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Introduction
Major depressive disorder (MDD) is among the leading causes of 
disability worldwide, contributing to high human and societal 
costs (Ferrari et al., 2013). For decades, depression has primarily 
been treated with antidepressants targeting monoamine function; 
however, about one-third of patients are considered treatment-
resistant to such medications, lacking adequate response to two 
or more antidepressant trials (Nemeroff, 2007). For those who 
respond, effects take usually 2–4 weeks to be noticeable and a 
large proportion eventually relapse (Gaynes et al., 2009). In bipo-
lar disorder (BD), where depressive episodes alternate with 
manic episodes and antidepressant response rates are even lower 
(Pacchiarotti et al., 2013) with fewer available treatment options 
than in MDD (Vieta et al., 2010). Novel treatments and drug tar-
gets are therefore urgently needed.

Ketamine, a noncompetitive antagonist of the glutamate 
N-methyl-D-aspartate (NMDA) receptor, has been referred to as 
one of the most important discoveries in antidepressant research 
in half a century (Duman and Aghajanian, 2012). It has been used 
as a dissociative anesthetic since the 1960s, but its therapeutic 
potential was not discovered until the year 2000 (Berman et al., 
2000). Since then, numerous studies have replicated ketamine’s 
antidepressant and anti-suicidal effects in both unipolar and bipo-
lar depression (Coyle and Laws, 2015; Wilkinson et al., 2018) 
with high response rates of up to 60%–70% in treatment-resistant 
patients (Bobo et al., 2016; Diazgranados et al., 2010; Murrough 

et al., 2013a). Ketamine is fast acting with effects emerging 
within hours (Bobo et al., 2016) making it a beneficial tool, espe-
cially for patients in acute risk of self-harm and suicide (Larkin 
and Beautrais, 2011). Ketamine’s effects peak approximately 
1-day post-infusion and last around 1 week (Corriger and 
Pickering, 2019; Kishimoto et al., 2016) but can be prolonged 
with repeated infusions (Murrough et al., 2013b; Zheng et al., 
2018). The (S)-isomer of ketamine (esketamine) was approved as 
a medication for treatment-resistant MDD in nasal spray form in 
the United States in 2019 (FDA, 2019).

The exact mechanisms behind ketamine’s antidepressant 
effects are yet to be fully understood. However, its NMDA recep-
tor antagonist property has been postulated to play a central role, 
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the therapeutic mechanisms are believed to be much more com-
plex. This is supported by the existence of several other NMDA 
receptor antagonists without antidepressant properties (Newport 
et al., 2015), as well as preclinical research on the pharmacology 
and efficacy of ketamine’s enantiomers (Hashimoto, 2019; Jelen 
et al., 2020; Yang et al., 2015a) and metabolites (Hashimoto, 
2019; Zanos et al., 2016). In recent years, there has been an 
increasing interest in ketamine’s anti-inflammatory properties. 
Ketamine has been shown to attenuate heightened inflammation 
in animal models, in human blood in vitro (De Kock et al., 2013; 
Loix et al., 2011), and in surgical contexts when used as an anes-
thetic or antihyperalgesic (Dale et al., 2012; Loix et al., 2011).

The anti-inflammatory effects of ketamine have been of par-
ticular interest given that the association between inflammation 
and depression is well-established. This relationship is likely to 
be bidirectional, with high inflammation levels (Khandaker et al., 
2014; Valkanova et al., 2013) and presence of inflammation-
related diseases (Benros et al., 2013; Sforzini et al., 2019; Wang 
et al., 2018) increasing not only the risk of developing MDD and 
BD, but also vice versa (Andersson et al., 2015; Rosenblat and 
McIntyre, 2017). Increased inflammatory markers, specifically 
C-reactive protein (CRP), interleukin (IL)-1, IL-6, and tumor-
necrosis factor alpha (TNF-α), have been observed in the blood 
and cerebrospinal fluid (CSF) as well as in postmortem brain 
samples of MDD and BD patients (Enache et al., 2019; Osimo 
et al., 2020; Raison et al., 2006; Rosenblat et al., 2014). 
Interestingly, inflammation is prevalent, especially in treatment-
resistant depression (Cattaneo et al., 2020; Strawbridge et al., 
2015; Yang et al., 2019); and longitudinal investigations have 
found patients with higher baseline inflammation to be less likely 
to respond to traditional antidepressants (Cattaneo et al., 2013, 
2016; Strawbridge et al., 2015).

Among the main mechanisms, inflammation is suggested to 
induce depressive symptoms through its effects on the trypto-
phan (TRP)–kynurenine (KYN) pathway, as supported by studies 
in which activation of KYN pathway and increased depressive 
symptoms were observed in patients with hepatitis C virus infec-
tion undergoing interferon (IFN)-α treatment (Raison et al., 
2010). Indeed, pro-inflammatory cytokines IFN-γ, IFN-α, IL-1, 
and TNF-α activate the enzyme indoleamine 2,3-dioxygenase 
(IDO), which metabolizes TRP into KYN instead of serotonin 
(Maes et al., 2007). The pro-inflammatory cytokine IL-1β further 
activates the enzyme 3-monooxygenase (KMO; Zunszain et al., 
2012), which converts KYN into its neurotoxic microglial by-
products, such as 3-hydroxykynurenine (3-HK), 3-hydroxyan-
thranilic acid (3-HAA) and eventually quinolinic acid (QUIN; 
Ogyu et al., 2018; Parrott et al., 2016). These metabolites contrib-
ute to neurotoxicity through numerous mechanisms and can also 
further exacerbate inflammation. For instance, QUIN agonizes 
the NMDA receptor inducing glutamate excitotoxicity and con-
tributing to a signaling cascade that leads to reduced brain-
derived neurotropic factor (BDNF), protein synthesis, and 
synaptogenesis (Lugo-Huitrón et al., 2013), whereas 3-HK 
increases reactive oxygen species in the brain, contributing to 
oxidative stress and neuronal apoptosis, especially in the hip-
pocampus (Colín-González et al., 2013). Under normal condi-
tions, KYN is mainly metabolized in astrocytes by kynurenine 
aminotransferases (KATs) to kynurenic acid (KynA). KynA is an 
antagonist of the NMDA receptor and to a lesser extent the α7-
nicotinic acetylcholine and AMPA receptors, through which it 

exerts neuroprotective and anti-inflammatory effects, enhances 
synaptic plasticity, and clears excess glutamate in the brain 
(Ganong and Cotman, 1986; Potter et al., 2010).

Evidence is rapidly growing on the role of inflammation in 
association with KYN pathway abnormalities and dysregula-
tion of KYN metabolites in patients who have committed sui-
cide (Bryleva and Brundin, 2017). However, the data is less 
robust for the whole MDD population. A recent systematic 
review observed decreased KYN and KynA in depressed 
patients, alongside increased QUIN in antidepressant-free 
patients, compared to healthy controls (Ogyu et al., 2018); how-
ever, some studies have found no differences between KYN 
pathway metabolites of depressed patients and healthy controls 
in peripheral (Hughes et al., 2012) nor central samples (Hestad 
et al., 2017; Miller et al., 2008). Decreased TRP among patients 
with no changes in KYN or its downstream components has 
been also observed (Gabbay et al., 2010; Hughes et al., 2012), 
suggesting potential involvement of alternative mechanisms in 
the depletion of TRP.

Understanding ketamine’s potential effect on inflammatory 
proteins and TRP metabolism would increase our understanding 
of the biological mechanisms behind its antidepressant effect and 
help identify pharmacological targets for other antidepressants. 
Crucially, understanding ketamine’s immunomodulatory mecha-
nisms could inform us of potential predictors of response and 
therefore help reduce unnecessary treatment trials. Changes in 
cytokines have previously been found to be associated with anti-
depressant response to traditional antidepressants (Cattaneo 
et al., 2013; Lanquillon et al., 2000), and a recent systematic 
review concluded that treatment-resistant patients with higher 
inflammation have better response to medication with anti-
inflammatory characteristics including ketamine (Yang et al., 
2019). Identification of predictors of response as well as develop-
ment of novel pharmacotherapies are of particular interest given 
concerns surrounding ketamine’s side-effects and potential risks 
of long-term use (Short et al., 2018).

Thus far research on the effect of ketamine on inflammation 
has yielded mixed reports with heterogeneity in methodologies 
and samples complicating evidence synthesis. The aim of this 
systematic review is to analyze current evidence on the effect of 
ketamine on inflammatory markers and TRP–KYN pathway 
metabolites in unipolar and bipolar depression, as well as in pre-
clinical studies employing animal models of depression.

Methods

Search strategy

Electronic literature databases MEDLINE ([R] and Epub Ahead 
of Print, In-Process, In-Data-Review & Other Non-Indexed 
Citations and Daily; 1946 to October 4, 2020), APA PsycInfo 
(1806 to September Week 4, 2020), and Embase (1974 to 2020 
Week 40) were searched through Ovid interface (https://ovidsp.
ovid.com/) to find relevant studies. The following combination 
of keywords was entered: Ketamine AND Depress* AND 
Inflammat*/cytokine*/interleukin/c-reactive protein/CRP/tumor 
necrosis factor*/TNF*/interferon/IFN*/kynuren*/KYNA/quino-
linic/QUIN/QA. Results were limited to publications in English 
language. No restrictions were placed regarding publication year. 
Reference sections of included studies and review articles on the 
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topic were screened to identify additional relevant publications. 
The final search was performed on October 5th, 2020.

Selection of literature

References were imported into the RefWorks citation manager 
tool (ProQuest, Ann Arbor, MI, USA) for screening of results. 
Participants in human studies were required to have a current 
Diagnostic and Statistical Manual of Mental Disorders (DSM) or 
International Classification of Diseases (ICD) diagnosis of either 
MDD or BD and to be experiencing a depressive episode at the 
time of the study. Animal studies were required to use established 
animal models of depression such as lipopolysaccharide- (LPS) or 
stress-induced depression.

Studies were required to include in vivo administration of keta-
mine. Studies were excluded if ketamine was administered as an 
adjunct therapy with another pharmacological or psychological 
treatment, though participants were allowed to be maintained on 
their current medications. Human studies were required to measure 
biomarkers at baseline and at least once posttreatment and provide 
a within-subject analysis of the change, or at minimum provide 
sufficient data for interpretation of this change. Animal studies 
were required to include comparison of posttreatment biomarkers 
between ketamine group and a control group with otherwise identi-
cal treatment but without administration of an active drug.

Quality assessment

The quality of human studies was evaluated with the following 
parameters: (1) blinding of patients and investigators, (2) absence 
of adjunct medication, (3) number of outcome measurement 
points, (4) appropriate statistical analyses, and (5) completeness 
of data and reporting. Animal studies’ quality was assessed based 
on (1) depression model, (2) clarity of protocol and similar treat-
ment of groups, (3) appropriate statistical analyses; and (4) com-
pleteness of data and reporting. Each parameter was awarded a 
maximum score of two, depending on how well each study ful-
filled the criterion (0 = low/absent, 1 = partial, and 2 = full). A total 
quality score was generated by summing the scores for all param-
eters, with a maximum score of 10 for human studies and 8 for 
animal studies.

Results

Study selection

The initial search yielded 848 results, reducing to 807 after limit-
ing results to English language and 581 after deduplication. About 
62 articles were selected for full-text assessment after the initial 
title and abstract screening, of which 31 were included in the qual-
itative analysis. Nine of the included studies were on humans and 
22 on rodents. A flow diagram of the search process with reasons 
for exclusions is presented in Supplemental Figure S1.

Description of selected studies

Human studies. A summary of human study characteristics is 
shown in Table 1. All studies were published between 2015 and 

2020. Seven studies measured inflammatory markers, the most 
widely measured being IL-6 (n = 7) and TNF-α (n = 6); and five 
studies measured TRP–KYN metabolites, the most commonly 
measured being KYN (n = 5) and TRP (n = 4). All studies measured 
protein levels of the markers. The samples of studies by Kadriu 
et al. (2019) and Park et al. (2017) overlapped, and therefore for 
the former we will only report results for KYN metabolites but not 
for cytokines, which are analyzed more thoroughly and in a larger 
sample by Park et al. (2017).

The number of patients receiving ketamine ranged from 16 to 
84, the combined sample of all included studies totaling 429. Six 
studies included MDD patients, one BD patients, and two studies 
included both. Most studies employed treatment-resistant criteria 
requiring patients to have had at least two previous failed antide-
pressant trials, except from one study only requiring a single 
failed trial (Moaddel et al., 2018). Two studies allowed inclusion 
of nontreatment-resistant patients if these were suicidal (Zhan 
et al., 2020; Zhou et al., 2018). In four out of six studies, MDD 
patients were medication free, and in two out of three studies, BD 
patients were allowed mood stabilizers only. Six studies adminis-
tered ketamine once, and three had multiple infusions. All studies 
used a 0.5 mg/kg intravenous dose of ketamine with one study 
also including a 0.2 mg/kg condition (Chen et al., 2018). Studies 
included between 2 and 7 post-infusion measurements, from 
immediately after administration to up to 2-week post-infusion.

Study quality scoring is shown in Supplemental Table S1. 
Total scores ranged between four and eight out of ten. Statistical 
analyses were appropriate by most part; however, a few studies 
did exploratory analyses with several markers without adjusting 
for multiple comparisons where this would have been considered 
appropriate. Moaddel et al. (2018) did not conduct a simple 
within-subject analysis of ketamine-induced changes but rather 
contrasted effects to a placebo group; therefore, absolute changes 
in levels had to be interpreted from a graph. Two studies provided 
only stratified data according to antidepressant responder status.

Animal studies. Animal study characteristics are summarized in 
Table 2. All studies were published between 2013 and 2020. Six-
teen studies examined inflammatory markers, one study TRP– 
KYN pathway metabolites, and five studies measured both. The 
most measured markers were IL-1β and IL-6, measured in 19 and 
18 studies, respectively. All studies measured protein levels of the 
markers, except from three studies measuring mRNA levels of 
cytokines and one study measuring mRNA levels of IDO. Twelve 
studies measured markers in either the brain (most commonly hip-
pocampus or prefrontal cortex) or CSF, seven in blood, and three 
studies reported levels for both. In 13 studies, tissue or blood sam-
ples were taken less than 24 h from treatment, in seven studies 24 h 
or more, and two did both with different groups of rodents. Ket-
amine was delivered intraperitoneally with doses ranging from 5 to 
20 mg/kg, except from one study with a 100 mg/kg dose (Zhu et al., 
2015) and one with an additional 90 mg/kg condition besides a 
lower-dose group (Verdonk et al., 2019). About 17 studies admin-
istered a single ketamine infusion, three injected multiple infu-
sions, and two included both conditions.

Quality scoring of animal studies are listed in Supplemental 
Table S2. Total quality scores ranged between four and eight out 
of a total of eight. Key differences in study quality arose from the 
depression model used, specifically whether induced depression 
was confirmed with behavioral testing ideally comparing 
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performance to a group of nondepressed control rodents. There 
was also variability in clarity of study protocol and in compre-
hensiveness of reporting of outcome data and statistics for differ-
ent comparisons.

Results of individual studies and evidence 
synthesis

Human studies. Five out of six human studies measuring 
inflammatory proteins found decreases in at least one marker. Of 
these, one study stratified patients according to the responder sta-
tus and found changes only in ketamine responders (Yang et al., 
2015b). IL-1β decrease was observed in two out of three studies 
(p < 0.05; Yang et al., 2015b; Zhan et al., 2020); TNF-α in two 
out of five studies (p < 0.01; Chen et al., 2018; Zhan et al., 2020); 
IL-6 in three out of six studies (p < 0.01; Kiraly et al., 2017; Yang 
et al., 2015b; Zhan et al., 2020); and IFN-γ in one study out of 
three (p < 0.01; Zhan et al., 2020). Soluble tumor necrosis factor 
receptor 1 (sTNFR1) was measured in one study and was found 
reduced (p < 0.01; Park et al., 2017), likewise for IL-23 (Zhan 
et al., 2020), IL-1α, granulocyte colony-stimulating factor 
(G-CSF), platelet-derived growth factor (PDGF)-AA (p < 0.05), 
and interferon gamma-induced protein (IP)-10 (Kiraly et al., 
2017). Additionally, IL-8 (p < 0.01), IL-13 (Kiraly et al., 2017), 
IL-2, IL-7, IL-10, IL-17A, fractalkine (p < 0.01; Zhan et al., 
2020), granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL-4, IL-5, and IL-12p70 (p < 0.05; Zhan et al., 2020) 
were each decreased in one out of two studies. Finally, increases 
in cytokines IL-6 (Park et al., 2017) and IL-7 (Kiraly et al., 2017) 
were observed in one study each (p < 0.01).

Most changes in markers were short-term, lasting up to 
240 min. However, Yang et al. (2015b) observed reductions sus-
taining for 1 and 3 days for IL-1β and IL-6, respectively, and 
Kiraly et al. (2017) observed reductions in IL-8 and PDGF-AA 
and increases in IL-7 at 24 h. Zhan et al. (2020) found no signifi-
cant changes at the 24-h mark; however, levels of 14 proteins 
were reduced 2 week post-sixth ketamine infusion. In two of the 
five studies with significant findings, participants were main-
tained on their medications (Chen et al., 2018; Zhan et al., 2020), 
and in one study, BD subjects were allowed mood stabilizers 
(Park et al., 2017). In the study by Allen et al. (2018), who found 
no changes in any inflammatory protein, the majority of patients 
were medicated.

Changes in KYN metabolites indicating decreased inflamma-
tion were observed in two studies. Kadriu et al. (2019) found 
increased KYN, KynA, and KYN/KynA ratio and reduced IDO 
and QA/KYN ratio. These changes were long-term and were 
observed 1-day post-infusion for KYN/KynA and QA/KYN 
ratios, and 1- and 3-day post-infusion for KYN, KynA, and IDO; 
all p-values <0.01, except from KYN at day 3 (p < 0.05). Zhou 
et al. (2018) stratified patients according to the responder status 
and found changes only in ketamine responders; increased KynA 
and KynA/KYN ratio was measured at 24 h post-first and post-
sixth ketamine infusion (all p-values <0.05), with the infusions 
given over a 12-day period. No changes were observed in TRP.

Yang et al. (2015b) and Moaddel et al. (2018) measured KYN 
and TRP but found no significant ketamine-induced changes over 
time. However, Moaddel et al. (2018) observed differential 
changes in markers when analyzed comparing to a placebo 

group, specifically a sharp initial drop in KYN and KYN/TRP 
ratio in the placebo group compared to slight increases with keta-
mine. Finally, Allen et al. (2018) measured KYN, KynA, and 
TRP with no significant results, but observed a trend toward 
decreased KYN at 2 h (p = 0.067) and KYN/TRP ratio at 24 h 
(p = 0.054) in responders.

Animal studies. About 18 out of 21 animal studies found reduc-
tions in one or more pro-inflammatory markers. Decreased IL-1β 
was observed in 14 out of 19 studies and decreased IL-6 in 13 out 
of 18 studies. Decreased TNF-α was found in nine out of 14 stud-
ies; additionally, a study on adrenocorticotropic hormone 
(ACTH)-induced treatment resistance by Walker et al. (2015) 
observed decreased TNF-α in ketamine nonresponders compared 
to a placebo group, p < 0.05. One study recorded an unexpected 
surge in TNF-α (Abelaira et al., 2017). IL-1α was measured in 
one study and found decreased, p < 0.01 (Verdonk et al., 2019). 
One study out of five also observed an increase in anti-inflamma-
tory cytokine IL-10 (p < 0.05; Yang et al., 2013b). Walker et al. 
(2015) observed elevated CRP in ACTH-treated ketamine 
responders compared with placebo group, p < 0.05. IFN-γ was 
measured twice with no differences found (Clarke et al., 2017; 
Verdonk et al., 2019).

Four out of six studies measuring TRP metabolites found 
changes indicating decreased inflammation. Verdonk et al. (2019) 
observed increased KynA and decreased QUIN and 3-HK in 
ketamine-treated mice (p < 0.01); however, no changes in these 
three were observed by Eskelund et al. (2017). KYN/TRP ratio 
was decreased in two studies out of five (p < 0.05; Wang et al., 
2015; Zhang et al., 2016), but no differences were found in abso-
lute levels of KYN or TRP. IDO was decreased in three studies 
out of four, all p-values <0.01 (Wang et al., 2015; Zhang et al., 
2016; Zhao et al., 2020). Two studies found no significant differ-
ences in any metabolite of the pathway (Eskelund et al., 2017; 
Walker et al., 2013).

No remarkable differences appeared between results of stud-
ies measuring central versus peripheral markers. Of studies 
measuring both, Reus et al. (2015) found ketamine to reduce IL-6 
in both serum and CSF, but IL-1β and TNF-α in serum only (all 
p-values <0.05). One study found overall levels of plasma and 
brain KYN metabolites to be strongly correlated, though main 
analyses of ketamine’s effect were only done in brain markers 
(Verdonk et al., 2019). No marked differences appeared between 
samples obtained at different timepoints.

There was an indication for dose-dependency, with higher 
doses showing more robust effects. Three out of four studies with 
a low ketamine dose of 5 or 6 mg/kg found no significant results, 
with one observing a decrease only in TNF-α but not in IL-1β, 
which was decreased with a higher 10 mg/kg infusion in the same 
study (Clarke et al., 2017). One study found reductions in three 
pro-inflammatory markers after both 10 and 90 mg/kg doses; 
however, all changes were larger following the higher dose 
(Verdonk et al., 2019).

Discussion
This study is the first systematic review examining the effect of 
ketamine on both inflammation and TRP–KYN pathway in 
depression in clinical as well as preclinical animal studies. 
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Preclinical evidence has brought strong evidence for ketamine’s 
anti-inflammatory and neuroprotective properties, with nearly all 
null findings occurring in studies where a low-dose ketamine was 
used. However, studies in humans are thus far scarce and have 
yielded more mixed findings, they overall seem to support 
decreases in inflammation and activation of neuroprotective 
branch of the KYN pathway, at least in a subset of patients.

Ketamine-induced reductions of inflammatory markers were 
observed most commonly for the cytokines IL-1β, IL-6, and 
TNF-α, which have all been consistently found to be implicated 
in depressive illness (Borsini et al., 2020; Osimo et al., 2020; 
Raison et al., 2006; Rosenblat et al., 2014). These three cytokines 
are known to upregulate the enzyme IDO, which converts TRP 
into KYN (Maes et al., 2007); additionally, IL-1β enhances 
expression of KMO that further converts KYN into its neurotoxic 
metabolites (Moffett and Namboodiri, 2003). Besides effect on 
TRP metabolism, pro-inflammatory cytokines contribute to 
depressive symptoms by disrupting monoamine metabolism and 
hypothalamic–pituitary–adrenal (HPA) axis function (Felger and 
Lotrich, 2013; Nikkheslat et al., 2018, 2020) and also by directly 
influencing glutamate signaling contributing to glutamate excito-
toxicity and reduced BDNF (Haroon and Miller, 2016; Miller 
et al., 2009). It is notable that in many clinical studies changes in 
inflammatory proteins did not sustain past 24 h, and it is uncer-
tain whether such transient changes can inflict cascades of down-
stream events that are implicated in ketamine’s long-term 
antidepressant effects. Observations of KYN metabolite changes 
of up to 3 days support this possibility, but further research is 
called for. The ketamine response has previously been found to 
be associated with increased BDNF up to 1-week post-infusion 
(Allen et al., 2015; Haile et al., 2014), yet it is unknown to what 
extent this is induced by ketamine’s anti-inflammatory effects in 
contrast to the drug’s direct effect on glutamatergic signaling or 
other mechanisms.

The IDO was found decreased in all but one study it was meas-
ured, supporting ketamine’s anti-inflammatory action through 
decreasing pro-inflammatory cytokines and subsequently down-
regulating the activity of the enzyme. In animal models, IDO activ-
ity has been found essential for inflammation-induced depressive 
symptoms (Lawson et al., 2013; O’Connor et al., 2009). In con-
trast, a large longitudinal study in depressed patients found that 
KYN/TRP ratio, a commonly used indirect indicator of IDO activ-
ity, did not mediate the relationship between inflammation and 
depressive symptoms; in fact, KYN/TRP ratio was even lower in 
depressed patients though this was no longer significant after 
adjusting for antidepressant use (Quak et al., 2014). However, 
validity of KYN/TRP ratio as a proxy for IDO has been challenged 
(Badawy and Guillemin, 2019), which may also help explain why 
reductions in this ratio were observed only in two studies of this 
review despite more consistently observed changes in IDO. In 
future investigations, direct measurement of IDO is endorsed for 
reliable evidence of the enzyme’s activity.

Although decreased IDO may lead to reduced synthesis of 
KYN, our review found no consistent evidence for changes in 
this metabolite. Changes in KYN may be less detectable due to 
its eventual transamination into downstream metabolites 
(Badawy and Guillemin, 2019), levels of which are arguably 
more relevant markers for ketamine’s action and anti-inflamma-
tory effects. Indeed, as an indicator of inflammation, increased 
IDO only leads to neurotoxicity with additional upregulation of 

KMO and subsequent conversion of KYN into its neurotoxic 
metabolites. Our review found evidence for increased KynA and 
reduced QUIN following ketamine in both clinical and preclini-
cal studies, alongside decreased 3-HK in one animal study, sup-
porting anti-inflammatory activity and activation of KAT over 
KMO and a shift toward neuroprotective rather than neurotoxic 
pathway. The effect of ketamine in decreasing pro-inflammatory 
cytokines leads to less activity of KMO and increased availabil-
ity and synthesis of KYN into KynA instead of QUIN. KMO has 
been found essential for inflammation-induced depression in 
rodents (Parrott et al., 2016), suggesting the present results could 
be of high clinical relevance. However, due to the small number 
of studies measuring these metabolites as presented in our review, 
further research is needed.

Heterogeneity in inclusion criteria and methodologies of 
included human studies not only complicate the interpretation of 
the evidence base but also shed light on the potential reasons for 
the inconsistencies seen in the literature. Studies without signifi-
cant findings appeared either underpowered and were on medi-
cated patients (Allen et al., 2018) or measured only a few markers 
and applied less strict treatment-resistant criteria (Moaddel et al., 
2018). Given inflammation levels are generally lower in nontreat-
ment-resistant patients (Cattaneo et al., 2020; Strawbridge et al., 
2015; Yang et al., 2019),; and traditional antidepressants (Köhler 
et al., 2018; Strawbridge et al., 2015) and mood stabilizers (Li 
et al., 2015; Rapaport et al., 1999) have been found to exert anti-
inflammatory effects, ketamine might be less likely to show anti-
inflammatory effects in nontreatment-resistant and in medicated 
subjects. It is yet worth noting that even in many higher-quality 
studies decreases were observed only in one or two inflammatory 
markers. The two studies that stratified results according to the 
responder status to antidepressants only found significant results 
in those who responded, supporting the possibility that ketamine’s 
antidepressant effect might at least partially be mediated through 
its anti-inflammatory effects, which are more prominent in 
responders (Yang et al., 2015b; Zhou et al., 2018).

Of relevance, surgical and preclinical research has indicated 
ketamine does not reduce inflammation unless it is abnormally high 
(Loix et al., 2011); whether and to what extent baseline inflamma-
tion predicts ketamine’s effect on inflammatory markers as well as 
symptomatic improvement of depression are important areas for 
further investigation. In the study by Yang et al. (2015b), who found 
both higher baseline levels of, as well as ketamine-induced reduc-
tions in, IL-6 and IL-1β to be associated with response status, base-
line levels of these markers were remarkably higher than seen in 
most populations. Variability in baseline inflammation levels within 
and between studies could also be one reason why preclinical find-
ings have not been replicated as consistently in humans; in rodents, 
depression is induced mechanistically and in many times with 
inflammatory stimuli, providing optimal condition for ketamine to 
demonstrate its anti-pro-inflammatory effects. The only animal 
study with a moderate-to-high ketamine dose but with no signifi-
cant findings used a genetic rat model of depression (Eskelund 
et al., 2017), which had previously demonstrated lower levels of 
QUIN and no difference in KYN/TRP levels compared to its selec-
tively bred controls (Eskelund et al., 2016). It is also notable that in 
several rodent studies ketamine was administered before inflamma-
tory challenge, which can result in more potent anti-inflammatory 
effects than when administered once inflammation is already pre-
sent (Taniguchi et al., 2001).
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There was a strong indication for dose-dependency across 
animal studies, and likewise one clinical trial found anti-inflam-
matory effects only following 0.5 mg/kg but not 0.2 mg/kg keta-
mine infusion (Chen et al., 2018). Potential increased efficacy of 
even higher ketamine doses in humans is unclear. In surgical con-
texts, subanesthetic doses similar or even lower to antidepressant 
doses have been found sufficient for inducing anti-inflammatory 
effects (Dale et al., 2012). Evidence of antidepressant efficacy of 
higher ketamine doses is mixed with one study showing no supe-
riority of 1.0 mg/kg over 0.5 mg/kg infusion (Fava et al., 2018), 
but another indicating more pronounced responses after doses 
were escalated from 0.5 mg/kg to 0.75 mg/kg (Cusin et al., 2017). 
Hypothetically, it remains plausible higher ketamine dose could 
also trigger or augment anti-inflammatory effect in some patients 
in whom this was not evident and could therefore be investigated 
in the future. Research on the effect of multiple ketamine infu-
sions is also crucial, given repeated dosing is commonly needed 
and used in practice (Phillips et al., 2019; Voort et al., 2016).

It is important to highlight that the included human studies only 
measured circulating markers, which might not provide a reflec-
tion of levels in the central nervous system. Regarding TRP metab-
olites, KYN, TRP, and 3-HK readily cross the blood–brain barrier, 
but QUIN and KynA do this at lower rates and are instead pro-
duced in the brain immune cells (Guillemin, 2012; Schwarcz and 
Pellicciari, 2002). Although inflammation has previously been 
suggested to increase blood–brain barrier permeability (Skaper, 
2017), this notion has recently been challenged (Turkheimer et al., 
2020) and robust consistent associations between brain and blood 
inflammation, or KYNs are yet to be found in depression (Nettis 
and Pariante, 2020). A recent study in unmedicated-depressed 
patients showed that while plasma and CSF levels of KYN, KYN/
TRP ratio, and QUIN correlated strongly, there was no significant 
relationship for KynA, TRP, and QUIN/KynA ratio (Haroon et al., 
2020). In the same study, a significant relationship was found 
between plasma and CSF CRP and IL-6 soluble receptor, but cor-
relations were close to zero for most other inflammatory proteins 
including TNF, IL-6, and IL-1β (Haroon et al., 2020). Studies 
examining markers in the CSF or in the brain with positron emis-
sion tomography are therefore urgently needed.

There are some limitations with the current review that may 
help for directions of future studies. The number of clinical stud-
ies on the effect of ketamine is still small, and relying only on 
using animals to model complex psychiatric conditions and 
investigate the effectiveness of drugs would not be an ideal 
approach (O’Leary and Cryan, 2013). Gray literature was not 
searched in this review. Meta-analysis could not be conducted 
due to variability between methodologies and biomarkers meas-
ured of the included studies. Heterogeneity between studies, 
namely in diagnoses, disease profile, potential comorbidities, 
medication status, and analysis methods, highlights the need for 
research with more comparable inclusion criteria and methodol-
ogy. Further, IFN-γ was only measured three times and CRP 
twice; IFN-γ is the key cytokine activating IDO (Maes et al., 
2007); and CRP has been found as a predictor for response to 
antidepressants with anti-inflammatory characteristics (Yang 
et al., 2019); therefore, inclusion of these markers in future 
research would be of interest. Future studies should also ideally 
include a placebo group, highlighted by saline-induced fluctua-
tions in markers observed in some studies (Chen et al., 2018; 
Moaddel et al., 2018).

Conclusion
In conclusion, the present review supports ketamine’s anti-
inflammatory effects in depressed humans and rodents. Ketamine 
is considered the most effective antidepressant available for 
treatment-resistant patients and for suicide prevention, enhancing 
understanding of its pharmacology is crucial for the development 
of precision medicine, understanding of neurobiological mecha-
nisms underlying depression, and identification of therapeutic 
targets for other novel antidepressants with potentially better side 
effect profile and less abuse liability. Crucial next steps for fur-
ther research include investigation of the specific molecular 
mechanism behind ketamine’s immunomodulatory effects, 
examination of clinical relevance of inflammatory changes, and 
measurement of markers in the central nervous system.
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