant. The integration of the knowledge from
the present and previously published studies is a suitable
means to identify regions that have effects on root traits
and traits of agronomic importance, such as grain yield
and 1000-kernel weight, and traits that are related to the
size and shape of the grain. The phenotyping for root
traits is very complex as it is influenced by the phenology
of the plants and by the growth conditions. Therefore, further
studies will be helpful to validate these regions as targets
for breeding programs for optimization of root function
for field performance.
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