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The diversity of cognitive deficits and neuropathological processes associated with dementias has encouraged diver-
gence in pathophysiological explanations of disease. Here, we review an alternative framework that emphasizes con-
vergent critical features of cognitive pathophysiology. Rather than the loss of ‘memory centres’ or ‘language centres’,
or singular neurotransmitter systems, cognitive deficits are interpreted in terms of aberrant predictive coding in hier-
archical neural networks.
This builds on advances in normative accounts of brain function, specifically the Bayesian integration of beliefs and
sensory evidence in which hierarchical predictions and prediction errors underlie memory, perception, speech and
behaviour. We describe how analogous impairments in predictive coding in parallel neurocognitive systems can gen-
erate diverse clinical phenomena, including the characteristics of dementias.
The review presents evidence from behavioural and neurophysiological studies of perception, language, memory
and decision-making. The reformulation of cognitive deficits in terms of predictive coding has several advantages. It
brings diverse clinical phenomena into a common framework; it aligns cognitive and movement disorders; and it
makes specific predictions on cognitive physiology that support translational and experimental medicine studies.
The insights into complex human cognitive disorders from the predictive coding framework may therefore also in-
form future therapeutic strategies.
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Introduction
Cognitive deficits in neurodegenerative diseases have often been
characterized as the loss of core functional modules in distinct
brain regions, or specific networks, each serving functionally spe-
cialized cognitive systems such as memory, language comprehen-
sion or executive function. This approach emphasizes the

functional differences between disorders linked to functional ana-
tomical susceptibility and network vulnerability.1 Alongside these
functional anatomical differences that contribute to distinct phe-
notypes, preclinical models and clinical studies suggest conver-
gence in important aspects of the pathophysiology of different
dementias, with commonalities for example in terms of loss of
synapses, synaptic plasticity and major neurotransmitters.2 The
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relative contributions of toxic misfolded protein aggregates, neuro-
inflammation and proteostasis to synaptic impairment vary across
dementias, but their physiological consequences overlap, with po-
tential convergence on a core cognitive mechanisms of predictive
coding. Here we propose a re-evaluation of the diversity of cogni-
tive features in dementia, in terms of impairments in predictive
coding, leading to a trans-diagnostic neuro-computational model
that may aid the development of novel therapeutic strategies.

Predictive coding is a core feature of brain function, imple-
menting generative models that ‘explain’ sensory inputs via hier-
archical beliefs about the world.3–6 In this review, we reassess
clinical deficits in terms of the disruption of predictive coding in
precisely tuned neural hierarchies engaged in prediction, predic-
tion error and inference. The predictive coding account of norma-
tive brain function integrates cognitive and computational
neuroscience to explain perception and action. The central tenet is
that the brain acts as an active inference machine that learns stat-
istical regularities of the external world (Box 1) and generates pre-
dictions to increase the efficiency of information processing and
understanding of the sensorium.3–6

The predictive coding account provides a common neurobio-
logical framework to describe diverse cognitive, perceptual and be-
havioural phenomena. For example, there is evidence for
predictive coding in vision,45,46 rhythm perception,47,48 auditory
processing,49–53 reward and preferences54 and action control.55,56

The representation of predictions, prediction errors and precision
in each system depends on a fine-tuned cortical hierarchy, with
laminar-specific connectivity and balanced excitatory-inhibitory
neurochemistry (Fig. 1A). Deficits in predictive coding have been
proposed to cause domain-specific and domain-general cognitive
impairments in neuropsychiatric disorders as diverse as psych-
osis,57,58 autism59,60 and alien limb.61

We propose that dementias’ effects on memory, perception, lan-
guage and action control may also arise from a change in predictive
coding. In particular, we set out how the effect of neurodegenera-
tion on the ‘precision’ of predictions and prediction error can impair

perception, learning and complex behaviours. The symptoms aris-
ing from a change in predictive coding are a function of the neural
networks that are selectively vulnerable to each specific molecular
pathology. The predictive coding account of dementia is therefore
not an alternative to network specificity models,1 but instead aug-
ments these models by describing the homologous changes in pre-
dictive coding arising within each network.

We start with the basic processes of perception and action to
introduce the principles predictive coding and the direct evidence is
strongest. We then consider higher cognitive disorders, of amnesia
and aphasia, and neuropharmacological factors, with examples
drawn from studies of Alzheimer’s disease, Parkinson’s disease,
frontotemporal dementia and dementia with Lewy bodies.

Perception
In perceiving our environment, one makes use of prior knowledge
and context to predict sensory inputs. For example, in a complex
auditory scene such as a noisy cocktail party, prior knowledge or ex-
perience facilitates the parsing of constituent objects (or speakers)
in time and space, making it easy to recognize one’s own name (‘the
cocktail party effect’).62 Top-down predictions based on prior experi-
ence of the speakers, their language and the topic, facilitate this seg-
regation.63 In vision, context-based predictions likewise aid rapid
object recognition under both normal and challenging conditions.4,64

The use of auditory predictions is largely preserved in normal age-
ing. Indeed, people may become more dependent on their predic-
tions and perceptually less sensitive to the sensorium with age, as
the precision of the higher-order prediction errors increases relative
to the precision sensory evidence.14,28

This balance is disrupted in mild cognitive impairment and de-
mentia, with degeneration of temporo-parietal cortex from
Alzheimer’s disease.65 Accordingly, patients develop greater diffi-
culty following conversations in the presence of background noise,
show impairments in segregating, tracking and grouping auditory
objects that evolve over time66 and in perceiving sound location

Box 1 Predictive coding and hierarchical networks

Predictive coding is a process by which the brain updates a model of the environment, to explain sensory inputs. The process
applies hierarchically over increasingly abstract causes, and over time, forming the basis of diverse cognitive and behavioural func-
tions. It rests the premise that perception is a probabilistic inference. Complex and abstract beliefs are represented in higher levels
(e.g. on semantics and social norms) and direct sensory inputs at lower levels. Based on learned statistical dependencies, each level
predicts the activity in the level below (‘feedback’). A mismatch between the prediction and the sensory input leads to a prediction
error, which is propagated back up the hierarchy (‘feedforward’). The forward and backward connections convey prediction errors
and predictions, respectively.7,8

Different biological implementations of predictive coding have been put forward at micro- and macroscopic levels,3–6 but they have
multi-level hierarchies of neural circuits in common. There are different algorithmic implementations of the way in which the fit
between predictions and sensory data is optimized, and the underlying model updated (e.g. linear estimation of parameters,6

Bayesian inference,9 a review of models).10 There are also alternatives to predictive coding, that nonetheless posit that the brain
performs a probabilistic inference in hierarchical networks, and maintains a generative (i.e. explanatory) model of the environment
by alternative mechanisms.11 This review does not seek to differentiate these alternative mechanisms, but focus on their common-
alities, with the generation of predictions and updating them in response to prediction errors.
A critical feature of predictive coding is the estimation of uncertainty of the predictions and sensory inputs. Both the predictions
and prediction errors are relayed with varying ‘precision’ (i.e. the inverse of variance, or uncertainty). This precision determines the
relative weighting of the prediction error, whilst priors are updated iteratively, across all levels of the hierarchy.12,13 Precision
weighting of the prediction errors is controlled by neuromodulation (Box 2) and postsynaptic gain control at the cellular level.
Feedforward propagation of more precise prediction errors will have a greater impact updating beliefs represented in the higher
levels (i.e. faster learning). Feedback generation of more precise predictions ‘cancels out’ incoming prediction errors, leading to sta-
ble beliefs and behaviour (i.e. slow learning). Healthy cognition requires fine tuning of this process, adjusting relative precision at
upper versus lower levels of the hierarchy. The impact of neurodegeneration on the neural mechanisms that regulate precision,
and govern the representations within each level, explain diverse cognitive and behavioural phenomena in dementia, and raise
new hypotheses about candidate treatment strategies.
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and motion.65 They become worse even at automatic prediction of
repetitive stimuli and fail to generate a prediction error following
unexpected sensory events. This failure to generate a prediction
error with Alzheimer’s disease and other dementias is readily seen
in the reduced ‘mismatch negativity responses’ in oddball
tasks.37,67–69 Alzheimer’s disease similarly impairs higher order
precepts such as melodic contours.70 Even otherwise healthy
APOE4 carriers (i.e. at an elevated risk of developing Alzheimer’s
disease) show impairments in detecting auditory targets using
contextual information.71

In the visual domain, hallucinations and illusions commonly
occur with cortical Lewy body pathology, in Parkinson’s disease de-
mentia and dementia with Lewy bodies. The perceptual content is
commonly influenced by the immediate environment or autobio-
graphical memories, with pareidolic experiences in ambiguous
scenes,72 or the perception of familiar people or pets even if known
to have died.73 The hallucinations are typically visually complex and
familiar.14,15,74 This can be understood as a result of abnormal up-
weighting of beliefs (i.e. more precise priors) that establish overly
precise predictions relative to down-weighting (i.e. less precise) vis-
ual sensory evidence.32–34,58 Note that it is not just the absolute pre-
cision that matters, but the relative precision between upper and
lower levels in a hierarchy. Note too that the symptoms depend on
the anatomical distribution of the network that represents the cog-
nitive hierarchy. The medial temporal and medial prefrontal areas
are implicated in the cognitive hierarchy for such misperceptions,75

with hallucinations associated with abnormal activity and connect-
ivity among lower visual cortical regions.35,76–83 The loss of choliner-
gic modulation of the precision of neural representations is a
candidate cause, even in the absence of significant atrophy. Such
cholinergic loss reduces the precision of feed-forward prediction
errors relative to the precision of feedback predictions from higher
level priors.14–17 This accords with the observation that patients

who have more severe degeneration of their cholinergic pathways
experience more visual hallucinations,39–41 and symptoms are alle-
viated with cholinesterase inhibitors.43

Action, apathy and behavioural disorder
As Adams et al.84 highlight, perceptual and motor systems are not
separate entities, but operate as a single ‘inference machine’ that
serves to predict sensory input in all sensory domains and inter-
mediate inferences on the causes of the sensory inputs. The con-
cept of ‘active inference’ posits that prediction errors can be
reduced by actively changing sensory inputs through movement.
Active inference uses hierarchical predictive coding, with direct
evidence coming from the physiology of motor control (Fig. 1A).56

The failure to attenuate proprioceptive prediction errors in the
lower levels of a behavioural hierarchy leads to akinesia (Fig. 1D),85

in the context of neurodegenerative movement disorders like
Parkinson’s disease. Over-precise priors (in upper levels of a motor
control hierarchy, represented by premotor and prefrontal cortex)
also explain the alien limb syndrome (that one’s own limb is moving
without intention or volition). Specifically, alien limb syndrome is
associated with disrupted information flow between medial areas
(supplementary motor area) that encode precision of proprioceptive
predictions to the lateral pre-motor areas which encode action
outcomes.61

There is empirical evidence for active inference at the lower
level of the cognitive hierarchy for behaviour, expressed as specific
actions. For example, there is ubiquitous ‘sensorimotor attenu-
ation’ in health across the lifespan: a transient down-weighting of
the predicted sensory consequences of actions, observed in 98% of
healthy adults (Fig. 1B).31 Attenuation facilitates movement and
provides a sense of agency.86 In healthy ageing, there is greater re-
liance on predictions arising from greater precision of prior beliefs,

Box 2 Precision changes in dementia and neurotransmitters

‘Precision’ represents the level of certainty, and describes the confidence attributed to prediction errors at each level of the cortical
hierarchy.3,5 For example, in noisy settings with high levels of uncertainty (e.g. driving on a foggy day, talking during a concert),
precision of the sensory prediction errors is reduced while the precision at the higher levels is relatively increased.
Neurotransmitters such as acetylcholine,14–18 glutamate,19–21 GABA22–27 and norepinephrine18 have been shown to regulate predic-
tion errors and their precision across different cortical hierarchies. Impairments in the neurotransmitter mediated precision
weighting gives rise to diverse clinical representations in dementia depending on the level and the functional domain of the cor-
tical hierarchy where the mechanistic impairment occurs.
An example of the abnormally high precision in the lower levels of the hierarchy comes from Parkinsonian disorders. Akinesia, the
poverty of movement, can arise from reduced precision in the higher order sensorimotor prediction errors, and an over-reliance on
sensory evidence (Fig. 1D).12,28 Akinesia can be partially improved using the peripheral vibration devices that increase the uncer-
tainty of sensory evidence, thereby reducing the precision.29,30 However precision changes are more commonly observed at the
higher levels of the hierarchy. In normal ageing, impairments in vision and hearing, lead to the adaptation of precision weights
across the cortical hierarchy,31 where the reliance on ‘inaccurate’ sensory evidence is reduced, and to balance, precision at higher
cortical levels are boosted. Similarly, in Parkinson’s disease and Lewy body dementia, in the visual cortical hierarchy, the precision
at the higher level prediction errors are up-weighted, albeit abnormally, giving rise to visual hallucinations.32–36

A key modulator of precision is acetylcholine that suppresses prediction errors at the higher order and regulates precision of the
sensory prediction errors.14–17 Cholinergic loss can affect ascending sensory precision even in the absence of atrophy. Impaired
mismatch negativity responses in Alzheimer’s disease, indicating unsuccessful sensory learning, is partially explained by the wide-
spread degeneration of cholinergic projections.37,38 Similarly, patients with Lewy body dementia who have more severe degener-
ation of their cholinergic pathways experience more visual hallucinations.39–41 Cholinesterase inhibitors that mediate sensory pre-
cision, can amplify the amplitude of the mismatch response in patients with Alzheimer’s disease,42 and alleviate hallucinations in
Lewy body dementia.43 Acetylcholine regulates inhibitory activity by suppressing or inactivating GABAergic interneurons.25–27

While slower neurotransmitters like acetylcholine are proposed to compute the precision, faster neurotransmitters like GABA are
thought to encode the prediction errors.44 Patients with behavioural variant frontotemporal dementia show reduced mismatch
negativity response, as a product of impaired inhibitory connections and reduced GABA concentrations in the frontal cortex.23,24

These patients show reduced precision in higher levels of the auditory hierarchy, leading to errors in encoding of conditional
expectations at lower levels.22
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and less on the sensorium.31 In neurodegenerative parkinsonism,
deficits in sensorimotor predictions (reduced precision) results in
an over-reliance on sensory evidence and poverty of move-
ment.12,28 Such deficits in sensorimotor predictions are linked to
disease severity of corticobasal syndromes,28,86 and to atrophy and
white matter connectivity of the pre-supplementary motor area—
a cortical region that lies at the intermediate level of a spatially
embedded cognitive hierarchy for behaviour, between motor cor-
tex and prefrontal cortex.28,40

There are therapeutic implications of active inference. For ex-
ample, akinesia can be improved by high frequency peripheral vi-
bration which reduces the precision of sensory evidence and
increasing the relative precision of sensorimotor predictions (cf.
Sweeney et al.29 and Macerollo et al.30). This is in line with sugges-
tions that high-frequency vibration attenuates proprioceptive
feedback allowing for greater top-down control.87 A physiological
correlate is the decrease of power of beta oscillations at the onset
of the vibration, preceding the improved movement. Similar beta
desynchronization13,88,89 is essential for movement planning and
initiation.90 In bradykinetic disorders, beta power is elevated,91–94

while dopaminergic treatment in Parkinson’s disease enhances
beta desynchronization,93,95 alleviates akinesia, and increases sen-
sorimotor attenuation.28,96 Under active inference, beta power
may index somatosensory precision and therefore mediate sen-
sorimotor attenuation, modulated by dopamine.28,96

A lack of behaviour can also be caused by apathy, without akin-
esia. Apathy is common in dementia, including Alzheimer’s dis-
ease, dementia with Lewy bodies, frontotemporal dementia and
vascular dementia.97–99 We propose that apathy arises from defi-
cits in the precision of the higher order predictions of goal-states
and context rather than proprioception (Fig. 1C). This is analogous
to the causes of akinesia, but at a higher level of a cognitive hier-
archy for goal-directed behaviour.100 When the relative precision
of the goal prior is low, it will fail to propagate through the hier-
archy down to effector mechanisms, and the outcome is a lack of
behaviour.57,85,101 The failure of active inference thereby shifts
from lack of movement (akinesia) to a lack of goal-directed behav-
iour (apathy) according to the level of the hierarchy in which preci-
sion is affected by the cellular and pharmacological effects of each
molecular pathology.

In healthy controls, trait apathy is associated with lower preci-
sion of predictions about action outcomes.100 In dementia-related
apathy, there is limited direct evidence for higher variance of priors,
but indirect support comes from the failure to modulate prefrontal
cortical beta oscillations in goal-directed tasks and the correlation
between challenging everyday behaviours and beta-power (specific-
ally, the failure of task-related beta-desynchronization).102 We sug-
gest an anatomical correlate of goal priors lies in anterior cingulate
and medial prefrontal cortex, with loss of connectivity to motor cor-
tex and the striatum.86,103–105

Disinhibited and impulsive behaviours are common to many
dementias,98,106,107 with a predisposition to act out of context, pre-
maturely, or on the basis of little evidence.108 Such behaviours
would be explained by impaired precision of high-order predic-
tions which diminish the confidence weighting on the choices or
behavioural policies available. This can lead to ‘jumping to conclu-
sions’.109 Dopamine dysregulation may explain some types of im-
pulsivity (e.g. Parkinson’s disease110), but other neurotransmitters
such as noradrenaline, GABA, and glutamate, modulate behaviour-
al control and are also deficient in many neurodegenerative disor-
ders.2 For example, noradrenaline regulates impulsive behaviour
via widespread projections from the locus coeruleus to the cor-
tex,111–113 in response to salient cues that trigger shifts in behav-
iour.114 In the predictive coding framework, the locus coeruleus
noradrenergic signals update predictions at higher levels mediated

Figure 1 Predictive coding mechanism within the hierarchical brain
network. (A) Schematic illustration of the predictive coding mechanism
in a single cortical region at one layer in the hierarchy. Top-down pre-
dictions are conveyed via the backward connections (black arrows)
from state representation units (black nodes) in deep cortical layers.
The predictions are compared with conditional expectations at the
lower level in the hierarchy by the error units in the superficial cortical
layers (blue nodes) to produce prediction errors, which are passed bot-
tom-up (blue arrows) to the higher level to update the predictions.
Triangles and circles represent pyramidal neurons and inhibitory inter-
neurons respectively. Precision weighting (red) regulates the postsy-
naptic gain of the error units, e.g. via neuromodulation. Panels B–D
illustrate three layers of a hierarchical network of the behavioural/
motor system, with three cortical layers from left (light blue) to right
(yellow). Each layer of the hierarchy makes predictions relayed in a top-
down fashion. Higher layers of the network make episodic predictions
that are multimodal, abstract and span across a longer timescale (e.g.
‘that the city marathon is happening’). Intermediate layers represent
medium-term, task-set or context specific predictions (e.g. ‘I am run-
ning, and see supporters and water stands’). Lower layers make transi-
ent, proprioceptive predictions on the immediate consequences of
running action (e.g. ‘position of my limbs’). (B) Healthy state of the hier-
archy with optimal control in which top-down predictions are matched
by sensory inputs, minimizing prediction errors at each layer. In apathy
and akinesia, behavioural impairments arise from a mismatch between
the strength of predictions and prediction errors. (C) In apathy, top-
down predictions at the higher level are represented with insufficient
precision, and are therefore overwhelmed by bottom-up prediction
errors from the intermediate hierarchical level. Therefore, high-level
priors, representing abstract goals and desires, fail to be translated into
specific proprioceptive predictions for movement, and as such there is
a loss of goal-directed behaviour. (D) In contrast, with akinesia there is
a poverty of movement because predictions at the lowest hierarchical
level fail to suppress proprioceptive prediction errors. Even though the
absence of behaviour may manifest similarly in apathy and akinesia,
the underlying mechanism of impairment arises from predictive mis-
match in different levels of the hierarchical network.
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by fronto-striatal circuits, in response to prediction error (e.g. ‘sur-
prise’).115 The locus coeruleus is affected by Alzheimer’s disease,
Parkinson’s disease and frontotemporal lobar degeneration,111

which has led to noradrenergic treatment strategies to reduce im-
pulsivity.116–118 In active inference terms, behaviours become im-
pulsive and inflexible when the precision of priors is not updated
in response to salient behavioural cues.

Memory and learning
Memory deficits and poor learning are prominent features of de-
mentia, including but not limited to Alzheimer’s disease. The de-
generation of the medial temporal lobe may affect memory
retrieval and associative learning in part because of the disruption
of predictive coding in these circuits. The hippocampus encodes
expectancies of future events based on the probabilistic conse-
quences of past events,119–121 and hippocampal activity is modu-
lated by the predictability of the future events.122 Hippocampus
not only encodes individual episodes but also the ordinal structure
of events, a distributed in space, time (time in relation to internal
computational demands, not an external clock) or other proper-
ties. The representation of ordinal structure may appear as encod-
ing sequences or locations, but it can also be seen as part of a more
fundamental generative model of the environment—an ‘inference
machine’ engaged in predictive coding.123,124 Such a hippocampal-
based hierarchy operates over multiple timescales.

The ability to anticipate events over very short timescales is
impaired by many dementias. For example, oddball tasks such as
the auditory mismatch negativity paradigm have been interpreted
to rely on short term ‘memory traces’ for sensory events. Such
tasks have provided some of the strongest direct evidence for pre-
dictive coding.14,125–129 The mismatch response indexes the predic-
tion error, that is fed-forward in a frontotemporal hierarchy to
update predictions that are in turn fed backwards.126 The active
nature of auditory predictions has been corroborated by computa-
tional and dynamic causal modelling. Simulations show that the
mismatch response is an output of active cortical predictions ra-
ther than passive synaptic habituation.128 Omitted events in mis-
match paradigms provide an ideal test of cortical hierarchies that
actively predict events. Indeed, dynamic causal modelling of omit-
ted events show increased connectivity from and to the prefrontal
cortex similar to the connectivity changes observed for the mis-
match stimuli.130 In dementia, the mismatch negativity amplitude
is reduced,69,131,132 together with impaired frontotemporal con-
nectivity (Fig. 2A).22,69,133,134 Patients with Alzheimer’s disease
show larger reductions at longer inter-stimulus intervals37,67,135 in
relation to reduced temporal activity and cognitive score of execu-
tive function.131,136

Patients with Alzheimer’s disease have difficulty encoding and
processing novel information (e.g. high rates of false recognition of
novel items,137,138 reduced primacy,139,140 von Restorff effect141)
associated with reduced functional connectivity between hippo-
campus, temporal and frontal areas.142 Asymptomatic APOE4 car-
riers compared to non-carriers, show reduced prediction errors to
novel words, and elevated hippocampal activity to subsequently
remembered words.143 In those at risk of familial Alzheimer’s dis-
ease, PSEN1 and APP mutation carriers who approach the familial
age of diagnosis, show elevated blood oxygenation level-depend-
ent response in the middle temporal gyri during novelty encod-
ing.144 These impairments in novelty processing are consistent
with impaired predictive processing in a hippocampal hierarchy.
Larger prediction errors generated after encountering novel or con-
textually unexpected items (e.g. ‘the butcher in the office’), drive
stronger episodic encoding compared to expected items (e.g. ‘the
butcher in the butcher shop’).145,146 Unsuccessful learning could

therefore result from smaller prediction errors arising from rela-
tively low precision weighting of the prediction error.145,147

At the cellular level, the modulation of the precision of a hippo-
campal prediction error in memory tasks is dependent on both
cholinergic and dopaminergic modulation of NMDA receptor plas-
ticity14,148–151 Impaired mismatch response in Alzheimer’s disease
is partially explained by the degeneration of cholinergic projec-
tions, in the presence of relatively preserved top-down propaga-
tion of predictions from intact higher level priors.136 Cholinergic
agents partially restore the mismatch response in Alzheimer’s dis-
ease,42 enhancing feed-forward signalling by precision of the sen-
sory evidence weighting.14,152 Similarly, dopamine is proposed to
modulate saliency of the stimuli in hippocampus in response to
novelty and facilitate encoding of the new information via its con-
nections with the ventral tegmental area and substantia
nigra.150,151,153–155 Supporting this, administration of dopamine
agonists, accelerates the processing speed of novel information,156

and enhances recollection.157 GABAergic modulation of feedback
predictions and feedforward prediction errors may also contribute
to the impairment of predictive coding from frontotemporal lobar
degeneration.23,24

Speech and language
In health, language comprehension shows remarkable speed and
resistance to noisy environments. This is enabled by predictive
coding at multiple levels of linguistic representation: phonologic-
al,158–160 semantic,161–166 syntactic167–169 and discourse context.170

In neurodegenerative aphasias, poor comprehension arises from
the impact of lesions on the frontotemporal and temporo-parietal
networks which support top-down propagation and updating of
predictions. For example, people with non-fluent variant primary
progressive aphasia show particular vulnerability to processing
deficits and delays at the lexical level when speech inputs are
degraded171,172 or ambiguous.173–175 This arises from degeneration
of frontal and perisylvian cortex, with reduction of top-down con-
trol used to optimize perception and production of speech,176–179

leading to speech production deficits and agrammatism,180–182 In
contrast, damage to the temporo-parietal junction leads to speech
repetition deficits183,184 arising from disrupted mapping between
priors for speech representations and proprioceptive articulatory
predictions in the ventral motor cortex and inferior frontal
cortex.84,185

Cope et al.186 showed that in the presence of intact temporal
cortex, frontal lobe neurodegeneration from non-fluent variant
primary progressive aphasia causes overly precise contextual
priors, together with reduced frontal-to-temporal directional
connectivity in the beta frequency range (Fig. 2B–D). This com-
bination leads to delayed resolution of speech inputs by the
temporal cortex, and impaired perception of degraded speech
input. The reliance on overly precise priors explains the para-
doxical relative advantage for patients as noise increases (in
contrast to healthy adults). The patients’ speech comprehen-
sion deficit was more severe in quiet settings. Overly precise
priors may also affect speech production in primary progressive
aphasia: whereas delayed auditory feedback in healthy controls
reduces fluency and accuracy of speech,187,188 delayed feedback
does not impair fluency. This suggests a reliance on internal
models of speech and relative weakness of the precision of sen-
sory representations.189

Efficient reading requires top-down signalling from higher
order language areas, to disambiguate visually confusable
words.190 While damage to the left medial occipito-temporal areas
causes alexia and object agnosia with spared central language abil-
ities and orthographic knowledge,191,192 reading deficits are often
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more severe than object recognition deficits. Lesions of inferior
frontal cortex cause auditory agnosias and pure word deaf-
ness.193,194 Woodhead et al.195 showed that whole-word training to
improve reading was associated with stronger feedback connectiv-
ity from the inferior frontal gyrus to the occipital areas, and bidir-
ectional connectivity between ventral occipito-temporal and
occipital areas. This suggests stronger top-down priors aid predic-
tion of the words in reading.

Semantic processing of words in context is similarly dependent
on top-down signalling, as contextual information and prior know-
ledge is used to predict forthcoming words.165,196,197 The N400 is an
electrophysiological index of the prediction error, reflecting the de-
gree of mismatch between semantic priors and sensory input.198

In semantic dementia differentiation of concepts that belong to
the same semantic category is impaired, such as ‘giraffe’ and
‘zebra’ (i.e. taxonomic blurring). The N400 is absent for mis-
matches of the same semantic category,199 suggesting that seman-
tic priors are under-specified (i.e. imprecise). Furthermore,
disambiguating meaningful objects (but not meaningless shapes)
in difficult viewing conditions is also impaired,200 suggesting a do-
main-general deficit of top-down semantic control, thought to de-
pend on intact connectivity within the larger fronto-temporo-
parietal network.201

Conclusion
We propose a reformulation of cognitive deficits in dementia away
from specific localized functional-anatomical impairments to-
wards a generalized framework of aberrant Bayesian inference,
within cortical hierarchies. Predictive coding principles can be

generalized to account for multiple cognitive and perceptual
impairments observed in neurodegenerative diseases, arising
from diverse molecular aetiologies. The cognitive deficits and
related neurophysiological abnormalities, can be understood in
terms of altered precision in the normally finely-balanced feed-
forward and feedback pathways in cortical hierarchies. There are
multiple potential cellular and molecular pathological routes to
disrupt the precision of predictions and prediction errors, includ-
ing localized cell loss (atrophy), and changes in acetylcholine,
dopamine, and noradrenaline, that weight the importance (i.e.
precision) of predictions and gain function of prediction errors.
The predictive coding framework provides a unifying framework
to understand the effects of these changes, in different hierarchic-
al functional brain networks, as the basis for different dementia
syndromes. It is a powerful trans-diagnostic framework that can
aid better understanding of the mechanisms of disease across the
lifespan and in turn facilitate new therapeutic strategies for de-
mentia. New analytical methods enable new experimental medi-
cine studies with techniques like dynamic causal modelling that
can inform the efficacy and mechanism of candidate therapies.
We therefore hope that this Update on predictive coding stimu-
lates progress towards a new form of precision medicine, defined
in terms of the precise cognitive and physiological consequences
of disease.
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Figure 2 Neurophysiological changes associated with predictive coding impairments. (A) Cortical microcircuit dynamic causal model of the mis-
match negativity response in patients with behavioural variant frontotemporal dementia, compared with healthy controls. Local (intrinsic) decreases
in self-modulation of the deep pyramidal cells in the primary auditory cortex (A1), and increases in self-modulation of the superficial pyramidal cells
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J. Auditory sensory memory and the cholinergic system:

Predictive coding in dementia BRAIN 2021: 144; 3311–3321 | 3317



Implications for Alzheimer’s disease. Neuroimage. 2001;14(2):
376–382.

38. Pekkonen E. Mismatch negativity in aging and in Alzheimer’s
and Parkinson’s diseases. Audiol Neurootol. 2000;5(3-4):216–224.

39. Ballard C, Piggott M, Johnson M, et al. Delusions associated
with elevated muscarinic binding in dementia with Lewy
bodies. Ann Neurol. 2000;48(6):868–876.

40. Halliday G. Clarifying Lewy-body parkinsonism with visual
hallucinations. Lancet Neurol. 2005;4(10):588–589.

41. Harding AJ, Broe GA, Halliday GM. Visual hallucinations in
Lewy body disease relate to Lewy bodies in the temporal lobe.
Brain. 2002;125(Pt 2):391–403.

42. Engeland C, Mahoney C, Mohr E, Ilivitsky V, Knott VJ. Acute
nicotine effects on auditory sensory memory in tacrine-
treated and nontreated patients with Alzheimer’s disease: An
event-related potential study. Pharmacol Biochem Behav. 2002;
72(1-2):457–464.

43. Mori S, Mori E, Iseki E, Kosaka K. Efficacy and safety of donepe-
zil in patients with dementia with Lewy bodies: Preliminary
findings from an open-label study. Psychiatry Clin Neurosci.
2006;60(2):190–195.

44. Corlett PR, Honey GD, Krystal JH, Fletcher PC. Glutamatergic
model psychoses: Prediction error, learning, and inference.
Neuropsychopharmacology. 2011;36(1):294–315.

45. Hosoya T, Baccus SA, Meister M. Dynamic predictive coding by
the retina. Nature. 2005;436(7047):71–77.

46. Hohwy J, Roepstorff A, Friston K. Predictive coding explains
binocular rivalry: An epistemological review. Cognition. 2008;
108(3):687–701.

47. Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A.
Predictive coding of music–brain responses to rhythmic incon-
gruity. Cortex. 2009;45(1):80–92.

48. Vuust P, Witek MA. Rhythmic complexity and predictive cod-
ing: A novel approach to modeling rhythm and meter percep-
tion in music. Front Psychol. 2014;5:1111.

49. Wicha NY, Moreno EM, Kutas M. Anticipating words and their
gender: An event-related brain potential study of semantic inte-
gration, gender expectancy, and gender agreement in Spanish
sentence reading. J Cogn Neurosci. 2004;16(7):1272–1288.

50. Dikker S, Pylkkänen L. Predicting language: MEG evidence for
lexical preactivation. Brain Lang. 2013;127(1):55–64.

51. Lewis AG, Bastiaansen M. A predictive coding framework for
rapid neural dynamics during sentence-level language com-
prehension. Cortex. 2015;68:155–168.

52. Lewis AG, Wang L, Bastiaansen M. Fast oscillatory dynamics
during language comprehension: Unification versus mainten-
ance and prediction? Brain Lang. 2015;148:51–63.

53. Kumar S, Sedley W, Nourski KV, et al. Predictive coding and
pitch processing in the auditory cortex. J Cogn Neurosci. 2011;
23(10):3084–3094.

54. O’Doherty JP, Buchanan TW, Seymour B, Dolan RJ. Predictive
neural coding of reward preference involves dissociable
responses in human ventral midbrain and ventral striatum.
Neuron. 2006;49(1):157–166.

55. Ramnani N, Miall RC. A system in the human brain for predict-
ing the actions of others. Nat Neurosci. 2004;7(1):85–90.

56. Kilner JM. More than one pathway to action understanding.
Trends Cogn Sci. 2011;15(8):352–357.

57. Friston KJ, Stephan KE, Montague R, Dolan RJ. Computational
psychiatry: The brain as a phantastic organ. Lancet Psychiatry.
2014;1(2):148–158.

58. Fletcher PC, Frith CD. Perceiving is believing: A Bayesian ap-
proach to explaining the positive symptoms of schizophrenia.
Nat Rev Neurosci. 2009;10(1):48–58.

59. Pellicano E, Burr D. When the world becomes ‘too real’: A
Bayesian explanation of autistic perception. Trends Cogn Sci.
2012;16(10):504–510.

60. Lawson RP, Rees G, Friston KJ. An aberrant precision account
of autism. Front Hum Neurosci. 2014;8:302.

61. Wolpe N, Hezemans FH, Rowe JB. Alien limb syndrome:
A Bayesian account of unwanted actions. Cortex. 2020;127:
29–41.

62. Bregman AS. Auditory scene analysis: The perceptual organization
of sound. MIT Press; 1990.

63. Griffiths TD, Warren JD. The planum temporale as a computa-
tional hub. Trends Neurosci. 2002;25(7):348–353.

64. Summerfield C, de Lange FP. Expectation in perceptual deci-
sion making: Neural and computational mechanisms. Nat Rev
Neurosci. 2014;15(11):745–756.

65. Golden HL, Nicholas JM, Yong KX, et al. Auditory spatial
processing in Alzheimer’s disease. Brain. 2015;138(Pt 1):
189–202.

66. Goll JC, Kim LG, Ridgway GR, et al. Impairments of auditory
scene analysis in Alzheimer’s disease. Brain. 2012;135(Pt 1):
190–200.

67. Gaeta H, Friedman D, Ritter W, Cheng J. Changes in sensitivity
to stimulus deviance in Alzheimer’s disease: An ERP perspec-
tive. Neuroreport. 1999;10(2):281–287.
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