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Among interferon (IFN) inducible antiviral factors both tripartite motif-containing protein 
22 (TRIM22) and class II transactivator (CIITA) share the capacity of repressing human 
immunodeficiency virus type 1 (HIV-1) proviral transcription. TRIM22 is constitutively 
expressed in a subset of U937 cell clones poorly permissive to HIV-1 replication, whereas 
CIITA has been shown to inhibit virus multiplication in both T lymphocytic and myeloid 
cells, including poorly HIV-1 permissive U937 cells, by suppressing Tat-mediated trans-
activation of HIV-1 transcription. Therefore, we tested whether TRIM22 and CIITA could 
form a nuclear complex potentially endowed with HIV-1 repressive functions. Indeed, 
we observed that TRIM22, independent of its E3 ubiquitin ligase domain, interacts with 
CIITA and promotes its recruitment into nuclear bodies. Importantly, TRIM19/promyelo-
cytic leukemia (PML) protein, another repressor of HIV-1 transcription also acting before 
proviral integration, colocalize in these nuclear bodies upon TRIM22 expression induced 
by IFN-γ. Finally, tTRIM22 nuclear bodies also contained CyclinT1, a crucial elongation 
factor of HIV-1 primary transcripts. These findings show that TRIM22 nuclear bodies are 
a site of recruitment of factors crucial for the regulation of HIV-1 transcription and high-
light the potential existence of a concerted action between TRIM22, CIITA, and TRIM19/
PML to maintain a state of proviral latency, at least in myeloid cells.

Keywords: hiV-1 restriction factors, tripartite motif-containing protein 22, ciiTa, cyclinT1, TriM19/PMl,  
nuclear bodies

inTrODUcTiOn

Restriction factors (RF) are specialized host proteins sensing the presence of viral nucleic acids or 
proteins in order to protect cells from pathogen invasion; they are constitutively expressed prior to 
virus infection and are usually further inducible by interferons (IFNs) (1). In this regard, human 
immunodeficiency virus type 1 (HIV-1) infection is counteracted by several RF that target differ-
ent steps of viral life cycle including capsid uncoating, reverse transcription, nuclear import and 
integration, proviral transcription, protein translation, virion budding, and release (2). Among these 
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RF, several members of the tripartite motif (TRIM) containing  
protein are endowed with potent antiviral activity (3, 4). All TRIM 
proteins are characterized by three highly conserved domains 
consisting of an amino-terminus Really Interesting New Gene 
(RING) domain, one or two B-box domains, and a coiled-coil 
(CC) region, whereas the C-terminal part of the protein varies 
among family members. The RING domain is characterized by 
E3 ubiquitin ligase activity, whereas the CC region promotes 
homo-oligomerization, crucial for the formation of subcellular 
structures such as nuclear bodies (5).

The first member of the TRIM family that was linked to ret-
roviral restriction has been rhTRIM5α that prevents infection of 
monkey cells by HIV-1 via targeting its capsid for proteasomal 
degradation (6). However, human TRIM5α does not exert a 
similar function in human cells and recent studies suggest that, 
upon recognition of the capsid lattice, it may act as a trigger of 
innate immunity via activation of NF-kB and AP-1 transcrip-
tion factors (7). Another member of the family, TRIM19, also 
known as promyelocytic leukemia (PML) protein, is induced 
by IFN (3) and interferes with HIV-1 pre-integration complex 
(8–10); furthermore, according to recent studies, TRIM19/PML 
also repressed proviral transcription (11, 12). Finally, tripartite 
motif-containing protein 22 (TRIM22) has been described to 
inhibit HIV-1 replication by either affecting virion production 
(13) if expressed in the cytoplasm, or by suppressing basal as 
well as phorbol ester-induced HIV-1 long terminal repeat (LTR)-
mediated transcription when present in the nucleus (14, 15). In 
this regard, we have shown that TRIM22 inhibits HIV-1 transcrip-
tion independent of Tat and NF-kB (15) by interfering with the 
binding of Specific protein 1 (Sp1) to the HIV-1 LTR promoter 
region (16). This inhibitory effect of TRIM22 is independent of its 
E3 ubiquitin ligase activity (15). We also observed that TRIM22 
inhibited HIV-1 replication in a subset of U937 promonocytic cell 
clones poorly permissive to HIV-1 replication (15).

Apart from TRIM proteins, another repressive molecule for 
HIV-1 expression in human T cells is the class II transactivator 
(CIITA), originally characterized as a transcriptional activator 
of major histocompatibility complex class II (MHC-II) genes 
(17–19), thereby playing a central role in antigen presentation 
to T  lymphocytes. In the context of HIV-1 infection, CIITA 
inhibits virus replication by competing with the viral transacti-
vator Tat for the binding to the Cyclin T1 subunit of the positive 
transcription elongation complex (P-TEFb) (20). Subsequently, 
CIITA inhibits also the replication of the oncogenic human  
T lymphotrophic virus 1 (HTLV-1) and HTLV-2 by interfering 
with the HTLV-1 and HTLV-1 Tax-1 and Tax-2 transactivators, 
respectively (21–25). Thus, CIITA is endowed with a potent 
dual antiviral activity: it activates the adaptive immune response 
against pathogens via the regulation of MHC-II genes expression 
while acting as an endogenous RF against human retroviruses. 
Recently, we have reported that, like TRIM22, also CIITA was 
expressed in poorly HIV-1 permissive (Minus) U937 cell clones, 
whereas it was not expressed in HIV-1 permissive (Plus) U937 
cell clones (26). Interestingly, forced expression of CIITA in 
Plus U937 clones resulted in the inhibition of Tat-dependent 
HIV-1 replication independent of TRIM22 (26). Thus, as both 
CIITA and TRIM22 inhibit HIV-1 transcription and replication, 

although by different molecular modalities, we investigated 
whether they could form a complex with the potential to inhibit 
HIV-1 transcription.

Indeed, we here demonstrate for the first time that TRIM22 
binds to CIITA independent of its own E3 ubiquitin ligase activ-
ity; this interaction leads to the formation of nuclear bodies con-
taining CIITA and Cyclin T1. Furthermore, upon induction of 
TRIM22 expression by IFN-γ stimulation, endogenous TRIM19/
PML, previously described to be present in subnuclear structures 
known as PML nuclear bodies (PML-NBs) (27), was recruited 
in such nuclear bodies. Overall, these observations suggest that 
TRIM22 promotes the assembly of several RF in specific nuclear 
compartments acting either before or after proviral integration. 
Altogether these results strongly suggest that different host RF 
may act in concert to interfere with discrete steps of the retroviral 
life cycle.

MaTerials anD MeThODs

Plasmids
Plasmid expressing myc epitope-tagged CIITA full-length 
(1-1130) (pcmCIITA) vector was previously described (28). 
Plasmids expressing flag epitope-tagged TRIM22 and flag 
epitope-tagged deltaRING TRIM22 (ΔRING TRIM22) were 
previously described (15). pHA-Cyclin T1 vector was a gift from 
M. B. Peterlin (UCSF).

cell cultures
Human embryonic kidney 293T cells (kindly provided by Prof. 
B.M. Peterlin, UCSF, San Francisco, CA, USA) and Human 
squamous carcinoma Hep-2 cells (kindly provided by Dr. F. Bex, 
Universitè Libre de Bruxelles, Brussels, Belgium) were cultured in 
Dulbecco’s modified Eagle medium containing 5 mM l-glutamine 
and supplemented with 10% fetal calf serum.

antibodies and reagents
The following antibodies were used for western blot analysis: 
mouse anti-FLAG M2 (Sigma-Aldrich, F1804, diluted 1:6,000); 
mouse anti-CIITA (7-1H, 1:1,000; Santa Cruz Biotechnology). 
For immunofluorescence staining, the following antibodies 
were used: fluorescein isothiocyanate (FITC)-conjugated mouse 
anti-FLAG-M2 (Sigma-Aldrich, F4049, diluted 1:200); mouse 
anti-HA (Sigma-Aldrich, H9658, diluted 1:400); mouse anti-
PML (Santa Cruz Biotechnology, sc-966, diluted 1:200); rabbit 
anti-PML (Santa Cruz Biotechnology, sc-5621, diluted 1:200); 
rabbit anti-myc (Santa Cruz Biotechnology, sc-789, diluted 1:200);  
mouse anti-myc (Santa Cruz Biotechnology, sc-40, diluted 
1:200); mouse anti-TRIM22 (Sigma-Aldrich, SAB14069, diluted 
1:200); rabbit anti-CCNT1 (Sigma-Aldrich, HPA004892,  
diluted 1:200). The secondary antibodies (Life Technology) used 
for immunofluorescence and confocal analyses are specified in 
the figure legends.

Reagents used in this study were human IFN-γ (Origene, 
TP721239), ANTI-FLAG M2 Affinity agarose Gel (Sigma-
Aldrich, A2220), Arsenic (III) oxide (Sigma-Aldrich, 202673), 
and FluorSave reagent (Calbiochem, 345789).
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FigUre 1 | class ii transactivator (ciiTa) interacts with tripartite 
motif-containing protein 22 (TriM22) independent from the really 
interesting new gene (ring) domain. 293T cells were transfected with 
plasmid coding for myc-tagged CIITA alone or in combination with vectors 
expressing flag-tagged TRIM22 full-length (fT22) or TRIM22 RING mutant 
(fΔRING). Cell extracts were immunoprecipitated (IP) with anti-flag 
monoclonal antibody (mAb) (IP a flag) and the IP complexes were analyzed 
by western blotting with anti-CIITA mAb. Ten percent of the whole cell extract 
was analyzed by Western blotting for the expression of TRIM22 full-length, its 
deletion mutant TRIM22-ΔRING and CIITA (input).
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Transient Transfection, luciferase assay
A total of 293T cells were seeded in 96-well plates and co-transfected  
with a Luciferase (Luc)-expressing plasmid (20 ng) under the con-
trol of HIV-1 LTR (kindly donated by Nadir Mechti, Montpellier, 
France), in combination with 200 ng of pc-TRIM22-expressing 
plasmid or empty pcDNA3.1 as a control. Twenty-four hours 
post-transfection, cells were incubated with arsenic trioxide 
(As2O3) (1 µM), a known inhibitor of TRIM19/PML (11); the Luc 
activity assay (Promega) was performed 24 h after incubation.

immunoprecipitation
For protein binding studies, 293T cells were seeded on 100 mm-
diameter petri dishes and transfected with pcmCIITA (2 µg) alone 
or in combination with 2 µg of flag-TRIM22 or flag-ΔRING by 
using FugeneHD (Promega). Empty pcDNA3 vector was used 
as a stuffer DNA. Twenty-four hours after transfection, the cells 
were lysed on ice for 45 min with lysis buffer (1% NP-40, 10 mM 
Tris–HCl pH 7.4, 150 mM NaCl, 2 mM EDTA) supplemented with 
0.1% protease inhibitor cocktail (Sigma-Aldrich). Pre-cleared cell 
lysates were immunoprecipitated (IP) overnight at 4°C with the 
anti-FLAG M2 affinity agarose gel (Sigma-Aldrich). Precipitated 
proteins were resolved on 8% SDS-PAGE (polyacrylamide gel 
electrophoresis) and analyzed by immunoblotting with anti-CIITA 
and anti-FLAG M2 antibodies. Ten percent of total cell extract was 
used to detect protein expression by Western blotting (input).

immunofluorescence and confocal 
Microscopy
For localization studies, Hep-2 cells cultured on glass cover slips 
were transfected with 0.2  µg of each of the following plasmids: 
pcmCIITA, pfTRIM22, pfΔRING, and pHA-Cyclin T1. At 24  h 
post-transfection, cells were processed as previously described (29). 
Cells were stained overnight with the specific primary antibodies 
followed by the appropriate secondary antibodies as indicated in 
the figure legends. For flag-tagged TRIM22 staining, the cells were 
stained with FITC-conjugated anti-flag antibody (1:200 dilution in 
1× PBS, 0.1% BSA) for 2 h at RT in the dark. After extensive wash-
ings with 1× PBS, the slides were mounted on cover-slips by using 
the FluorSave reagent (Calbiochem) and examined by a confocal 
laser-scanning microscope (Leica TCS SP5; objective lenses: HCX 
PL APO, 63× original magnification, numerical aperture 1.25). 
Images were acquired and analyzed by LAS AF software.

resUlTs

TriM22 interacts with ciiTa In Vivo
As both TRIM22 and CIITA act as independent repressors of 
HIV-1 transcription, we first investigated whether they could 
associate. Flag epitope-tagged TRIM22 (fT22) and Myc epitope-
tagged CIITA (CIITA) were transiently expressed in 293T cells. Cell 
lysates were IP with an anti-flag monoclonal antibody (mAb) and 
TRIM22-bound proteins were assessed for the presence of CIITA 
by Western blotting with an anti-CIITA mAb. Indeed, CIITA co-
precipitated with TRIM22 (Figure 1, lane 2) and this interaction was 
specific in that CIITA was not detected in the absence of TRIM22 
(Figure 1, lane 1). CIITA-TRIM22 binding occurred independent 

of the TRIM22 RING domain, as ΔRING mutant (fΔRING) still 
co-precipitated with CIITA (Figure 1, lane 3).

ciiTa is recruited in TriM22-containing 
Bodies both in the nucleus and in the 
cytoplasm
As CIITA and TRIM22 can interact, we next tested whether they 
colocalize in specific subcellular compartments. To this aim, Hep-2 
cells, which do not constitutively express either CIITA or TRIM22, 
were transiently transfected with either a flag-tagged full-length 
TRIM22 (fT22), with its ΔRING mutant (fΔRING) or with myc-
tagged CIITA (mCIITA). Their cellular distribution was assessed by 
both immunofluorescence and confocal microscopy. While CIITA 
exhibited a predominant nuclear accumulation and a diffused, less 
abundant cytoplasmic distribution (Figure 2A), TRIM22, and its 
ΔRING mutant were mostly localized in nuclear bodies and in few 
punctuated structures in the cytoplasm (Figures 2B,C, respectively).

Upon cell co-transfection with both plasmids, expression of 
TRIM22 led to recruitment of a fraction of CIITA into nuclear 
bodies (Figure  2D, overlay). This effect was independent of 
TRIM22 RING domain as the cells transfected with TRIM22 
ΔRING mutant showed the same localization pattern of CIITA in 
nuclear bodies (Figure 2E, overlay). These results, together with 
the co-IP findings, demonstrate that TRIM22 and CIITA associate 
in specific subcellular structures mostly localized in the nucleus.

endogenous TriM22 significantly 
colocalizes with PMl in nuclear Bodies 
and nuclear ciiTa colocalizes with 
TriM22/PMl-containing nuclear Bodies
As both TRIM19/PML and TRIM22 are IFN-inducible genes 
(30), we tested whether IFN-γ stimulation affected PML-NB and 
TRIM22 distribution. To this purpose, Hep-2 cells, which con-
stitutively express endogenous TRIM19/PML, but not TRIM22 
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FigUre 2 | The subcellular distribution of class ii transactivator (ciiTa) is affected by tripartite motif-containing protein 22 (TriM22). Hep-2 cells were 
transfected with either myc-tagged CIITA (mCIITA) (a), flag epitope-tagged TRIM22 full-length (fT22) (B), or flag epitope-tagged TRIM22-ΔRING (fΔRING) (c) 
vectors alone. (a–c) The overlay panels were obtained by merging the differential interference contrast image with the corresponding immunofluorescence image. 
mCIITA was co-transfected in Hep-2 cells either with fT22 (D) or fΔRING (e), as specified on the right of the panels. Cells were fixed, first stained with anti-myc 
rabbit polyclonal antibody followed by goat anti-rabbit AlexaFluor 546-conjugated antibody to detect myc CIITA and then stained with fluorescein isothiocyanate-
conjugated anti-flag antibody to detect flag-TRIM22 (fT22) or flag-ΔRING deletion mutant. Each panel shows at least two representative fields.  
(a–e) Stained cells were then analyzed by confocal microscopy, as described in Section “Materials and Methods.”
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(Figure 3A, αPML and αTRIM22, respectively), were stimulated 
with IFN-γ for 48  h and were then analyzed for TRIM22 and 
TRIM19/PML distribution. IFN-γ stimulation induced the 
expression of TRIM22 that assumed a characteristic nuclear dot 

distribution (Figure 3B, αTRIM22), while the number of PML 
dotted-like structures increased substantially (Figure  3B vs 
Figure 3A, αPML). Remarkably, a significant number of TRIM22-
specific dots colocalized with those containing endogenous 
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FigUre 3 | Promyelocytic leukemia (PMl) colocalized with endogenous tripartite motif-containing protein 22 (TriM22) in hep-2 cells treated  
with iFnγ. Hep-2 cells were incubated with IFN-γ (150 U/ml) (+IFNγ) (B) or with vehicle (−IFNγ) (a) for 48 h and analyzed by immunofluorescence and confocal 
microscopy. TRIM22 was detected with anti-TRIM22 mouse monoclonal antibody followed by goat anti-mouse AlexaFluor 633-conjugated antibody. PML was 
detected with anti-PML rabbit polyclonal antibody followed by goat anti-rabbit AlexaFluor 546-conjugated antibody. Insets show enlarged views of the areas 
indicated by the white squares. DIC is the differential interference contrast image.
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TRIM19/PML (Figure  3B, overlay). Upon overexpression of 
TRIM22 by transfection, specific nuclear dots were more defined 
and apparent (Figure 4A, αflag) and, interestingly, the expression 
pattern of endogenous TRIM19/PML in TRIM22-overexpressing 
cells changed significantly from a multi-microdot pattern to 
fewer and larger dots containing TRIM22 (Figure  4A, αPML 
and overlay); similar findings were observed after transfection 
with TRIM22 ΔRING mutant (Figure  4B, αflag) with respect 
to endogenous TRIM19/PML (Figure 4B, αPML and overlay), 
indicating that the RING domain is dispensable for the co-locali-
zation of TRIM22 with TRIM19/PML. These results represent the 
first demonstration that endogenous TRIM22 colocalizes with 
another TRIM protein, i.e., endogenous TRIM19/PML.

Previous studies showed that CIITA localized in TRIM19/PML 
bodies in Hep-2 cells stimulated with IFN-γ and that this localization 
protected CIITA from proteasomal degradation (31). Therefore, we 
tested whether CIITA colocalized in nuclear bodies together with 
TRIM22 and TRIM19/PML in Hep-2 cells. Indeed, co-expression 
of CIITA (Figures 4C,D, αmyc) resulted in co-localization of the 
protein in the same nuclear dots containing TRIM22 and PML 
(Figure 4C, overlay), or ΔRING and PML (Figure 4D, overlay).

The recruitment of PMl in  
TriM22-containing nuclear Bodies  
Does not Prevent arsenic-Dependent  
PMl Degradation
Cell incubation with arsenic trioxide (As2O3) results in post-
translational modification of TRIM19/PML and its consequent 

degradation by the proteasome (32, 33). Thus, we verified whether 
the recruitment of TRIM19/PML in TRIM22-containing nuclear 
bodies prevented its As2O3-induced degradation. Hep-2 cells 
transfected with flag-tagged TRIM22 expression vector (+fT22) 
or with the empty plasmid (−fT22) were exposed to As2O3 for 8 h 
(or to vehicle) and were then analyzed by immunofluorescence 
and confocal microscopy. In the absence of As2O3, TRIM19/
PML localized into PML-NBs (Figure  5B), whereas, as shown 
before, it accumulated in large nuclear structures correspond-
ing to TRIM22-containing bodies in cells expressing TRIM22 
(Figure 5A, αPML and overlay). In contrast, upon incubation with 
As2O3, a dramatic reduction in PML fluorescence was observed 
(Figure  5D), confirming previous findings (34). Similar results 
were obtained for Hep-2 cells expressing TRIM22 (Figure  5C, 
αPML), indicating that TRIM19/PML interaction with TRIM22 
does not prevent As2O3-mediated PML degradation. Importantly, 
TRIM22 subcellular distribution was not affected by As2O3 
(Figure 5C vs Figure 5A, αflag).

Next, we assessed the ability of TRIM22 to inhibit basal HIV-1 
LTR transcription in the presence of As2O3 by measuring the 
HIV-1-LTR luciferase activity in 293T cells. Consistent with its 
lack of effect on TRIM22 expression and localization, As2O3 did 
not induce basal HIV-1 LTR transcription, and more importantly, 
did not affect the ability of TRIM22 to suppress basal transcrip-
tion from HIV-1 LTR promoter (Figure  5E). Thus, TRIM22 
recruited TRIM19/PML in specific nuclear structures without 
either preventing arsenic-mediated PML degradation or being 
affected by the poison in terms of its own nuclear localization or 
repressive transcriptional activity.
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FigUre 4 | class ii transactivator (ciiTa) colocalizes with tripartite motif-containing protein 22 (TriM22) and promyelocytic leukemia (PMl)  
in nuclear bodies. Hep-2 cells were transfected with flag-tagged TRIM22 (fT22) (a) or with flag-tagged TRIM22-ΔRING (fΔRING) (B) expression vectors, incubated 
with the antibodies listed on the top and analyzed by immunofluorescence and confocal microscopy. Each panel shows two representative fields. Endogenous PML 
was detected by using the anti-PML mouse monoclonal antibody followed by goat anti-mouse AlexaFluor 546-conjugated antibody. Flag-TRIM22 and flag-ΔRING 
were detected by direct staining with fluorescein isothiocyanate-conjugated anti-flag antibody. Confocal microscopy analysis was carried out in Hep-2 cells 
transfected with fTRIM22 (c) or with fΔRING (D) expression vectors in the presence of myc-tagged CIITA plasmid, as indicated on the right of the panels. CIITA 
protein was detected by using the anti-myc rabbit polyclonal antibody followed by goat anti-rabbit AlexaFluor 647-conjugated antibody. Endogenous PML protein 
was detected by using the anti-PML mouse monoclonal antibody followed by goat anti-mouse AlexaFluor 546-conjugated antibody. TRIM22 and TRIM22-ΔRING 
were detected as in (a, B).
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endogenous cyclin T1 is recruited in 
ciiTa-TriM22-containing nuclear Bodies
As CIITA inhibits Tat transcriptional function by competing 
with Tat for the binding to Cyclin T1 subunit of the P-TEFb 
complex (20), we tested whether Cyclin T1 was recruited in 
CIITA-TRIM22-containing nuclear bodies. Hemagglutinin 
(HA) epitope-tagged Cyclin T1 (HA-CyclinT1) transfected in 
Hep-2 cells localized in the nucleus in a speckle-like pattern 

(Figure 6A, αHA), as previously shown in other cell lines (33). 
Since the nuclear distribution pattern of endogenous Cyclin 
T1 (Figure  6B), αCyclinT1 is similar to that observed for the 
overexpressed protein (Figure 6A), we first tested whether CIITA 
colocalized with the overexpressed Cyclin T1. By co-transfecting 
CIITA and Cyclin T1, we observed that Cyclin T1 localized in 
numerous nuclear dots (Figure 6C), αHA, most of which were 
overlapping with those containing CIITA (Figure 6C, overlay). 
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FigUre 5 | effect of arsenic treatment on tripartite motif-containing protein 22 (TriM22) and promyelocytic leukemia (PMl) cellular distribution in 
hep-2 cells. Hep-2 cells transfected with fTRIM22 (a,c) or with empty vectors (B,D) were exposed to 1 mM arsenic trioxide (+As) (c,D) or to vehicle (−As)  
(a,B) for 8 h. Cells were analyzed by immunofluorescence and confocal microscopy by using the anti-PML mouse monoclonal antibody followed by goat 
anti-mouse AlexaFluor 546-conjugated antibody. Flag-TRIM22 was detected by direct staining with fluorescein isothiocyanate-conjugated anti-flag antibody.  
(e) 293T cells were transfected with a Luciferase reporter under the control of HIV-LTR and a TRIM22 expressing plasmid in a ratio 1:10, respectively, with and 
without As2O3 treatment (1 µM). The Luciferase activity was determined 24 h post-treatment. RLU indicates Relative Luciferase Unit. Bars indicate the mean ± SEM 
of two independent experiments in triplicates. P value was calculated by a paired t test.
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The distribution of CIITA is not affected by the expression of 
CyclinT1 (Figure  6C, αmyc). Surprisingly, the expression of 
TRIM22 changed dramatically the nuclear distribution of Cyclin 
T1. Indeed accumulated in peculiar large TRIM22-containing 
nuclear dots (Figure  6D, αHA and overlay). When TRIM22, 
Cyclin T1, and CIITA were co-expressed simultaneously in the 
cells, the distribution pattern of Cyclin T1 and TRIM22 was 
not affected by CIITA (Figure 6E, αHA and αflag, respectively), 
whereas, instead, a significant amount of nuclear CIITA was 
found to colocalize in the same nuclear bodies containing Cyclin 
T1 and TRIM22 (Figure 6E, overlay).

In order to assess whether the distribution of endogenous 
Cyclin T1 (Figure 6B) was modified in the presence of CIITA 
and TRIM22 in a similar fashion as described in Cyclin 
T1-overexpressing cells, Hep-2 cells transfected with CIITA, 
TRIM22, or with both CIITA and TRIM22 were analyzed by 
immunofluorescence and confocal microscopy. In presence 

of CIITA, Cyclin T1 showed a nuclear pattern similar to that 
observed with the overexpressed protein, with small speckle-like 
diffuse distribution in the nucleus (Figure 6F, αCyclinT1) largely 
overlapping with nuclear CIITA (Figure 6F, overlay). In presence 
of TRIM22, endogenous Cyclin T1 partially accumulated in few 
larger nuclear bodies (Figure 6G, αCyclinT1, white arrows), cor-
responding to the TRIM22-containing nuclear bodies (Figure 6G, 
overlay). The concomitant overexpression of CIITA did not alter 
the nuclear accumulation of Cyclin T1 in TRIM22 nuclear bodies 
(Figure 6H, αCyclinT1, white arrows, and αflag, respectively) and 
again, nuclear CIITA was recruited in the same nuclear bodies 
containing Cyclin T1 and TRIM22 (Figure  6H, overlay), thus 
confirming the results observed with the exogenous Cyclin T1.

Taken together, these results indicate that Cyclin T1 and 
nuclear CIITA significantly colocalize in dot-like structures and, 
in presence of TRIM22, they are recruited in larger TRIM22-
containing nuclear bodies.
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FigUre 6 | Tripartite motif-containing protein 22 (TriM22) recruits both class ii transactivator (ciiTa) and cyclin T1 in nuclear bodies. (a) The 
expression of hemagglutinin (HA)-tagged Cyclin T1 (HA-CycT1) or (B) endogenous Cyclin T1 was assessed in Hep-2 cells incubated with a mouse monoclonal 
anti-HA antibody followed by a goat anti-mouse AlexaFluor 633-conjugated antibody or with a rabbit polyclonal anti-Cyclin T1 antibody followed by goat 
anti-rabbit AlexaFluor 546-conjugated antibody, respectively, and analyzed by immunofluorescence and confocal microscopy analysis. DIC images are shown 
(right squares). (c,D,e) Hep-2 cells were transfected with mCIITA, HA-CycT1, and TRIM22 (fT22) expression vectors in different combinations, as indicated on 
the right, and incubated with the antibodies listed on the top. Anti-myc and anti-HA staining was detected with goat anti-rabbit AlexaFluor 546-conjugated and 
goat anti-mouse AlexaFluor 633-conjugated antibodies, respectively. Flag-TRIM22 was detected by direct staining with fluorescein isothiocyanate-conjugated 
anti-flag antibody. (F,g,h) Hep-2 cells were transfected with mCIITA and TRIM22 (fT22) expression vectors in different combinations. Anti-myc and anti-Cyclin 
T1 staining were detected with goat anti-mouse AlexaFluor 633-conjugated and goat-anti-rabbit AlexaFluor 546-conjugated antibodies, respectively. 
Flag-TRIM22 was detected as in (D,e).
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TriM22 induces the localization of  
PMl and cyclin T1 in specific subnuclear 
structures
As Cyclin T1 interacts with the PML protein within specific 
subnuclear compartments that are coincident with PML-NBs 

and, after Tat-mediated HIV-1 LTR transactivation, both PML 
and CyclinT1 are recruited to the viral promoter at the periphery 
of the bodies (35), we tested whether also PML colocalized in 
the same nuclear bodies containing both TRIM22 and CyclinT1. 
Hep-2 cells were transfected with TRIM22 and CyclinT1 expres-
sion vectors and their expression and localization, together with 
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FigUre 7 | cyclin T1 and promyelocytic leukemia (PMl) are recruited in tripartite motif-containing protein 22 (TriM22)-containing nuclear bodies. 
(a,B) Hep-2 cells were transfected with hemagglutinin (HA)-tagged CycT1, with flag-tagged TRIM22 (fT22) or with flag-tagged TRIM22-ΔRING (fΔRING) expression 
vectors as indicated on the right, and incubated with the antibodies listed on the top. PML was detected with anti-PML rabbit polyclonal antibody followed by 
AlexaFluor 546-conjugated antibody. Cyclin T1 was detected with anti-HA monoclonal antibody (mAb) followed by AlexaFluor 633-conjugated antibody. Flag-
TRIM22 and flag ΔRING were detected by direct staining with fluorescein isothiocyanate (FITC)-conjugated anti-flag antibody. (c) Hep-2 cells were transfected with 
with flag-tagged TRIM22 (fT22) expression vector as indicated on the right, and incubated with the antibodies listed on the top. PML was detected with anti-PML 
mouse mAb followed by AlexaFluor 546-conjugated antibody. Cyclin T1 was detected with anti-Cyclin T1 rabbit polyclonal antibody followed by AlexaFluor 
647-conjugated antibody. Flag-TRIM22 was detected by direct staining with FITC-conjugated anti-flag antibody.
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that of endogenous PML, was assessed by immunofluorescence 
and confocal microscopy. As observed in cells overexpressing 
TRIM22 (Figure 7A, αflag), endogenous PML localized in large 
dots corresponding to TRIM22 nuclear bodies containing also 
CyclinT1 (Figure 7A, overlay). The same findings were observed 
with the ΔRING mutant (Figure 7B, overlay) indicating that the 
absence of the RING domain does not affect the recruitment of 
both PML and CyclinT1 in TRIM22 nuclear bodies. Localization 
of Cyclin T1 in PML-containing TRIM22 nuclear bodies was 
not an artifact of transfection as endogenous Cyclin T1 partially 
colocalized with this nuclear structures (Figure 7C, αCyclinT1, 
white arrows and overlay).

These findings together with the above results showing that 
CIITA localizes in TRIM22 nuclear bodies containing PML 
(Figure 4C) and Cyclin T1 (Figures 6E,H), demonstrate that all 
four factors can reside in the same nuclear bodies whose forma-
tion is driven by TRIM22, and strongly suggest that the driving 
force promoting and/or facilitating the recruitment of the other 
three factors in the same subnuclear compartments.

DiscUssiOn

Several RF have been described as capable of interfering with 
distinct steps of the HIV-1 life cycle either before or after integra-
tion of the provirus into host DNA. We have here investigated 
the hypothesis that two of such RF, TRIM22 and CIITA, acting 
as independent negative regulators of proviral transcription and 
co-regulated in Minus U937 cell clones (15, 16, 20, 26), could 

physically interact and form molecular complexes either in the 
cell cytoplasm or nucleus. We here indeed show that TRIM22 
interacts with CIITA leading to the recruitment of CIITA into 
TRIM22-containing nuclear bodies. Furthermore, upon cell 
stimulation with IFN-γ, TRIM22 nuclear bodies were found to 
contain TRIM19/PML (another HIV-1 RF acting on the pre-
integration complex and also as a negative regulator of proviral 
transcription). In addition in the TRIM22 bodies, we also found 
CyclinT1, a crucial component of P-TEFb required for the elonga-
tion of HIV-1 primary transcripts (36).

Despite the knowledge acquired on the molecular nature and 
corresponding mechanisms of action of the different cellular 
RF that counteract viral infection, replication and spreading, 
particularly of HIV-1, which factors control their cellular sub-
localization (i.e., cytoplasmic vs. nuclear) and eventually coor-
dinate their activities during infection are essentially unknown 
(37, 38). The reason to investigate in detail the possible functional 
and biochemical interaction between TRIM22 and CIITA 
stemmed from our recent observation that these two factors 
are both expressed in poorly HIV-1 permissive, Minus U937 
myeloid cell clones, but not in their counterpart, i.e., HIV-1 
permissive U937 Plus cell clones (26). When TRIM22 or CIITA 
were individually overexpressed in Plus U937 cells they similarly 
suppressed HIV-1 replication without reaching, however, the 
inhibition level observed in the U937 Minus cells (26). These 
findings suggested that the simultaneous expression of these two 
RF resulted in a more effective HIV-1 restriction (26). Indeed, 
the results reported in the present study, although obtained in 
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a setting of overexpression of TRIM22 and CIITA and thus in 
a not completely physiological conditions, clearly show that the 
two RF can associate in specific, speckle-like nuclear structures. 
Interestingly, the recruitment of nuclear CIITA into the TRIM22 
nuclear bodies indicated that TRIM22 plays a leading role in the 
co-localization of the two RF. The prevalent nuclear distribution 
of TRIM22 in a speckle-like pattern has been already observed 
by other investigators (39–42). In some cells, TRIM22 localizes 
in nuclear bodies partially overlapping with Cajal bodies (40) or 
with centrosome (43). The C-terminal B30.2/SPRY domain was 
shown to be required for the nuclear localization and forma-
tion of nuclear bodies (39, 40). TRIM22 was also found in the 
cytoplasm associated with vimentin-containing structures (43). 
These variations in the subcellular distribution of TRIM22 may 
however depend on the cell type, the cell cycle, the epitope tag, 
and the method of fixation used in the analysis (5).

Tripartite motif-containing protein 22, as most TRIM family 
members, is induced by IFN-γ, a functional feature shared with 
TRIM19, also known as PML protein. Hep-2 cells express consti-
tutive levels of TRIM19/PML, but not of TRIM22. However, IFN-γ 
stimulation of these cells leads to the prompt induction of TRIM22 
as well as to the upregulation of TRIM19/PML. Interestingly, 
IFN-induced TRIM22 localized in speckle-like structure similar 
to the TRIM22-containing nuclear bodies observed in TRIM22-
transfected cells and, of note, a significant number of these nuclear 
bodies contained also endogenous TRIM19/PML. Furthermore, 
CIITA was recruited in these nuclear bodies containing also PML 
in cells co-expressing TRIM22 and TRIM19/PML.

We believe that these findings are potentially relevant for 
several reasons. First, they show for the first time that TRIM22 
and TRIM19/PML, two RF strongly implicated in the natural 
immunity against HIV-1 and other viruses, can localize in the 
same nuclear structures. Whether these nuclear structures over-
lap in content and function with PML-NBs, known to be a sort 
of hub of intense biological activity, protein–protein interactions, 
nuclear storage and/or sequestration of proteins, and post-
translational modification of proteins (44), was not assessed here 
and will be the focus of future investigation. However, TRIM22 
expression failed to prevent arsenic-induced TRIM19/PML 
degradation, suggesting that this RF did not undergo significant 
modifications within these nuclear structures. As arsenic induces 
a poly-sumoylation of TRIM19/PML and this posttranslational 
modification is needed for its degradation by the proteasome 
(33), our results suggest that the localization of PML in TRIM22 
bodies does not affect its binding to SUMO. Conversely, TRIM22 
expression was not affected by arsenic with TRIM22 maintaining 
its inhibitory effect on basal HIV-1 transcription. As it has been 
previously observed that in Hep-2 cells CIITA may localize in 
PML-NBs where it is protected from proteasomal degradation 
(31), we can speculate that TRIM22-containing nuclear bodies 
may exert a similar function.

An additional potentially relevant observation of our study 
is that Cyclin T1, a crucial component of the P-TEFb complex, 
also colocalized with CIITA, TRIM22, and TRIM19/PML in 
TRIM22-containing nuclear bodies. In this regard, Marcello 
et al. have previously observed that Cyclin T1 physically interacts 

with PML protein and accumulates in nuclear PML bodies. 
Furthermore, this association was suggested to negatively regulate 
Tat-mediated HIV-1 LTR transcription by modulating the avail-
ability of P-TEFb to the cell transcriptional elongation machinery 
(35). Thus, it is tempting to speculate that CIITA may synergize 
with the action of TRIM19/PML and further inhibit Tat-mediated 
HIV-1 LTR transactivation by competing with Tat for the bind-
ing to Cyclin T1, as we have previously reported in human 
T cells (20). Furthermore, P-TEFb also drives NF-kB-dependent 
HIV-1 LTR transcription (45). Thus, it is likely that TRIM22, by 
segregating CyclinT1 into the nuclear bodies, could also affect 
indirectly NF-kB-induced viral transcription. At this level, a 
potential synergy among CIITA, TRIM19/PML, and TRIM22 can 
be hypothesized to affect either Sp1-dependent and/or Tat-driven 
transcription of HIV-1. Worthy of note, TRIM22, although not 
physically interacting with Sp1, interferes withthe binding to the 
viral promoter (16), whereas TRIM19/PML interacts with Sp1, 
also resulting in the inhibition of its transcriptional activity (46). 
We can thus speculate on TRIM19/PML, and TRIM22 working 
in a concert to heavily impinge upon the basal transcription of 
the HIV-1 LTR.

Taken together, these results extend our knowledge on the 
complex biological mechanisms at the basis of what appears 
more and more as a “concerted action” of TRIM22, TRIM19/
PML, and CIITA RF against HIV-1 viral replication. By favoring 
the co-localization of CIITA, CyclinT1, and TRIM19/PML in 
these newly defined TRIM22-containing nuclear bodies, both the 
basal and the Tat-dependent HIV-1 transcription are inhibited, 
highlighting a better strategy to counteract virus replication and 
spreading.
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