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Abstract

Crab species are economically and ecologically important in coastal ecosystems, and their

spatial distributions are pivotal for conservation and fisheries management. This study was

focused on modelling the spatial distributions of three Portunidae crabs (Charybdis bimacu-

lata, Charybdis japonica, and Portunus trituberculatus) in Haizhou Bay, China. We applied

three analytical approaches (Generalized additive model (GAM), random forest (RF), and

artificial neural network (ANN)) to spring and fall bottom trawl survey data (2011, 2013–

2016) to develop and compare species distribution models (SDMs). Model predictability

was evaluated using cross-validation based on the observed species distribution. Results

showed that sea bottom temperature (SBT), sea bottom salinity (SBS), and sediment type

were the most important factors affecting crab distributions. The relative importance of can-

didate variables was not consistent among species, season, or model. In general, we found

ANNs to have less stability than both RFs and GAMs. GAMs overall yielded the least com-

plex response curve structure. C. japonica was more pronounced in southwestern portion of

Haizhou Bay, and C. bimaculata tended to stay in offshore areas. P. trituberculatus was the

least region-specific and exhibited substantial annual variations in abundance. The compari-

son of multiple SDMs was informative to understand species responses to environmental

factors and predict species distributions. This study contributes to better understanding the

environmental niches of crabs and demonstrates best practices for the application of SDMs

for management and conservation planning.

Introduction

Many fish populations have decreased in abundance and shifted distributions due to marine

pollution, climate changes and over-exploitation [1–3]. In many marine ecosystems the

declines of large predatory species have coincided with increase of small size, short-lived crus-

tacean, including shrimps and crabs [4]. Moreover, the emerging economic values of crusta-

cean species tend to be large and provide ample supports for local, small-scale fisheries [5–6].

For example, an increase of Portunidae contributed substantially to crab fisheries in the Yellow

Sea over recent decades. Three crabs in the Portunidae family: Charybdis bimaculata,
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Charybdis japonica, and Portunus trituberculatus, are ecologically and economically valuable

along the coastal area of China [7, 8]. Among them, P. trituberculatus has a larger body size,

relative longer life span and are more migratory than C. bimaculata and C. japonica [9, 10].

Due to the functional natatorial legs of Portunids, “swimming crabs”, they have higher mobil-

ity than most other benthic crustaceans [11]. Consequent to their enhanced mobility, charac-

terizing Portunid distribution is difficult modelling tasks. Unfortunately, despite their regional

importance, there has been few studies to characterize the distribution and phenology of these

species.

The spatial distributions of the crabs are influenced by environmental factors. For instance,

temperature and salinity may influence overwintering of migratory crabs [12, 13], and in some

special life history stage crabs might be more sensitive to salinity [7, 12]. Additionally, ranges

of suitable temperature and substrate are strongly associated with their habitat preferences

[14–16]. It has also been shown that dissolved oxygen influences the recruitment mortality of

crabs, and therefore can serve as an important bottom-up driver of population dynamic [17].

Thereby, spatial distributional modelling studies that consider abiotic mechanisms are neces-

sary to understand the environmental niches of crabs and assist in management and conserva-

tion planning.

Regarding spatial prediction, species distribution models (SDMs) are commonly used in

ecology and biodiversity studies to predict species’ potential distribution [18]. For crabs,

SDMs have been applied for estimating distributions of crabs living in different habitats (e.g.

estuarine, intertidal zone and mangrove area), monitoring crab invasions [19, 20], forecasting

fishing grounds [21, 22], reflecting modifications of typical habitats, identifying habitat suit-

ability [12], and standardization of catch-per-unit-effort (CPUE) [23]. A wide range of statisti-

cal techniques are commonly used for SDMs, ranging from regression-based methods (linear

regression, generalized additive models, and multivariate discriminant analysis [24, 25]), to

non-parametric methods [26], such as machine learning (ML). It is established that although

regression-based methods are straightforward to interpret, they are limited in their abilities to

handle complicated relationships [24]. In many applications, ML can identify complex rela-

tionships flexibly and outperform regression-based methods in predictive capability [24]. In

particular, previous ML studies on development of SDMs, using boosted regression trees

(BRT), random forest (RF), maximum entropy (MaxEnt) and genetic algorithm, showed

promise for predicting the native ranges of crabs [19, 20, 22] and many other marine species

[22, 25, 27]. However, it should be noted that the models’ predictive performances depend not

only on their algorithms [24], but also on study goals, spatial scales, sample sizes [28], distribu-

tion patterns [24, 29, 30], species characteristics [31], and the form of species responses to envi-

ronmental changes [32]. Assessing the reliability of those models for various species is of great

concern for their application. Therefore, a comparison of different MLs to traditional regres-

sion methods for multiple species is need to validate the practical application of SDMs.

In this study, we conducted a bottom-trawl crab survey and collected relevant environmen-

tal variables including temperature, salinity, depth, and sediment type. SDMs of three Portuni-
dae crabs were developed using three modelling methods, including one traditional

generalized additive model (GAM), and two ML approaches, random forest (RF) and artificial

neural network (ANN) [33, 34, 35]. In order to understand these crabs’ spatial distributions

and to assess the reliability of their distribution models, we identified the effects of environ-

mental factors on three crabs and compared the performances among these models regarding

fitting capability, predictability, and model stability. We paid special consideration to the

effects of modelling method, species, and seasonality on model predictability. Finally, the dis-

tribution maps of three crabs were predicted using the developed models to support current

regional fisheries management.

Modelling the spatial distribution of three Portunidae crabs in Haizhou Bay, China
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Materials and methods

Data collection

The biomass data of the three crab species were collected in Haizhou Bay, China (34˚250

−35˚350N, 119˚250−121˚50E), an open bay on the south-western Yellow Sea. (No specific

permissions were required for the surveys, as the survey area was located in a typical fishing

ground, in which there were no national parks or other protected area of wildlife. The sur-

veys did not involve endangered or protected species). Haizhou Bay was a historically

important fishing ground and served as a spawning and feeding habitat for many species in

the 1980s [36]. Nonetheless, the ecosystem structure changed over past decades as a result

of climate changes and increasing fishing pressure [37]. We conducted bottom trawl surveys

in spring and fall of 2011, 2013, 2014, 2015 and 2016. A stratified random sampling design

was used, in which the survey area was divided into five strata based on water depth (from

3.77m to 39.86m) and latitude (Fig 1). A total of 24 sampling sites in 2011 and 18 sites in the

following years were chosen in each survey, covering the whole area of Haizhou Bay. We

used otter trawl vessels of 162 kW and trawl nets with the cod-end mesh size of 17mm and

width of 25m. The trawl was hauled for about 1h at the speed of 2–3 knots in each site, stan-

dardized to 1h haul with 2 knot vessel speed (i.e. CPUE of kn�h). The logarithmic trans-

formed relative catch was used as the response variable to reduce data heterogeneity and to

avoid the undue effect of outliers [38–40].

The predictive variables had two categories, environmental variables including sea sur-

face salinity (SSS), sea surface temperature (SST), sea bottom salinity (SBS), sea bottom

temperature (SBT), water depth and sediment type, and the spatio-temporal variables

including geographical positions (i.e. longitude and latitude) and survey years. Tempera-

ture, salinity and depth were recorded using a CTD system (XR-420) in each sample site.

The sediment types included sand, sandy silt, sand-silt-clay according to Shepard’s nomen-

clature of sediments [41] and were treated as factors in the analysis. Data were provided by

the College of Environmental Science and Engineering, Ocean University of China (unpub-

lished data). As there were substantial variations in species abundance among years due to

the population dynamics rather than distribution patterns, survey years were included in

the SDMs as a factor to adjust the fluctuation of relative abundance. Considering the differ-

ences in habitat and distributional pattern among seasons, and particularly the migration

of P. trituberculatus, the spring and autumn data were treated separately in models and

subsequent analyses (Table 1). That is, we assumed a relatively consistent distributional

patterns within the same seasons and built the models for each season individually. The

model for P. trituberculatus was omitted for spring due to its low prevalence as a result of

seasonal migration.

We used variation inflation factor (VIF) to examine the collinearity between predictive vari-

ables before model construction [42]. The VIF value of variable that was higher than 3 implied

substantial correlation with other variables [42], thus were omitted.

Statistical methods

GAM, RF and ANN were used to develop a set of species distribution models. Among these

statistical methods, GAM was one of the most widely used methods in SDMs, whereas RF and

ANN had many strengths over the traditional regression-based methods [24, 29, 43], such as

efficient recognition of data patterns, independence of particular functional relationships,

free-assumption of data properties, and the ability to accommodate interactions among vari-

ables without a priori specification [27].

Modelling the spatial distribution of three Portunidae crabs in Haizhou Bay, China
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Generalized additive model. Generalized additive model (GAM) is a non-parametric

extension of generalized linear model (GLM) [44]:

gðYÞ ¼ aþ
Xn

i¼1

fiðxiÞ ð1Þ

Fig 1. Map of survey stations for 2011, 2013–2016 in Haizhou Bay and adjacent waters.

https://doi.org/10.1371/journal.pone.0207457.g001

Table 1. The description of data attributions used in the SDMs.

Environmental variable Spring Fall

year 2011, 2013, 2014, 2015, 2016 same as spring

sea surface salinity (SSS) 28.69–31.96 27.54–31.89

sea surface temperature (SST) 10.87˚C-19.12˚C 17.76˚C-25.85˚C

sea bottom salinity (SBS) 28.36–32.02 21.75–31.94

sea bottom temperature (SBT) 9.07˚C-17.95˚C 17.77˚C-25.89˚C

depth 6.37m-36.64m 3.77m-39.86m

sediment sand, sandy silt, sand-silt-clay same as spring

longitude 119.42˚E-121.08˚E same as spring

latitude 34.42˚N-35.58˚N same as spring

https://doi.org/10.1371/journal.pone.0207457.t001
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Where g() is the monotonic link function that establishes a relationship between the mean of

the response variable and predictive variables, fi is a ‘smoothed’ function of explanatory vari-

ables, which enables to flexibly describe non-linear relationships [34, 45]. a is the intercept,

and n is the number of explanatory variables.

Random forest. Random forest (RF) is an ensemble learning approach that generates

multiple regression or decision trees [46, 47]. RF often shows satisfactory performance on pre-

diction and gains increasing attention in a wide range of research areas. This method is typi-

cally implemented with the following steps [48]:

(i) Draw ntree bootstrapped samples of the training dataset from the original data. (ii) Build

multiple classification or regression trees with the bootstrap samples, in which each node of

the unpruned tree is split by sampling mtry variables randomly and the best split is chosen

automatically. (iii) Aggregate these units of tree information to attain the output.

In our study, the number of trees (ntree) was set to 2000, and we trained models with differ-

ent mtry values and chose the optimal mtry = 2 when RF performed best.

Artificial neural network. Artificial neural network (ANN), inspired by the structure and

activity of human brain, is a powerful tool for ecological issues that are difficult to be recog-

nized or predicted by traditional statistical methods [27]. There exist many types of ANNs, but

a common type and the one used in this study is specified as one hidden-layer with a feed-for-

ward network trained by a back-propagation algorithm [49]. Specifically, the network is con-

stituted by three layers of neurons: an input layer at which predictive variables are received, a

hidden layer with complex connections, and an output layer with one or more neurons to

make predictions. The number of neurons in the hidden layer is determined by minimizing

the tradeoff between bias and variance [50]. Here, our study selected 5 hidden neurons in the

network according to the performance of training models. The connection weights between

neurons of different layers were adjusted to minimize the prediction error when training

ANNs [25]. The models were implemented using the R packages mgcv, randomForest, and

nnet, respectively.

Model development and evaluation

Predictive variables were examined in the process of model development. The significant vari-

ables were selected using a stepwise variable selection procedure, which started with a null

model and added one more predictive variable to the present model at each time step. For

GAM, Akaike Information Criterion (AIC) [51] and Chi-square test among nested models

[21] were used in variable selection for GAM, and the percentage of variance explained by the

model (“variance explained”) was used for RF. The contribution of each variable to the final

model was measured by the ‘percent deviation explained’ and the IncMSE value (i.e. the

changes of mean square errors) in GAM and RF, respectively [46, 47]. For ANN, Garson’s

algorithm [52] modified by Goh [53] was used to select predictive variables and determine

their relative contributions [54]. In addition, variance explained (VE) was used as the common

measure to compare the fitting capability among different models:

VE ¼ 1 �
VarðresidualÞ

VarðyÞ

� �

� 100% ð2Þ

Where Var(residual) denoted the residual variance, and Var(y) denoted the variance of origi-

nal data.

Sensitivity analysis was used to visualize the relationships between predictive variables and

predictions, for which we changed each variable across its range while fixing the levels of other

variables [54]. Since the relationships produced by ANN depended on the initial values and
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were not constant, we produced 100 response curves for each predictive variable in ANN to

illustrate the variations, while other modelling methods produced one response curve for each

predictive variable.

The cross-validation approach was used to evaluate the predictive performances of the

models [55]. For each iteration (n = 100), the original dataset was randomly partitioned into

80% observations as training set for model building and 20% observations as test set for model

validation [56, 57]. We used two metrics, the relative root-mean-square-error (RRE) and the

coefficient of determination (R2), to evaluate the accuracy and precision of model prediction

[27, 43, 58]. The degree of model overfitting was indicated by the difference of R2 between

model fitting and model validation. The RRE measured the deviation of observed values and

predictions, for which a smaller value implied improved predictability.

RRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðOi � PiÞ

2

n

r

Omax � Omin
� 100% ð3Þ

Here, n was the number of data points in the cross-validation, Oi was the observed values, Pi
was the predicted values, Omax and Omin were the maximum and minimum values of

observation.

Additionally, the standard errors of RRE and R2 were estimated as the measures of model

stability, i.e., the robustness of predictability on random datasets [18, 29]. Multi-way ANOVA

was used to identify the relative importance and interactions of three factors (i.e. modelling

method, species, and season) on the variation of predictability [29].

Distribution mapping

We used the Finite Volume Coastal Ocean Model (FVCOM) [59] to project the predictive var-

iables over the whole area for mapping crab distributions. In this study, 64392 grid points were

extracted from the FVCOM developed in Haizhou Bay (calibrated by College of Environmen-

tal Science and Engineering, Ocean University of China), including data of temperature and

salinity by depth and time. The sediment types of these grid points were extracted from the

same sediment map above. These environment data being estimated by the FVCOM were

used to hindcast portunid crab distribution using the fitted models. The spatial and temporal

variations of their potential distributions were shown and compared among the aforemen-

tioned modelling methods.

Results

Model fitting

VIF test suggested that SST showed multicollinearity with other variables. Thus, we used SBT

in lieu of SST as a candidate predictive variable. Overall, sampling year, SBT, SBS, and sedi-

ment type were the most important factors affecting spatial distributions for different species

and among survey seasons (Table 2). However, the fitted SDMs presented differences among

species, modelling methods, and two seasons, regarding the retained predictive variables and

their relative importance. ANNs included more variables in the fitted models than other

approaches and showed much better explanatory performances, whereas GAMs included

fewer variables and exhibited reduced performance for model fitting (Table 2).

We examined the sensitivity of predicted crabs’ biomass to the environmental variables

selected for different models. The response curves exhibited the conditional effects of one vari-

able on the predictions when the levels of other variables were fixed (Fig 2). GAMs showed
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simple relationships between predictive variables and predicted biomass, whereas ANNs and

RFs reflected complex relationships. The response curves in ANNs changed substantially

among 100 repeats, and the reflected effects of predictive variables varied among modeling

approaches. In particular, SBT show different effects on predicted distributions among models.

Model predictability

For cross-validation, RRE of all fitted models ranged from 28 to 60 and R2 ranged from 0.08 to

0.47 (Fig 3). Among the three modelling approaches, no single method consistently outper-

formed others (Fig 3). GAMs and RFs provided better performances than ANNs on RRE,

whereas ANNs exhibited higher R2 (representing predictive performance). The model predict-

ability also varied among species, i.e., P. trituberculatus exhibited consistently better perfor-

mances, and C. japonica was slightly better predicted than C. bimaculata. The same modelling

method exhibited different predictability between seasons when modelling the same crab spe-

cies, especially in R2 (Fig 3). Additionally, ANNs showed the largest difference between fitting

capacity and predictability compared with other methods (Table 2).

Regarding model stability, the predictions of GAMs and RFs were more stable with lower

standard errors in RRE and R2 (Table 3) comparing with ANN. The stability of GAMs and RFs

were similar in spring but largely different in fall. Given the above, RF showed the best predic-

tive performance with lower RRE and higher stability, followed by ANN with the highest R2.

ANOVA suggested all three factors were significant for predictability (Table 4). The modeling

method showed a greater influence than species and season on RRE, whereas species was the

Table 2. A Summary of fitted models for three crab species in spring and fall.

Species Season Model Relative importance (%) Variance explained

(%)

The determination coefficient

(R2)
DR2

C. bimaculata Spring GAM depth(18.1)>year(7.1)>longitude(6.6)> SBT(2.4) 34.8 0.22 0.13

RF longitude(35.6)>year(24.3)>SBS(19.8) 67.3 0.28 0.5

ANN SBS(14.7)>SBT(11.5)>latitude>year(11.1)>sediment(7.7) 91.7 0.23 0.73

Fall GAM year(12.2)>SBS(10.6)>SBT(3.6) 27.2 0.09 0.13

RF SBS(23.1)> sediment(19.0)>SBT(11.0) 58.7 0.11 0.61

ANN SBT(14.4)>year(13.4)>SBS(9.2)>

sediment(6.1)>depth(6.0)

89.4 0.18 0.76

C. japonica Spring GAM depth(20.9)>latitude(5.6) >year(5.3)> SSS(3.8) 36.2 0.18 0.25

RF Latitude(40.7)>SBT(31.4)>year(31.0) 70.5 0.20 0.59

ANN SBT(19.2)>depth(14.9)>year(11.2)>

sediment(8.1)>latitude(4.6)

98.7 0.47 0.52

Fall GAM SBS(11.8)>longitude(9.4)> SBT(1.0) 27.5 0.18 0.20

RF depth(36.9)>sediment(20.4)> SBS(12.8) 65.6 0.27 0.53

ANN SBT(16.3)>sediment(15.2)>latitude(14.5)>longitude(11.3)>

year(6.4)

96.3 0.31 0.66

P.

trituberculatus
Fall GAM year(35.7)>SBT(17.9)>sediment(1.0) 55.7 0.40 0.19

RF year(78.6)>SBT(22.4) 63.7 0.34 0.36

ANN year(14.9)>SBS(9.0)>SBT(8.1)>

latitude(7.7)>sediment(7.3)

95.6 0.35 0.62

Note: Only the variables included in the optimal models were shown in the table. Relative importance referred to the contribution of predictive variables that retained in

fitted models (GAM was based on ‘deviation explained’, RF was based on the percentage of IncMSE, ANN was based on Garson’s algorithm). Variance explained by

each model represented goodness-of-fit of model. The determination coefficient (R2) represented predictive performance in the latter section of model predictability.

DR2 referred to the difference of R2 between training models testing models.

https://doi.org/10.1371/journal.pone.0207457.t002
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most influential factor for R2. In addition, the interactions between method and both season and

species were significant, that is, the modelling methods performed differently among seasons

and species. The relatively weak effect of the method to season interaction suggested that the

model predictability was relatively stable among seasons, whereas the large method to species

interaction effect translated to unstable performances of modelling methods among species.

Mapping crab distributions

The distributions were mapped in each year using the most reliable models for each crab spe-

cies i.e., RF for C. bimaculata and C. japonica, GAM for P. trituberculatus, respectively. The

Fig 2. Contribution of influential environmental variables to the relative biomass (RB) of C. bimaculata, P. trituberculatus in fall. The

results were derived from GAM, RF, and ANN, for which ANNs were examined with 100 repeats, and the other methods showed one curve.

https://doi.org/10.1371/journal.pone.0207457.g002
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smaller biomass of C. bimaculata was predicted to be mostly in southwestern Haizhou Bay

(Fig 4, results in fall as examples), whereas C. japonica was mainly located in the southwestern

coastal waters (Fig 5). P. trituberculatus was predicted to distribute more evenly in the survey

Fig 3. The predictability of crab distribution models measured by RRE and R2. Each plot showed one metric for all species during spring or fall, and P.

trituberculatus was absent from spring sampling. The dispersals of RRE and R2 resulted from 100 times repeats in cross-validation.

https://doi.org/10.1371/journal.pone.0207457.g003

Table 3. The stability of predictive capacity of crab distribution models measured by the standard errors of RRE and R2 in spring and fall.

Species Model Spring Fall

SE of RRE SE of R2 SE of RRE SE of R2

C. bimaculata GAM 0.06 0.15 0.05 0.08

RF 0.04 0.15 0.05 0.10

ANN 0.24 0.18 0.30 0.16

C. japonica GAM 0.05 0.14 0.05 0.13

RF 0.04 0.13 0.04 0.17

ANN 0.08 0.19 0.14 0.19

P. trituberculatus GAM 0.06 0.16

RF 0.05 0.19

ANN 0.12 0.20

Note: The standard errors of RRE and R2 were calculated by using 100 cross-validation results for each model.

https://doi.org/10.1371/journal.pone.0207457.t003
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area (Fig 6). There was a substantial difference in the predicted density of P. trituberculatus
between 2011 and the other years.

The predicted distribution maps were substantially different among modelling methods.

Using C. japonica as an example, the results of GAM were similar to RF, showing higher bio-

mass in the southwestern coastal waters in fall, whereas the results of ANN were substantially

variable among survey years (S1 Fig). Considering seasonal differences in predictions, the

maps showed that C. japonica tended to live nearshore, and the distributions were more stable

in spring than that in fall (S2 Fig).

Discussion

Identifying reliable models for projecting species distributions is important for fisheries con-

servation, management, and spatial planning [60]. The present study showed a comprehensive

framework for model assessment in regards to fitting performances, species response curves,

predictive capacity, and model stability. For the three species, no method consistently outper-

formed others. Our results highlighted the advantages and shortcomings of the models. In par-

ticular, we found RF was the most reliable method with robust predictions. In addition, the

predictive performances were more variable among species than among modelling methods,

which was consistent with previous studies [24, 33, 51, 61], suggesting that individual traits of

a species should be highlighted in the choice of appropriate methods. Based on our results, we

recommend use of multiple modelling approaches to generate more robust predictions for

fisheries management [60].

In this study, all three approaches showed substantially better performances with training

data compared to that with test data, implying a risk of overfitting. This may be attributed to

both the complex species response to environmental variables and the limited data availability

[62, 63]. Among the three modelling methods, RFs provided the best predictability and stable

predictions over years but had a lower R2 compared to ANNs. Actually, the relative predictive

capacity of ANNs and RFs varied greatly among studies with respect to different objectives and

circumstances of their applications [35, 43, 64]. For instance, some studies suggested that RFs

had advantages over ANNs in relation to avoiding overfitting [65] and simple adjustment to

parameters [35], whereas ANNs could be adaptively trained to solve more complex ecological

relationships [25, 27]. For modelling response curves, the simple patterns provided by GAM

appeared to be more reasonable, whereas the complex relationships identified by ML methods

Table 4. The effect of influential factors on model predictive performance examined by ANOVA.

Criteria Factors SSE Pr(>F)

RRE method 5.730 < 0.001

species 4.745 < 0.001

season 0.317 < 0.001

method:species 3.322 < 0.001

method:season 0.223 < 0.001

R2 method 2.50 < 0.001

species 6.84 < 0.001

season 1.59 < 0.001

method:species 2.97 < 0.001

method:season 0.14 0.069

Note: SSE referred to the sum of square errors of REE or R2 attributed to each influential factor. (method: species)

and (method: season) denoted the interactions between method and species or season, respectively.

https://doi.org/10.1371/journal.pone.0207457.t004
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Fig 4. Spatial distribution of relative biomass (RB) for C. bimaculata in fall of each survey year predicted by random forest (RF) in Haizhou Bay.

https://doi.org/10.1371/journal.pone.0207457.g004
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Fig 5. Spatial distribution of relative biomass (RB) for C. japonica in fall of each survey year predicted by random forest (RF) in Haizhou Bay.

https://doi.org/10.1371/journal.pone.0207457.g005
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Fig 6. Spatial distribution of relative biomass (RB) for P. trituberculatus in fall of each survey year predicted by generalized additive model (GAM) in Haizhou

Bay.

https://doi.org/10.1371/journal.pone.0207457.g006
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did not necessarily mean they were unrealistic, because species-environment responses often

tend to be complex, even after accounting for interactions between variables [21]. Given the

synthetical evaluation of models, RFs showed better tradeoff among predictability and ecologi-

cal interpretability and were more suitable for the crabs’ fisheries management.

Examining the species responses to environmental factors was conducive to understanding

physiological and behavioral characteristics of different species [66]. SBT and SBS, the key

environmental variables for the three crabs, have been shown to play a decisive role in many

short living species [13]. C. japonica showed a low biomass at the temperature range 10–13˚C,

consistent with its preference of warm temperature. Likewise, SBS significantly influenced the

distribution of C. bimaculata, indicating the preferred range of salinity 29–31. P. tritubercula-
tus showed no optimum temperature range but instead exhibited more than one peak in the

response curve (Fig 2). This result might be partly due to the ongoing southward migration of

P. trituberculatus in the fall, which coincided with decreasing northern water temperatures.

The latitude also showed large effects on crabs’ distributions which might be related with habi-

tat differences in the north and south of the bay. Moreover, there was no guarantee that the

determinant variables were included in our analysis, such as dissolved oxygen [17], precipita-

tion and food availability [22].

Although the three crabs are closely related in taxon, their corresponding SDMs showed

substantial variations in predictive performances, which were consistent with previous studies

[61, 67]. It should be noted that different biological and life history traits may influence model

capacity to capture species-environment relationships [16, 30, 68]. The large body size of P. tri-
tuberculatus may enable the species to hold on preferable environmental conditions when

there are environmental fluctuations [68], resulting in better predictions. On the other hand,

C. bimaculata is characterized by small size and high prevalence, which may result in some

individuals staying in less satisfactory habitats, and therefore explain lower model prediction

power [68]. In addition, different spawning activities and range sizes of three crabs may also

influence the model performances through making their environmental requirements difficult

to be describe [69].

Annual variation of abundance in fall and the absence in spring led to substantial uncer-

tainty in the fishery management of P. trituberculatus. As the population of P. trituberculatus
have dramatically declined over the last few decades [70], the risk of uncertainty should be

explicitly and carefully accounted for in the future fishery management strategy. On the other

hand, the annual populations of the other two species in fall were more robust when using

their best fitted models therefore fishing effort might accommodate to this pattern for improv-

ing fishing efficiency. However, the distribution maps of C. japonica predicted by suboptimal

ANN in fall showed variations among years, this result alerted managers to combine multiple

models to inform the stock assessment.

Several conclusions of this study were highlighted for future SDM practices and the manage-

ment of crab fisheries. For example, the performances of the modelling methods were relatively

stable among seasons but varied substantially among species, implying that seasonality might be

less concerned when choosing suitable modelling techniques for species. Besides, the high SE of

REE and R2 suggested that the performances of ANN were not robust although they provided

superior model fitting. The complex model structures implied that sufficiently large sample size

of data should be desired in the use of ANN as well as other ML methods. In particular, C. bima-
culata was characterized by wide tolerances in salinity and temperature [71] making it hard to

be simulated. A larger sample size may benefit robust establishment of environmental require-

ments for this species. Long term climatic variations might be influential for species distribu-

tions, but were not incorporated due to the relatively short survey time series and improper

resolutions [61]. Importantly, the SDMs in this study did not include consideration of biotic
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interaction and competitive exclusion [72, 73], which would be critical to correctly reflect real-

ized ecological niches. These problems should also be considered in future studies.
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