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The intestinal epithelial layer serves as a physical and functional barrier between the
microbiota in the lumen and immunologically active submucosa. Th17 T-cell function
protects the gut epithelium from aggression from microbes and their by-products. Loss of
barrier function has been associated with enhanced translocation of microbial products
which act as endotoxins, leading to local and systemic immune activation. Whereas the
inflammatory role of LPS produced by Gram-negative bacteria has been extensively
studied, the role of fungal products such as b-D-glucan remains only partially understood.
As HIV infection is characterized by impaired gut Th17 function and increased gut
permeability, we critically review mechanisms of immune activation related to fungal
translocation in this viral infection. Additionally, we discuss markers of fungal translocation
for diagnosis and monitoring of experimental treatment responses. Targeting gut barrier
dysfunction and reducing fungal translocation are emerging strategies for the prevention
and treatment of HIV-associated inflammation and may prove useful in other inflammatory
chronic diseases.

Keywords: fungi, inflammation, HIV, beta-D-glucan [BDG], immune activation
INTRODUCTION

Gut damage and increased gut permeability constitute hallmarks of both acute and chronic phases
of HIV infection (1, 2). CD4+ T cells loss in the gut mucosa, including interleukin (IL)-17-
producing T-helper cells (Th17), disturbs mucosal homeostasis and contributes to epithelial gut
damage (3). HIV-associated loss of epithelial integrity induces the non-physiological passage of
microbial by-products from the gut lumen into the systemic circulation, referred to as microbial
translocation. Brenchley et al. first reported in 2006 that increased plasma levels of the Gram-
negative bacterial cell wall antigen lipopolysaccharide (LPS) triggers systemic immune activation in
both people living with HIV (PLWH) and SIV-infected rhesus macaques (2), and eventually
contributes to disease progression in PLWH (4–8). Moreover, in macaque models, gut epithelium
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damage precedes immune activation (9). Although antiretroviral
therapy (ART) successfully controls HIV replication and
prevents AIDS, the gut epithelium is not fully repaired in long-
term ART-treated PLWH (4, 10, 11). As such, microbial
translocation persists along with systemic immune activation
in ART-treated PLWH (4, 12–15). This chronic inflammation in
ART-treated PLWH likewise increases the risks of non-AIDS
comorbidities such as cardiovascular and metabolic diseases,
neurocognitive dysfunction and cancer (16). Therefore,
understanding the link between epithelial gut damage and
systemic immune activation in PLWH is crucial in both ART-
naïve and ART-treated PLWH.

On the luminal side of the gut epithelium lives a complex
microbiota. Different in almost every individual, the
gut microbiota composition is well-controlled by both the
microbiota itself and the host. Composed of bacteria, fungi,
archaea, protozoa and viruses, the microbiota plays key
physiological and immune roles through the metabolism of
different nutrients, regulation of the immune system and control
of pathogen invasion. Yet, microbiota composition studies
predominantly focus on bacteria. As such, microbial
translocation of bacterial products such as LPS is primarily
studied alongside the subsequent immune response, quantified
by host factor soluble CD14 (sCD14) produced by macrophages/
monocytes in response to LPS stimulation, and LPS-binding
protein (LBP) mostly produced by the liver in the presence of LPS.

Fungal mass constitutes the second player after bacterial mass
in the composition of gut microbiota. Fungi are thus found in the
gut of all healthy individuals and PLWH (17, 18), with
Saccharomyces cerevisiae, Malassezia restricta and Candida
albicans being the most often found in stools. As such, one can
hypothesize that fungal product would also translocate into the
circulation in the presence of a leaky gut. (1!3)-b- D-Glucan
BDG is a major cell wall component of most fungi and is used as
a clinical biomarker for diagnosing and managing invasive
fungal infection (IFI). Although other cell wall molecules such
as mannans and galactomannans are also common across fungi
species colonizing humans, BDG is the only marker associated
with fungal translocation in PLWH. Morris et al. first showed
elevated plasma levels of BDG in PLWH in 2012 (19). Since then,
several other groups including ours reported an association
between BDG and epithelial gut damage, immune activation,
inflammation, and risk of developing non-AIDS comorbidities
(4, 15, 20–24). These findings suggest a significant role for BDG
in chronic immune activation and the development of non-AIDS
comorbidities in PLWH, although the mechanisms involved
remain poorly understood.

The development of non-AIDS comorbidities despite long-
term ART represents the main concern in care for PLWH (16,
25–27). As fungal translocation appears to play a key role in
immune activation, understanding mechanisms behind this
phenomenon could help in designing novel therapies aiming at
improving the quality of life of ART-treated individuals. Herein,
we delve into the literature regarding the contribution and
mechanism by which fungal translocation induces systemic
immune activation and non-AIDS comorbidities in PLWH.
Frontiers in Immunology | www.frontiersin.org 2
EVIDENCE OF GUT LEAKAGE OF FUNGAL
PRODUCTS IN ANIMAL MODELS

Fungi are peaceful colonizers of the skin but also lungs and
genital tract of most mammals including humans. They’re also
naturally present in the gut microbiota in absence of invasive
fungal infection (IFI) (28). However, fungal products that are
found in the blood usually result either from IFI or from
translocation of fungal products predominantly from the gut
(17, 18, 29–31).

The gastrointestinal tract (GI) encompasses multifaceted
physical and immunological barriers preventing translocation
of microbes and their by-products, while allowing for the
absorption of nutrients. The gut mucosa is protected by both
physical and immune components: the mucus and epithelial
tight junctions on the apical pole of intestinal cells form a
physical barrier; patrolling leukocytes in the lamina propria
constitute an immune barrier ensuring that any translocated
pathogens are phagocytosed, cleared, and/or transferred to
mesenteric lymph nodes.

Fungi in the gut microbiota are abundant in mammals and
play key roles in the balance between bacteria and other
communities, as well as immune development in mice (32, 33).
Animal models of gut damage that are frequently used include
oral treatment with Dextran sulfate sodium (DSS), which impairs
the gut epithelium and creates an experimental colitis (34). Upon
DSS treatment, fungal products were found in the systemic
circulation in different mice models (35, 36). Moreover,
translocated fungal products, including BDG, were shown to
participate in inflammation (37).

These mouse models suggest that upon gut damage, microbial
translocation of fungal products occurs and participates in
inflammation induction. As fungi are also present in the gut
microbiota of non-human primates, studies could be performed
to confirm the origin of translocated fungal products in different
pathologies (31, 38).
EVIDENCE OF GUT LEAKAGE OF BDG IN
PEOPLE LIVING WITH HIV

Increased gut permeability is a hallmark of HIV infection and
has been shown to increase microbial translocation and
inflammation (2). Markers of gut damage, Zonulin and
intestinal fatty acid binding protein (I-FABP), as well as the
marker of gut permeability regenerating islet-derived protein 3-a
(REG3a) were found at higher levels in PLWH (10, 39). Beside
translocation of bacterial products, higher circulating levels of
fungal products were also found in PLWH, suggesting microbial
translocation of fungal products (reviewed in Table 1).

Morris et al. were the first to report elevated levels of fungal
product BDG in the blood of PLWH, grouping together ART-
treated and viremic untreated individuals (19). Clinically, higher
circulating BDG levels were associated with absence of ART,
higher viral load and lower CD4 T-cell count (19).
April 2021 | Volume 12 | Article 656414

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Isnard et al. BDG and Inflammation in HIV
Weiner et al. found lower levels of BDG in PLWH compared
to uninfected controls, although high levels of BDG were also
found in the control group (24). Interestingly, this study also
showed no difference in levels of anti-Saccharomyces antibodies
(ASCA) between both groups (IgG and IgA).

We previously compared plasma levels of distinct gut damage
and microbial translocation markers in different groups of
PLWH without IFI and showed that plasma levels of BDG
were higher in PLWH compared to uninfected controls, while
galactomannan levels were low and similar between both groups.
We also found higher levels of BDG in chronically infected
PLWH compared to those in the early phase of the infection (4).
Surprisingly, BDG levels were not statistically lower in ART-
treated PLWH compared to their ART-naïve counterpart.
Moreover, those levels correlated with markers of gut damage
I-FABP and gut permeability REG3a in PLWH and uninfected
controls, in accordance with the hypothesis that fungal
translocation originates from gut microbiota (4, 10). Also,
BDG and LPS levels correlated, and both were hypothesized to
Frontiers in Immunology | www.frontiersin.org 3
originate from the gut. Moreover, after a 2-year follow-up,
PLWH not taking ART had increased levels of blood BDG
levels, while those treated during the early phase of the
infection had stable BDG levels (4). Early ART initiation was
also associated with lower BDG levels, suggesting that early ART
decreases the magnitude of gut damage and prevents further
BDG translocation. All in all, these results demonstrated that
fungal BDG translocation occurs in PLWH and suggest that
these molecules originate from the gut.
VALIDATING BDG AS A MARKER OF
MICROBIAL TRANSLOCATION IN PLWH

Recent findings tend to validate BDG as a marker of microbial
translocation. Indeed, BDG can be found in several types of food
including oatmeal, mushrooms, and seaweed. One would expect
that increased intake of food rich in BDG might lead to its
TABLE 1 | Main studies assessing the influence of fungal translocation in people living with HIV.

Country Sample
size

Population Study design Main findings Reference

2012 USA 132 CHI, mostly ART+ Cross sectional Higher BDG values associated with inflammation, CD8 T-cell
activation, and pulmonary abnormalities.

(19)

2015 USA 41 CHI ART+ Cross sectional Blood BDG levels correlated with neopterin levels and tended to
correlate with TNF-a levels.

(15)

2016 USA 11 Early infection, before and after
ART

Cross sectional Blood BDG and sCD14 levels were associated with lower
colonization of Lactobacilli in stools.

(23)

2016 USA 21 CHI ART+ Cross sectional Higher blood BDG levels were associated with neurocognitive
dysfunction.

(22)

2018 USA 451 Before and after ART Cross sectional suPAR and BDG plasma levels after ART initiation were
associated with increased risk of non-AIDS comorbidities.

(40)

2019 Canada 146 Early and chronic, ART naïve or
ART+

Longitudinal Cross
sectional

Plasma BDG levels were higher in chronically infected people
than early infection, and were associated with inflammation and
immune activation.

(4)

2019 USA 231 ART naïve before and after ART,
comparison of TDF/FTC, ATV +
DRV, or RAL

Longitudinal BDG increased after ART initiation, in association with increase in
body fat.

(20)

2019 USA 61 CHI ART+ Cross sectional BDG levels in plasma were associated with neurocognitive
function.

(21)

2019 USA 176 CHI ART+ and uninfected
controls

Cross sectional Lower levels of BDG in HIV+ participants compared to uninfected
controls. BDG levels correlated with levels of inflammation
markers in HIV+ participants. No difference in levels of anti-fungal
antibodies were found.

(24)

2020 USA 14 CHI ART+, compared to people
with liver cirrhosis and healthy
controls

Longitudinal and
cross sectional

Oral challenge with BDG rich food did not increase blood levels
of BDG.

(41)

2020 Uganda 171 Children (2-10 years old) HIV+
ART+, and uninfected, HIV
exposed or not

Cross sectional Blood BDG levels were higher in HIV infected children. In children
with a history of breastfeeding, BDG levels correlated with soluble
TNF receptor levels.

(42)

2020 Uganda 101 Children (10-18 years old) HIV+
ART+, and uninfected, HIV
exposed or not

Cross sectional Blood BDG levels were higher in HIV infected children. BDG
levels were associated with immune activation in monocytes and
T-cells.

(43)

2020 Canada 11 CHI ART+ Longitudinal 24 hours follow-up of participant showed no significant variations
of BDG levels in blood.

(44)

2021 The
Netherlands

40 CHI ART+ and uninfected
controls

Cross-sectional A higher proportion of ART-treated PLWH had detectable BDG
levels in blood, and those levels were associated with
inflammatory markers.

(14)

2021 Canada 145 CHI ART+ and uninfected control Cross-sectional BDG levels were associated with subclinical coronary
atherosclerosis plaque in PLWH but not uninfected controls.

(45)
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increased absorption. Therefore, Hoenigl et al. designed a clinical
trial where people were fed with high-BDG food in a controlled
environment (41). This study included participants with
advanced HCV-associated liver cirrhosis as positive controls,
as those patients have elevated microbial translocation levels
(46–49). Other included participants constituted of PLWH with
detectable viral loads, ART-suppressed PLWH, and HCV
negative/HIV negative controls. Although BDG testing of the
BDG-rich food confirmed an elevated concentration, no
significant variation of plasma BDG levels were detected in any
participants up to 8 hours after food intake. This study
strengthened the hypothesis that translocated BDG is
originating from fungal communities in the GI tract rather
than from food intake.

In addition, we also demonstrated that BDG levels were stable
throughout 24 hours in ART-treated PLWH, as opposed to LPS
levels (44). Interestingly, LPS levels increased after lunch and
dinner, and decreased during the night, while BDG levels were
stable over 24 hours. Although we were not able to exclude a
circadian regulation mechanism, we hypothesized that
detoxification of LPS might explain its variation. Indeed, BDG
levels were stable upon ART initiation in PLWH, when gut
damage marker levels decreased, suggesting that translocated
BDG is not detoxified as efficiently as LPS (11, 50).
CONSEQUENCES OF BDG
TRANSLOCATION IN PLWH

Inflammation
Translocated products are recognized by the immune system as
pathogen-associated molecular patterns (PAMPs) and induce
inflammation. As such, several studies found associations
between BDG and inflammation or immune-activation
markers in PLWH.

Morris et al. found that participants with higher BDG levels had
increased circulating levels of inflammatory cytokines IL-8 and
tumor necrosis factor a (TNF-a), as well as higher levels
of activatedCD8T-cells inART-naïve andART-treatedPLWH(19).

Interestingly, in PLWH in the primary phase of the infection
starting ART, circulating BDG, but not LPS, levels were inversely
associated with gut colonization of Lactobacilli, which are
associated with reduced colon inflammation (23). This
association was demonstrated 12 weeks after ART initiation
and tended to persist 12 weeks later.

In ART-treated PLWH, Hoenigl et al. found that BDG levels,
although in the normal range (below 60 pg/mL), were associated
with plasma levels of Neopterin, a marker of inflammation, and
tended to correlate with plasma levels of pro-inflammatory
cytokines IL-6 and IL-8 (15). However, no association between
BDG levels and the marker of bacterial-related inflammation
sCD14 could be observed.

Higher BDG levels have been associated with markers of
disease progression: in ART-naïve PLWH, we found an
association between viral load and BDG, but not LPS levels (4).
Furthermore, in both ART-naïve and ART-treated PLWH, BDG
Frontiers in Immunology | www.frontiersin.org 4
levels were associated with lower CD4 count and lower CD4/
CD8 ratio, indicating a link between BDG translocation and
markers of disease progression.

BDG levels were also associated with pro-inflammatory
cytokines IL-6, IL-8 and CXCL13 in blood, as well as the
frequency of activated blood CD4 and CD8 cells (4, 51)
(Table 1). Moreover, Weiner et al. showed that levels of BDG,
but not ASCA, in PLWH correlated with inflammation markers
such as IP-10, IL-6, markers of monocyte/macrophage activation
sCD14 and sCD163 and percentage of activated CD4 and CD8
T-cells (24).

In Ugandan ART-treated children, BDG levels were also
elevated compared to HIV-exposed or unexposed children (42,
43). Also, BDG levels were associated with levels of the soluble
TNF-receptor, another marker of inflammation (42).

Van der Heijden reported that PLWH with higher levels of
BDG exhibited higher plasma levels of the inflammatory marker
IL-1b, as well as higher response of monocytes to imiquimod or
Mycobacterium tuberculosis stimulations (14).

Altogether, these findings indicate that fungal translocation of
BDG is associated with inflammation, in both ART-naïve
and ART-treated individuals, possibly participating in
disease progression.
Non-AIDS Comorbidities
Persisting inflammation, even in ART-treated PLWH, is associated
with increased risk of developing non-AIDS comorbidities
including cardiovascular and metabolic diseases, and
neurocognitive dysfunction. As translocation of fungal products
has been associated with inflammation, the link between BDG and
those comorbidities was investigated in several studies.

In 2018, Hoenigl et al. performed a cross sectional analysis of
451 PLWH, followed up to 11 years after ART initiation, and
looked at the frequency of non-AIDS comorbidities, including
myocardial infarction or stroke, non-AIDS malignancy or
serious bacterial infection, or death from a non-AIDS related
event. Among other markers of inflammations, only blood levels
of soluble urokinase plasminogen activator receptor (suPAR), a
marker of T-cell and monocyte activation, as well as BDG, were
associated with non-AIDS comorbidity occurrence (40).
Interestingly, only post-ART and pre-comorbidity BDG levels
were associated with development of those comorbidities,
independently of CD4 count but not smoking status pre-event.

Morris et al. found that PLWH with higher BDG levels had
higher frequency of cardiopulmonary abnormalities including
reduced diffusing capacity for carbon monoxide, higher
pulmonary artery systolic pressure and increased tricuspid
regurgitant jet velocity (19).

We also showed an association between plasma BDG levels
and subclinical coronary atherosclerosis plaque in ART-treated
PLWH but not uninfected controls, independently of age sex and
other typical factors. Interestingly, we found that BDG levels
were more strongly associated with plaque prevalence than age,
smoking habits, hypertension, statin use or obesity (45).

Moreover, a study assessing metabolic and weight changes
showed that after ART-initiation, blood BDG levels increased
April 2021 | Volume 12 | Article 656414
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two years after ART initiation, and were associated with larger
trunk and total body fat accumulation (20).

Several studies have shown a link between BDG levels and
cognitive functions in PLWH. Plasma BDG levels were
associated with Global Deficit Score in ART-treated PLWH
(22). Interestingly, this study showed that the 2 participants
(out of 21) who had the worst deficit were also the only ones with
elevated BDG levels in cerebrospinal fluid. Also, although IL-8
levels in plasma were associated with the deficit score, no
correlation between BDG levels and IL-8 levels was observed
in this study (22). The same team expanded such findings in 61
ART-treated PLWH and found that suPAR and BDG plasmatic
levels were associated with the Global Deficit Score,
independently of CD4 T-cell count (21) (Table 1).

Although BDG appears as a new marker of non-AIDS
comorbidities, current observations rely on associations only.
More studies are thus needed to puzzle out the mechanism
linking fungal translocation and comorbidities.
DETECTION OF FUNGAL PRODUCTS IN
PLWH—INSIGHTS ON MECHANISMS

Fungal PAMPs induce inflammation following their detection by
pattern recognition receptor (PRRs) expressed on different cell
Frontiers in Immunology | www.frontiersin.org 5
types. Fungal PRRs include C-type lectin receptors such as Dectin-
1, Toll-like receptor 2, integrins, scavenger receptors, and
hyaluronic acid receptors (52). The receptor ephrin type-A
receptor 2 (EphA2) has also been shown to mediate detection of
fungal BDG in the mouth and upper GI, inducing protective innate
immunity (53). EphA2 is also expressed at lower levels throughout
the gut. Whether this receptor is implicated in fungal product
induction of inflammation in PLWH has not been elucidated yet.

Effect on Antigen Presenting Cells and
Neutrophils
Antigen presenting cells (APCs) are specialized in the detection
of pathogens through conserved PAMPs, allowing the
development of appropriate immune responses. APC include
dendritic cells, macrophages/monocytes, and B cells, and are
highly abundant in tissue, notably in the gut.

APCs can sense fungi through different receptors including
Dectin-1, Toll-like receptor 2 (TLR2) and Complement receptor
3 (CR3) (Figure 1).

Dectin-1 is the main receptor interacting with BDG on
macrophages, monocytes, dendritic cells, B-cells, and
neutrophils (54–57). Expressed at the cell surface, Dectin-1
recognizes circulating or membrane-bound BDG, activating the
NF-kB pathway through activation of the CARD9/BCL10/
MALT1 complex.
FIGURE 1 | Influence of b-D-Glucan in people living with HIV. In the gut lumen, Saccharomyces Cerevisiae and Candida albicans are largely present in the
microbiota. Upon HIV-associated epithelial gut damage, fungal products such as b-D-Glucan (BDG) translocate in the mucosa. BDG is recognized by immune cells
through Toll-like receptor 2 (TLR-2), Dectin-1, complement receptor 3 (CR3) or NKp30, activating immune cells and inducing inflammation. Persisting inflammation
has been associated with disease progression in people living with HIV (PLWH) not taking antiretroviral therapy (ART), and with increased risk of non-AIDS
comorbidities in ART-treated PLWH.
April 2021 | Volume 12 | Article 656414
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TLR2 is expressed on Dendritic cells, macrophages, and
monocytes, and also activates the NF-kB pathway through
activation of MyD88 upon recognition of soluble or
particulate BDG.

Both stimulation of Dectin-1 and TLR2 on macrophages and
monocyte induce the secretion of pro-inflammatory cytokines
such as IL-6, IL-8, TNF-a, as well as anti-inflammatory mediator
IL-10 (55) (Figure 1). It is worth noting that stimulation of
monocytes with BDG induced internalization of Dectin-1 and
decreased its surface expression as soon as 30 min after
stimulation (54, 55). Size of BDG molecules play a key role in
the induction of inflammatory responses, with larger-sized BDG
inducing higher IL-1b, IL-6 and IL-23 secretion compared to
smaller-sized BDG. However, secretion of chemokines involved
in recruitment and maturation of T-cells was not affected by
BDG size (58).

CR3 can also trigger BDG recognition on macrophages,
monocytes, and neutrophils. However, neutrophils recognize
BDG through CR3 only after opsonization with complement (59).

In vitro or animal models indicated that APC and neutrophils
secrete inflammatory cytokines when stimulated by BDG,
however the indication of such direct effect in PLWH is still
lacking. As an initial foray, we found that circulating levels of
BDG, but not LPS, inversely correlated with Dectin-1 expression
on monocytes in PLWH (4), suggesting a direct interaction
between BDG and its receptor Dectin-1 on monocytes. To
validate this mechanism, we stimulated PBMC in vitro with
Saccharomyces Cerevisiae-extracted BDG and found decreased
Dectin-1 expression on monocytes at 24 and 48 hours. LPS did
not induce such variation [personal communication (60)].
Moreover, stimulation of monocytes and macrophages with
BDG was shown to primarily induce IL-1b and IL-8, which
correlated with BDG levels in plasma samples in PLWH.

Detection by NK Cells
NK cells are a key player of innate immunity responsible for
eliminating infected cells, cancer cells, as well as fungi. The main
fungal receptor on NK cells is NKp30, also called Natural
cytotoxicity triggering receptor 3 (NCR3). Recent work has
shown that NKp30 recognizes membrane bound BDG, allowing
elimination of fungal cells. NKp30 is required for elimination of
Cryptococcus in a mouse model (61, 62). As such, NKp30 is the
PRR responsible for direct recognition of fungus and BDG by NK
cells. Unexpectedly, soluble BDG also binds to NKp30, activating
NK cells and allowing the secretion of cytotoxic molecules
Perforins and Granzymes (61, 62). Addition of BDG to NK
increased Candida-killing activity. Earlier, this group showed
that NKp30 surface expression is reduced on NK cells from
ART-treated PLWH (62). We later confirmed those results in
both ART-naïve and ART-treated chronically infected PLWH and
also found that surface NKp30 expression was negatively
correlated with circulating BDG but not LPS levels (4). In vitro,
stimulation with S. Cerevisiae-extracted BDG but not with LPS
decreased NKp30 expression at 24 and 48h (60), confirming the
direct role of BDG in reducing NKp30 expression. Reduced
NKp30 expression was associated with lower cytotoxic function
against fungi and cancer cells (61–63).
Frontiers in Immunology | www.frontiersin.org 6
Altogether, these findings indicate that BDG has a direct
stimulating role of NK cells, including in PLWH on ART.
This could lead to inflammation and decreased efficiency in
infection or cancer suppression, leading to increased non-
AIDS comorbidities.

BDG and Trained Immunity in HIV
Recent findings have put fungal products under the spotlight as
they robustly induce trained immunity. This type of innate
immune memory has been shown to be induced by b-glucans
(including BDG) and BCG vaccines (64, 65). Trained immunity
is defined as the process by which a stimulation programs a cell
to respond with greater efficiency to a second stimulation after
returning to steady state following the first stimulation. Trained
immunity is functionally different from priming and
differentiation and opposed to tolerance (64). In animal and
human models, BDG has been shown to activate immune cells,
especially monocytes, and induce epigenetic changes allowing
those cells to respond with greater intensity to a second
stimulation. Trained immunity is not antigen restricted as it
potentiates the response to subsequent stimuli differently from
the first antigen encounter and has been shown to act throughout
the body via modulation of hematopoiesis and cell trafficking.

Whether translocated BDG plays a role in inducing trained
immunity in PLWH is still unknown. In 2020, Van Der Heijden
identified a link between circulating BDG levels and a trained
immunity phenotype in ART-treated PLWH (14). Whether this
phenotype is induced by trained immunity or priming of
monocytes will have to be elucidated in further studies.

However, several indications lead to the hypothesis that this
trained immunity is unlikely in PLWH. The first clue concerns
the dynamics: most models of trained immunity require the
removal of the initial stimulus to potentiate a second response,
while BDG persists chronically even at low levels in PLWH. The
second clue relies on the complexity of microbial translocation in
PLWH: BDG translocation is accompanied by other microbial
products such as LPS, inducing various inflammatory signals,
while trained immunity has been shown to mostly rely on single
instances of antigenic stimulation with b-glucans or BCG. The
last hint is clinically relevant: glucan-induced trained immunity
has been shown to increase protective responses to diverse
infections and cancer, while PLWH have increased risks of
both infection and cancer. However, trained immunity could
also participate in sustained chronic inflammation such as in
atherosclerosis, notably through the recognition of oxidized low-
density lipoprotein particles (66). Indeed, BDG levels have been
linked with cardiovascular disease in PLWH (19, 40, 45).

Hence, and due to the difficulty in deciphering priming from
trained immunity, the influence of microbial translocation of BDG
on trained immunity in PLWH should be assessed in future studies.
TARGETING FUNGAL TRANSLOCATION
IN PLWH

We and others have shown that starting ART as early as possible
appears to stabilize BDG levels, in accordance with current
April 2021 | Volume 12 | Article 656414
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guidelines recommending ART initiation as soon as the
diagnostic is confirmed (4, 20). Therefore, as fungal
translocation has been associated with inflammation and non-
AIDS comorbidities in ART-treated PLWH, strategies targeting
fungal translocation are needed.

Treatment with the antifungal agent fluconazole in ART-
treated PLWH with neurocognitive disorders barely changed
levels of markers of inflammation IL-1a, IL-6, IL-8 and IP-10
(67). However, levels of fungal products translocation have not
been assessed in this study, rendering it difficult to draw
conclusions on the effect of anti-fungal treatment on fungal
microbial translocation.

Specific strategies have not been developed to prevent
microbial translocation of fungal products in ART-treated
PLWH. Fecal microbiota transplantation (FMT) could
influence the mass of the mycobiome and allow improvement
of gut epithelium integrity, reducing fungal translocation (68).
Although several pilot trials of FMT have been initiated in
PLWH, few have studied fungal translocation before and after
treatment. In 2020, a study by Utay et al. consisting in six weekly
FMT rounds in six ART-treated PLWH reported neither
significant variations of circulating BDG levels, nor changes in
inflammation and gut permeability markers I-FABP (69).

However, BDG levels have been used as markers of
translocation in several other clinical trials:

In one study, metformin was expected to decrease
inflammation in ART-treated PLWH (70, 71). Pilot results
showed that 3 months of metformin treatment in addition to
ART slightly decreased the marker of inflammation sCD14, but
did not decrease LPS nor BDG translocation (72).

In a randomized placebo-controlled double-blind study,
dipyridamole treatment was shown to increase extracellular
adenosine levels and decrease CD8 T-cell activation in ART-
treated PLWH (73). However, this treatment did not modify
BDG levels in either group (74).
CONCLUSION

Translocation of fungal products, mainly inferred from BDG
levels in the blood, has been shown to be associated with
inflammation and comorbidities in PLWH. Whether BDG
contributes directly to inflammation remains unknown,
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although assessment of BDG-receptors in PLWH pledges in
this favor. Further studies are required to examine the role of
fungal translocation in PLWH, especially those receiving ART.
Overall, BDG appears as a robust biomarker of microbial
translocation linked with inflammation and non-AIDS
comorbidities in PLWH. Targeted strategies are critically
needed to reduce the contribution of fungal translation to
inflammation in PLWH, and eventually improve the quality of
life of this population.
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